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%& Foreword

e This presentation is weighted towards hardware-

based Level-1 trigger systems
- Greatest burden in terms of efficiency versus rate
reduction (at least for hadron experiments)

- Generally less-well understood than higher-level,
processor-based triggers, which overlap with analysis

software

e Trigger/DAQ is not an exact science!
- Different detector systems have different requirements

because of unique design choices
- Even similar requirements are often solved differently,
due to personal preferences and earlier experiences of

the designers.




Trigger organization

e On detector (typically):
- Pre-amplification, shaping
- Data sampling, pipeline buffers, (ADC)

- Trigger “tower” summation*

e [ransmission to Level-1:
- “Short” cables/fibers (50-100m)

e Off detector (typically):
- patch-panels/receivers
- A/D conversion of analog signals

- Distribution to digital processors
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j{% Level-1 positioning (ATLAS)
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Electronics
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Analog inputs
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e Analog signal conditioning
- Application specific, usually need to be optimized

to the detector
Discrete components, custom circuit boards

¢ Analog-digital conversion
Mixed-signal integrated circuit — hard to get right

- Often commercial components, with exceptions for
on-detector applications with special demands:

Radiation tolerance
Low power consumption




“ ),

H—t - - H
ADC-|
48
3-in-1 card
Digitizer board
40 MHz Jos — Interface board —_——
J = -
PIPELINE uE-' Format G-Link »{ OTx ROD
s =|1/ — | A L1A
v = gy 2 ss==ssssogksss=ssssss= ORx
PMT 100 kHz
Z Analog trigger sums J - |
Detector sigfals 40 MHz

Adder board

-
-




Integrated digital circuits
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e A long time ago (pre-1990)
Large, complex circuit boards with many discrete,

commercial components

Logic gates (and, or...)
Registers (flip-flops) for storing data between clock

cycles

Memory (RAM)
Input/output signal drivers (buffers)

Microprocessors, etc.

e [Today
- Digital functionality condensed into a few highly
integrated circuits (often FPGAS)
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Discrete logic (ZEUS)
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Functionality
Implemented
in large FPGAs
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%2 Integrated digital circuits

e [wo approaches:
- Application-specific integrated circuit (ASIC)
Custom-designed circuit with single, fixed function
* Expensive and time-consuming to design and produce
(economical if you produce many copies)

Advantages of ASICS

Low power, high-speed
Can choose e.g. radiation tolerant processes

« Possible to make mixed digital/analog designs

- Field-programmable Gate Array (FPGA)
Commercial, user-configurable digital circuit

Flexible, can be reconfigured

ATLAS L1Calo PreProcessor used ASICs in
Run 1, switched to FPGAs for Run 2

13
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MCM upgraded for Run 2

ASIC

implements algorithms for:
- E,measurement

- Bunch crossing ID (BCID)

- fine tuning of - 40 MHz
digitization in - 10 bit
1 ns steps

LVDS-Serializer

- Data transmission
to CP & JEP

MCM

- Wik T
4= et 02 =

nMCM

FPGA

Signal Generator Dual Channel ADCs
- On-Board generation - 80 MHz implements functionality of
of test signals - 10 bit - fine timing chip

- ASIC algorithms
- LVDS transmission

FPGA allows digital logic to be upgraded!
So far: improved filter performace. dynamic baseline subtraction
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PreProcessor ASIC algorithm

Shift registers (flip flops)

M

Calibration

FIR filter

Ider Tree

look-up

table (RAM)

(DSP multipliers)

f1<f2>f3

Peak Finder

Adder tree and

BX identification
In regular logic |WW — Out
1 il
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Bunch-dependent pedestal shift

LHC bunch structure
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Pedestal correction w/ new MCM
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‘1% New FPGAS

e
e FPGAs in original trigger systems already

>15-20 years old
e New families of FPGASs include:

Large amounts of resources

Millions of logic cells
RAM, DSP multipliers, embedded processors

System speeds 600 MHz (or more!)

