

Trigger and Data Acquisition: Hardware

Samuel Silverstein, Stockholm University

- Forward/organization
- Front-end electronics
- Trigger architectures
- Higher-level triggers

"Tools" used

Foreword

- This presentation is weighted towards hardwarebased Level-1 trigger systems
 - Greatest burden in terms of efficiency versus rate reduction (at least for hadron experiments)
 - Generally less-well understood than higher-level, processor-based triggers, which overlap with analysis software
- Trigger/DAQ is not an exact science!
 - Different detector systems have different requirements because of unique design choices
 - Even similar requirements are often solved differently, due to personal preferences and earlier experiences of the designers.

Trigger organization

- On detector (typically):
 - Pre-amplification, shaping
 - Data sampling, pipeline buffers, (ADC)
 - Trigger "tower" summation*
- Transmission to Level-1:
 - "Short" cables/fibers (50-100m)
- Off detector (typically):
 - patch-panels/receivers
 - A/D conversion of analog signals
 - Distribution to digital processors

Level-1 data path

Level-1 positioning (ATLAS)

Electronics

Analog inputs

- Analog signal conditioning
 - Application specific, usually need to be optimized to the detector
 - Discrete components, custom circuit boards
- Analog-digital conversion
 - Mixed-signal integrated circuit hard to get right
 - Often commercial components, with exceptions for on-detector applications with special demands:
 - Radiation tolerance
 - Low power consumption

ATLAS TileCal front end

Integrated digital circuits

- A long time ago (pre-1990)
 - Large, complex circuit boards with many discrete, commercial components
 - Logic gates (and, or...)
 - Registers (flip-flops) for storing data between clock cycles
 - Memory (RAM)
 - Input/output signal drivers (buffers)
 - Microprocessors, etc.
- Today
 - Digital functionality condensed into a few highly integrated circuits (often FPGAs)

Digital logic in FPGAs

Discrete logic (ZEUS)

FPGA-based (ATLAS CMX)

Functionality implemented in large FPGAs

Integrated digital circuits

- Two approaches:
 - Application-specific integrated circuit (ASIC)
 - Custom-designed circuit with single, fixed function
 - Expensive and time-consuming to design and produce (economical if you produce many copies)
 - Advantages of ASICS
 - Low power, high-speed
 - Can choose e.g. radiation tolerant processes
 - Possible to make mixed digital/analog designs
 - Field-programmable Gate Array (FPGA)
 - Commercial, user-configurable digital circuit
 - Flexible, can be reconfigured

ATLAS L1Calo PreProcessor used ASICs in Run 1, switched to FPGAs for Run 2

ATLAS L1Calo PreProcessor

MCM upgraded for Run 2

FPGA allows digital logic to be upgraded!

So far: improved filter performace. dynamic baseline subtraction

Bunch-dependent pedestal shift

Pedestal correction w/ new MCM

New FPGAs

- FPGAs in original trigger systems already >15-20 years old
- New families of FPGAs include:
 - Large amounts of resources
 - Millions of logic cells
 - RAM, DSP multipliers, embedded processors
 - System speeds 600 MHz (or more!)
 - Multi-Gbit transceivers
 - Speeds up to 13 Gbit/s (Ultrascale: 32.5)
 - Large FPGAs can have 80-96 (Ultrascale:128)
- System architectures limited by I/O, not logic!

Serial data links

- Preferred choice for data distribution
 - High bandwidth over a single optical fiber or electrical signal pair
 - High signal densities to single processing unit (more on that later)
- Physical implementation
 - Previously: discrete, commercial devices with speeds up to 1 Gbit/s
 - Today: high-speed transceivers built into modern FPGAs and large ICs
 - ATLAS, CMS upgrades use >10 Gb/s links
 - implemented with multi-Gb/s FPGA transceivers

Serial links

- Legacy LHC systems
 - ~1 Gbit/s electrical or optical
 - Single link per transmitter/receiver
- New: Parallel optic modules
 - Bundle of 12 fibers on optical 'ribbon'
 - Link speeds: up to >10 Gbit/s per fiber
 - Bundles of 12-72 fibers for routing between systems
 - MTP/MPOConnector
 - ~ same size as Ethernet

Algorithm processing "Toolkit"

- Combinatorial logic
 - Boolean logic gates (AND/OR/XOR/NOT)
 - Configurable lookup tables (FPGA)
- Registers (flip-flops)
 - Hold intermediate results between clock cycles (sequential logic, pipelined algorithms)

Memory lookup tables (LUT)

- Random access memory (RAM)
 - n address bits (input)
 - m data bits (output)
- Input points to the memory address containing the corresponding output
- Data bits drive output to the next stage
- Good for operations where n ≤ 14-16 bits, n ~ m
 - Larger blocks of static RAM blocks get expensive
- Fast, low latency
 - Any arbitrary function in a single clock cycle
- Flexible
 - Just change the memory contents

LUTs for calibration

Common application: apply LUT to raw data to correct for calibration, linearity, etc.