- Multi-Gbit transceivers
Speeds up to 13 Gbit/s (Ultrascale: 32.5)

Large FPGAs can have 80-96 (Ultrascale:128)

e System architectures limited by I/O, not logic!
19
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e Preferred choice for data distribution

igh bandwidth over a single optical fiber or

- K

electrical signal pair
- High signal densities to single processing unit

(more on that later)

e Physical implementation
Previously: discrete, commercial devices with

speeds up to 1 Gbit/s
Today: high-speed transceivers built into modern

FPGAs and large ICs
ATLAS, CMS upgrades use >10 Gb/s links

implemented with multi-Gb/s FPGA transceivers
20
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e Legacy LHC systems
- ~1 Gbit/s electrical or optical
- Single link per transmitter/receiver

e New: Parallel optic modules
- Bundle of 12 fibers on optical ‘ribbon’

- Link speeds: up to >10 Gbit/s per fiber
- Bundles of 12-72 fibers for routing

between systems

MTP/MPOConnector
~ same size as Ethernet

21




Algorithm processing
“Toolkit”

22




.= Digital logic

Combinatorial logic

- Boolean logic gates
(AND/OR/XOR/NQT)

- Configurable lookup tables
(FPGA)
e Registers (flip-flops)

5

- Hold intermediate results
between — D
clock cycles (sequential logic,
pipelined algorithms) NN
Juy
23




Memory lookup tables (LUT)

& e,
/4//7 + S\l(\
e Random access memory (RAM) A D
n address bits (input) n bits m bits

- m data bits (output)

e Input points to the memory address containing
the corresponding output

e Data bits drive output to the next stage

e (Good for operations where n < 14-16 bits, n ~m
Larger blocks of static RAM blocks get expensive

e Fast, low latency
Any arbitrary function in a single clock cycle

e Flexible
Just change the memory contents

24




calibration, linearity, etc.

LUTs for calibration

Common application: apply LUT to raw data to correct for

10b

12b
‘ ALUTD

count

count

/E@
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LUTSs for thresholds/calculations
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20 IS

Multiplex to 80 MHz (flip-flops)
and fan out (logic)

9 [fan To Jet
e out Algorithm
El e

To energy
E—b summation
] e

LUTs for geometric calculations

Apply thresholds
and sum (logic)
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LUTs used for:
Calibration/linearity
*Geometric calculations
*Tower ‘thresholds’

*Pattern logic bits

Implemented in
discrete static RAM

EMC | Higain)
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energy scale

ZEUS trigger encoder

To Adder Trees
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CAM (also Associative Memory) is a
special kind of memory LUT

In traditional LUT:

Input is address of the result that we
are interested in.

Output is the data at that address.

In CAM it is the reverse:

Input is the content we want to find in
the memory.

Output is the address(es) where that
content is stored.
CAMs support Ternary data
1, 0, X (don'’t care)
Useful for parallel search through many
possible patterns
For example, fast track finding

00
01
10

11

00
01
10

11

Content Addressable Memory (CAM)

101 XX
0110X
011XX

10011

v
W

01

Traditional Memory

01

101 XX
0110X
011 XX
10011
01101

Content Addressable

Memory
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Example: track finding

) P
Separate track-finding into two stages:

Find low-resolution “roads”—track candidates.
| - ( (\———r0ads T’%
\\
I:II\\'I\I\IIIII'::::::/:/V INL T 1 1T 1T 1
Ay AU ——

Use brute force
Solves combinatorics

Parallel processing

Fit high-resolution tracks inside roads.

Easier after 15t step
Pin down track
parameters

Cut on fit quality

~
S L
\ ~ N J
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\ ® / \i |
. \\ // \\ .
\'_‘ \ 7 \ I/
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Pattern
Bank
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PATTERN 1

AM = BINGO PLAYERS
PATTERN 5 K
PATTERN 4
PATTERN 2
PATTERN 3 PATTERN N o
/ )
% %g U

Bingo scorecard

=

*Dedicated device: maximum parallelism
*Each pattern with private comparator
*Track search during detector readout

Final track fitting done by CPU, using CAM results
31
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e Final track fitting within
narrow roads already

found.