LUTs for thresholds/calculations

ZEUS trigger encoder

Content Addressable Memory (CAM)

- CAM (also Associative Memory) is a special kind of memory LUT
- In traditional LUT:
 - Input is address of the result that we are interested in.
 - Output is the data at that address.
- In CAM it is the reverse:
 - <u>Input is the content</u> we want to find in the memory.
 - <u>Output is the address(es)</u> where that content is stored.
- CAMs support <u>Ternary</u> data
 - 1, 0, X (don't care)
- Useful for parallel search through many possible patterns
 - For example, fast track finding

Traditional Memory

Memory

Example: track finding

- Separate track-finding into two stages:
 - 1. Find low-resolution "roads"—track candidates.
 - Use brute force
 - Solves combinatorics
 - Parallel processing

- 2. Fit high-resolution tracks inside roads.
 - Easier after 1st step
 - Pin down track parameters
 - Cut on fit quality

Pattern Matching

- •Each pattern with private comparator
- Track search during detector readout

Final track fitting done by CPU, using CAM results

Track fitting (CPU)

0.1

0.08

0.06

0.04

0.02

- Final track fitting within narrow roads already found.
 - Linearized equations give good track parameters
 - All linear coefficients stored in hardware memory; fast!
- Tracks close to offline quality

Trigger architectures

Triggering strategy

- Level-1
 - Fast, low-latency processing in hardware, based on simple algorithms:
 - Jets, isolated e, γ, τ, hadrons in calorimeter
 - Sum and missing ET
 - Muons
 - <u>NEW</u>: topology of Level 1 objects
- Level-2
 - More detailed processing in CPUs, with full detector readout available:
 - Refined analysis of Level-1 objects
 - Detector triggers not included in Level-1 (tracking, for example)
- Level-3 (event filter)
 - Physics-like analysis of full event

The challenge:

- Need to keep events with "interesting" features:
 - Isolated electrons and taus, jets, missing transverse energy, etc...
- HLT can perform detailed algorithms with full detector resolution and granularity
 - But Level-1 has limited resolution, and limited time to perform algorithms
- How do we look for physics-like signals in Level-1?

Use a simple approximation

In ATLAS L1Calo:

- Rectangular electrons
- Square jets

Simple trigger algorithms

- Electron/gamma
 - Local energy deposit in EM calorimeter
 - E/H: little/no energy in hadronic layer behind EM deposit
 - Isolation: little/no energy in surrounding cells
- Isolated tau/hadron
 - Similar to E/gamma, but with energy in both EM & hadronic layers

Jets

- Summed EM+hadronic energy in a defined area/radius, greater than a minimum threshold
- "Missing" energy
 - Vector sum of calorimeter energy deposits

- Real electrons and jets are not rectangular
 - But easier and faster in hardware
 - HLT can do a more realistic job later
 - If the event makes it that far
- Reality:
 - Over 99% of what Level-1 accepts is junk!
 - The job of Level-1 is to reduce rates
 - While not throwing away too much good physics
 - Latency/bandwidth/cost are major constraints
 - Do the "best we can" within these constraints

ATLAS e/γ and τ algorithms

Cluster processor module

- Consider an algorithm with an n \times n window
- If a single board processes j × k overlapping windows, then
 - Total towers needed: $(j + n-1) \times (k + n-1)$
 - Example:
 - Atlas cluster algorithm has a 4 × 4 window
 - 64 windows per module: 16 × 4 "core" (64 towers)
 - Total towers needed: 19 × 7 "environment" (133 towers)
 - More than half of the towers must be duplicated from adjacent bords!

Optimizing an architecture

- A larger "core" to "environment" ratio makes more efficient use of each "processing unit"
 - Limited by the amount of data each unit (FPGA or board) can receive and process
- How to optimize an architecture
 - Maximize capacity of each processing unit:
 - Input bandwidth (link number and speed)
 - Dense algorithm processing logic
 - Basically this means using the largest affordable FPGAs, and high-speed serial data links
- Balanced strategy for system-wide data duplication and distribution

System partitioning

- Data sharing and distribution are the most important part of modern trigger designs
 - Modern FPGAs can do what you want with the data, as long as they can get it in!
- Modern system architectures based on:
 - Number of bits per trigger tower,
 - Input link speed (towers per link),
 - Number of links in largest affordable FPGA,
 - Number of links and FPGAs that can fit on a processor board, and
 - Number of boards that can fit in a crate

Data sharing and distribution

- In general:
 - Data fanout limited by available signal pins on boards and integrated circuits
 - Best to use high-speed serial data:
 - fewer pins/wires per data word
- Environment sharing on same board:
 - On-board duplication of input links, distribution to adjacent ICs (FPGAs)
 - Limited by board size/density/complexity
- Environment sharing between boards:
 - Backplane links, if in the same crate (maybe)
 - Duplicated signals at the source (high-speed links)

ATLAS L1Calo Cluster Processor Module (CPM) (currently running)

- Input Stage:
 - 20 FPGAs (XCV100E)
- Processing Stage:
 - 8 FPGAs (XCV1000E)
- Merging Stage:
 - 2 FPGAs (XCV100E)
- 18 layer PCB, minimum feature size 0.003"