- Linearized equations

give good track

parameters

All linear coefficients

stored in hardware

memory; fast!

e Tracks close to offline ..

quality

Track fitting (CPU)
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Trigger

architectures
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1‘%& Particle signatures

Jet Hadron calorimeter

Electromagnetic
Calorimeter

Particle ID:
Time of Flight

Tracking volume

Vertex detector
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Triggering strategy

o Level-1
Fast, low-latency processing in hardware, based

on simple algorithms:
Jets, isolated e, y, 1, hadrons in calorimeter

Sum and missing ET
Muons
NEW: topology of Level 1 objects
e Level-2
More detailed processing in CPUs, with full

detector readout available:
Refined analysis of Level-1 objects

Detector triggers not included in Level-1
(tracking, for example)

Level-3 (event filter)
Physics-like analysis of full event

35




.2 The challenge:

e Need to keep events with “interesting”

features:
o Isolated electrons and taus, jets,

missing transverse energy, etc...
e HLT can perform detailed algorithms with full

detector resolution and granularity
- But Level-1 has limited resolution, and limited

time to perform algorithms
e How do we look for physics-like signals in

Level-17

36




Use a simple approximation

Example of a simple approximation
of a complex problem:
Moo?

/“

‘ y /'\\ In ATLAS L1Calo:
* Rectangular electrons

* Square jets

Consider a sPherica,Q Cow
of radius K ... 7]

37
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Simple trigger algorithms

e Electron/gamma
- Local energy deposit

In EM calorimeter

- E/H: little/no energy in

hadronic layer behind
EM deposit

- Isolation: little/no

energy in surrounding
cells

e Isolated tau/hadron

- Similar to E/gamma,
but with energy in both
EM & hadronic layers

e Jets

Summed EM+hadronic
energy in a defined
area/radius, greater
than a minimum
threshold

“Missing” energy
- Vector sum of

calorimeter energy
deposits

38




Triggering involves trade-offs

e Real electrons and jets are not rectangular

o But easier and faster in hardware
o HLT can do a more realistic job later
If the event makes it that far

e Reality:
o Over 99% of what Level-1 accepts is junk!

o The job of Level-1 is to reduce rates
While not throwing away too much good physics

o Latency/bandwidth/cost are major constraints
Do the “best we can” within these constraints

39
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== Hadronic
71 calorimeter
/ Electromagnetic
calorimeter

Trigger towers /(An xAp=0.1x0.1)

! . | Electromagnetic
Vertical Sums —  H isolation <e.m.

| isolation threshold

< inner & outer

De-cluster/Rol region: ) :
isolation thresholds

local maximum

Horizontal Sums . Hadronic isolation

ATLAS e/y and T algorithms

t/had

===

(L[4

W[ W
g Hadronic
=2 ﬂ calorimeter
/ Electromagnetic
calorimeter

7
Trigger towers (An xA¢ = 0.1 x 0.1)

|

%)

!

| Electromagnetic

Vertical sums in = [ isolat!on <e.m.
both calorimeters [ isolation threshold

Hadronic
Horizontal sums in isolation < hadronic
isolation threshold

both calorimeters
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“Sliding window” EM algorithm

ATLAS CPM

EM cluster algorithm:
“Index”
coordinate
L T | ]
_— _
./ “Window”
//
=)
@ @ /// 7] ”
U } Core” coverage
Cospo Hadronic
== 1 oo of the processor
board
ectromagnetic
, ] calorimeter
Trigger towers (An x Ag = 0.1 x 0.1) Duplicated
. | Electromagnetic “‘environment”
>|  Vertical Sums : i
— | isolation <e.m. i
! [ isolation threshold data from adjacent
Horizontal Sums Hadronic isolation board
¥+ De-cluster/Rol region: <inner & outer
™ local maximum isolation thresholds
Cluster processor module
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"Environment data sharing”
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e Consider an algorithm with an n X n window
e If a single board processes j X k overlapping

windows, then
- Total towers needed: (j + n-1) X (k + n-1)

- Example:
Atlas cluster algorithm has a 4 X4 window
64 windows per module: 16 X4 “core” (64 towers)
Total towers needed: 19 X 7 “environment”

(133 towers)
More than half of the towers must be duplicated

from adjacent bords!

42




Optimizing an architecture

e A larger “core” to “environment” ratio makes more

efficient use of each “processing unit”
Limited by the amount of data each unit (FPGA or

board) can receive and process

e How to optimize an architecture
Maximize capacity of each processing unit:

Input bandwidth (link number and speed)

. Dense algorithm processing logic
Basically this means using the largest affordable

FPGASs, and high-speed serial data links
e Balanced strategy for system-wide data
duplication and distribution

43




System partitioning

e Data sharing and distribution are the most
important part of modern trigger designs
- Modern FPGAs can do what you want with
the data, as long as they can get it in!
e Modern system architectures based on:

- Number of bits per trigger tower,

- Input link speed (towers per link),
- Number of links in largest affordable FPGA,

- Number of links and FPGASs that can fit on a

processor board, and
- Number of boards that can fit in a crate
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Data sharing and distribution

e In general:
Data fanout limited by available signal pins on

boards and integrated circuits
Best to use high-speed serial data:
fewer pins/wires per data word

e Environment sharing on same board:
- On-board duplication of input links, distribution

to adjacent ICs (FPGAS)
Limited by board size/density/complexity

e Environment sharing between boards:
Backplane links, if in the same crate (maybe)

Duplicated signals at the source (high-speed links)

45




ATLAS L1Calo Cluster Processor
Module (CPM) (currently running)

Processing Input Backplane
FPGAS FPGAS conmectr

Result
merging

Input Stage:
20 FPGAs (XCV100E)

Processing Stage:
8 FPGAs (XCV1000E)

Merging Stage:
2 FPGAs (XCV100E)

18 layer PCB, minimum feature
size 0.003"
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suelees  CMS ely algorithm
e IS
4//7-1-3\{\
Trigger Primitive Generator
Fine grain  Flag Maxof(gg , , , ::)&Sum ET

Regional Calorimeter Trigger

E,cut [+ Max (| | ) > Threshold
AND
Longitudinal cut (H/E) m / [T <o0.05
AND
Isolation, Hadronic & EM n <2 GeV
AND

One of ( ], I , I ] O li) <1GeV

¥
ELECTRON or PHOTON




T2 ATLAS Jet algorithm

3
Oy
g

NERS/H
> &
&

N + S
e Localmaximumina 0.4 x0.4
window sliding by 0.2

e Compare transverse energy
sum against thresholds for Jet

window(s) surrounding the
06x06 local maximum
- Jet sizes: 0.4, 0.6, 0.8
o 8 Jet definitions available:
0.8x0.8 + Jetsize
- Et threshold

0.4x04
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Input summin e .
P J Digital input links

Algorithm
and distribution

processing
(FPGASs) (FPGAS) y

ATLAS Jet/Energy processor

i3

t Data sharing
il between boards
(backplane)

per crate
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j{@é CMS 1 / Jet algorithm

A

Trigger

47

Input from E/HCAL.:
Programmable 8-bit
non-linear scale
Converted to linear scale
and summed to obtain
10-bit range jet/t E,

Tower is active if EM ET > 2 GeV

PbWO4 Jerr
Crystal bl ECAL o  HD E, > 4 GeV
< An.M=0-34>8 t-veto set if none of the above
An,A¢ =1.04 activity patterns seen within 4x4

JetortE,
*12x12 trigger tower E_ sums in 4x4 region steps with central region > others

« Larger trigger towers in HF but ~ same jet region size, 1.5 x 1.0 ¢
t algorithm (isolated narrow energy deposits), within -2.5<n <2.5
* Redefine jet as 1 jet if none of the nine 4x4 region t-veto bits are on

Output
*Top 4 t-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity :
51



CMS L1 muon track finder

SECTOR PROCE
PROTOTYPE 200

SPO2

Input links

(Gbit optical) B F s its - & -
= cse
- Track-Finder
Track assemblers  Final assembly
(memory LUTS) (FPGA)
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Higher level triggers
Eventbunder
Readout
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Trigger/DAQ (ATLAS)

40 MH
I oM Detectors
LVL1 2.5ms
Calorimeter Muon LVL1
Trigger Trigger
75 kHz
Rol’s
R
LVL2 ~10 ms
— requests
Rol dat
~2 ¢
~4 kHz I 1 ~6 GB/s
LVL2 t
SCCPL > Event Builder
Event Filter 1 sec
~ 600 MB/s
~ 400 Hz S