ATLAS eFEX (Phase-I)

Similar angular coverage, but 7x EM granularity

CMS e/y algorithm

ATLAS Jet algorithm

- Local maximum in a 0.4 x 0.4 window sliding by 0.2
- Compare transverse energy sum against thresholds for Jet window(s) surrounding the local maximum
 - Jet sizes: 0.4, 0.6, 0.8
 - 8 Jet definitions available:
 - Jet size
 - Et threshold

• 12x12 trigger tower E_{τ} sums in 4x4 region steps with central region > others

• Larger trigger towers in HF but ~ same jet region size, $1.5 \eta \times 1.0 \phi$ τ algorithm (isolated narrow energy deposits), within -2.5 < η < 2.5

• Redefine jet as τ jet if none of the nine 4x4 region $\tau\text{-veto}$ bits are on Output

Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity

CMS L1 muon track finder

Input links (Gbit optical)

CSC Track-Finder

Higher level triggers Event builder Readout

(Some of) ATLAS HLT/DAQ

Trigger/DAQ (ATLAS)

Level-2 trigger

- Reduce rate from 75-100 kHz to few kHz
 - Basically by <u>validating Level-1 triggers</u> using full-resolution detector data (and track matching)
- Because the input rate is high, Level-2 needs to be resource-efficient
 - Limit analysis to objects identified in Level-1 ATLAS uses L1 Regions of Interest (RoI) to select "interesting" parts of the event data
 - Fast rejection of failed Level-2 validations to save CPU resources

Level-2 example (2e)

Lovel 1 triggered on two is	Signature ->	e30i	+	e30i	$ \wedge$
e/m clusters with pT>20Ge	eV STEP 4	lso- lation		lso- lation	
(possible signature: Z->ee	e) Signature 🗲	e30	+	e30	
 HLT Strategy: Validate step-by-step Check intermediate signature 	STEP 3 es Signature →	pt> 30GeV e	+	pt> 30GeV e	m e
 Reject as early as possible 	STEP 2	track finding		track finding	t i
Sequential/modular	Signature 🗲	Churther	÷	Cluster	
approach allows	STEP 1	shape		shape	
early rejection	Level1 seed (RoI) →	EM20i	+	EM20i	

- After Level-2 validation, subdetector data from selected events are sent to the EB
- EB is essentially a large network that collects event fragments from different detectors and organizes them into a unified event structure
- Events are then passed to the Event Filter (Level-3) for "physics-like" analysis
- Event filter reduces rate to ~few hundred Hz, to be sent to storage.

Event Building to a CPU farm

Event builder architectures

Time-shared Bus

- Most common at LEP (VME, Fastbus)
- Bi-directional
- Limited to maximum throughput of bus
- Staged event building by independent buses in parallel (trees). No real gain, but reduces overhead.
- Dual-port memory
 - Event fragments are written in parallel and read sequentially by the destination processor.
 - Easy to implement. Commercially available. ex. D0, OPAL (VME/VSB)

Event builder architectures (2)

Cross bar switch

- Complete, non blocking interconnection all inputs/all outputs.
- Ideal bandwidth efficiency.
- N² crosspoints.
- Control of the path routing:
 - External control (barrel shifter).
 - Auto-routing (by data). Data frame protocols.

- Switches vs. Buses
 - Total bandwidth of a Bus shared among all processors. Adding more processors degrades performance. Generally, Buses do not scale well.
 - With switches, N simultaneous transfers can co-exist. Adding more processors does not degrade performance (simply use a bigger switch).
 Switches are scaleable.

Event Building protocol

- Push protocol (LHCb)
 - Data are pushed to the destinations by the sources.
 - The source needs to know the destination address.
 - Assume sufficient data buffer at destination.
 - No possibility to re-transmit an event fragment.
 - + Simple protocol.
- Pull protocol (ATLAS, CMS)
 - Data in the sources are pulled from the destinations.
 - Only buses can implement a pure pull protocol.
 - Sources indicate when data is ready. Destinations signal finished transfer (to free memory in source)
 - + Destinations can re-read the event fragments (correct errors)
 - Heavier protocol.

Event Filter / Level-3

- ATLAS Event Filter reduce triggers to ~400 Hz
 - Event Filter latency budget ~ 4 sec average
- Full event detector data available, but to minimise resources needed:
 - Only unpack detector data when needed
 - Use Level-2 information to guide the process
 - Analysis proceeds in steps. Possibility to reject an event after each step
 - Use optimised offline algorithms

Bulk storage

Summary so far

- LHC trigger/DAQ systems are massive and complex!
- Different architecture approaches; depend both on individual needs of experiment and experience/preferences of teams that build them
- On the other hand....
 - Overall structures are similar
 - Mainly choose from the same basic building blocks for hardware algorithms, event building, etc.
- So...
 - Hopefully now easier to understand Trigger/DAQ systems
 - Experience from current systems important for future ones beginning with HL-LHC