Trigger

DAQ

~1 PBI/s

FE Pipelines
2.5ms

Read-Out Drivers

Read-Out Links

Read-Out Buffers

Read-Out Sub-systems

~ 600 MB/s
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%z Level-2 trigger
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e Reduce rate from 75-100 kHz to few kHz
- Basically by validating Level-1 triggers using
full-resolution detector data (and track matching)

e Because the input rate is high, Level-2 needs to
be resource-efficient
- Limit analysis to objects identified in Level-1

ATLAS uses L1 Regions of Interest (Rol) to
select “interesting” parts of the event data

- Fast rejection of failed Level-2 validations to save

i3

CPU resources
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Level-1 triggered on two isolated

e/m clusters with pT>20GeV
(possible signature: Z—>ee)

HLT Strategy:

s Validate step-by-step
s Check intermediate signatures
s Reject as early as possible

Sequential/modular
approach allows
early rejection

Level1 seed (Rol) = EMZOl

Level-2 example (2e)
+[e0i ] A

Signature =
STEP 4 59 50
lation lation
STEP P pie>
30GeV 30GeV
Slgnature > E E
track track
STEP 2
finding finding

STEP 1 Cluster Cluster
shape shape

+ [ora]

time
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e After Level-2 validation, subdetector data from
selected events are sent to the EB
e EB is essentially a large network that collects
event fragments from different detectors and
organizes them into a unified event structure

e Events are then passed to the Event Filter

(Level-3) for “physics-like” analysis
e Event filter reduces rate to ~few hundred Hz, to

Event Builder (EB)

i3

be sent to storage.
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%ﬁ Event builder architectures

o
K7 P
1+5 O Data source
] Data destination

e Time-shared Bus

QO O, Q[Oi % - Most common at LEP (VME, Fastbus)
- Bi-directional

Limited to maximum throughput of bus
Staged event building by independent buses
in parallel (trees). No real gain, but reduces
overhead.

e Dual-port memory
Event fragments are written in parallel and
read sequentially by the destination
processor.

Easy to implement. Commercially available.
ex. DO, OPAL (VME/VSB)
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Event builder architectures (2)

e Cross bar switch
Complete, non blocking interconnection all
inputs/all outputs.
|deal bandwidth efficiency.

N2 crosspoints.
Control of the path routing:

External control (barrel shifter)

Auto-routing (by data). Data frame protocols

Switches vs. Buses
Total bandwidth of a Bus shared among all processors. Adding more
processors degrades performance. Generally, Buses do not scale well

With switches, N simultaneous transfers can co-exist. Adding more
processors does not degrade performance (simply use a bigger switch)

Switches are scaleable.
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e Push protocol (LHCDb)
- Data are pushed to the destinations by the sources.
- The source needs to know the destination address.
- Assume sufficient data buffer at destination.
- - No possibility to re-transmit an event fragment.
+ Simple protocol.
o PuII protocol (ATLAS, CMS)
- Data in the sources are pulled from the destinations.

- Only buses can implement a pure pull protocaol.

- Sources indicate when data is ready. Destinations signal
finished transfer (to free memory in source)

-+ Destinations can re-read the event fragments (correct errors)
- - Heauvier protocaol.

)

Event Building protocol

)OH)D
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Event Filter / Level-3

e ATLAS Event Filter reduce triggers

to ~400 Hz
Event Filter latency budget ~ 4 sec average

e Full event detector data available, but to

minimise resources needed:
Only unpack detector data when needed

- Use Level-2 information to guide the process
- Analysis proceeds in steps. Possibility to
reject an event after each step
Use optimised offline algorithms
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+%  Summary so far

e LHC trigger/DAQ systems are massive and complex!
e Different architecture approaches; depend both on individual needs
of experiment and experience/preferences of teams that build them

e On the other hand....

Overall structures are similar
Mainly choose from the same basic building blocks for hardware

algorithms, event building, etc.

e So..
Hopefully now easier to understand Trigger/DAQ systems
Experience from current systems important for future ones

beginning with HL-LHC
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