Fixed point collisions and tensorial order parameters in Luttinger semimetals and some popular field theories

Igor Herbut
(Simon Fraser University, Vancouver)

Lukas Janssen (TU Dresden)

Igor Boettcher (SFU)

Niels Bohr Institute, June 2018
Outline:

1) **Physical motivation**: (symmetry-poor real world system)

 Quadratic band touching in three dimensions and the Luttinger Hamiltonian

 Coulomb interaction and the scale-invariant (“non-Fermi liquid”) fixed point

 Fixed point annihilation and the separation of scales

 Spin-2 (tensor) ordering

2) **Conformal spinoffs**

 Chiral symmetry breaking in QED_{d<4} revisited

 UV-complete O(N) models above four (space-time) dimensions
Gapless semiconductors with band inversion (gray tin, HgTe, YPtBi)

Luttinger (spin-orbit) Hamiltonian (p-orbitals, $J=\frac{3}{2}$) (Luttinger 1956)

\[H = \frac{1}{2m} \left((\gamma_1 + \frac{5}{2}\gamma_2)k^2 - 2\gamma_2(k \cdot \mathbf{S})^2 \right) \]

with (rotationally symmetric) eigenvalues

\[E_L(k) = \frac{\gamma_1 + 2\gamma_2}{2m} k^2, \quad E_H(k) = \frac{\gamma_1 - 2\gamma_2}{2m} k^2 \]
Luttinger Hamiltonian \(a \ la \) Dirac:

\[
H(k) = \epsilon(k) + \frac{\gamma_2}{m} d_a \Gamma^a
\]

where,

\[
\epsilon(k) = \frac{\gamma_1}{2m} k^2, \quad d_a(k) = -3 \xi_{ij} k_i k_j
\]

\[
d_1 = -\sqrt{3} k_y k_z, \quad d_2 = -\sqrt{3} k_x k_z, \quad d_3 = -\sqrt{3} k_x k_y
\]

\[
d_4 = -\frac{\sqrt{3}}{2} (k_x^2 - k_y^2),
\]

\[
d_5 = -\frac{1}{2} (2k_z^2 - k_x^2 - k_y^2)
\]

are \(l=2 \) (real) spherical harmonics.

Five 4 \times 4 \text{ Dirac matrices satisfy Clifford algebra:}

\[
\{ \Gamma^a, \Gamma^b \} = 2\delta_{ab}
\]
Long-range Coulomb interaction (1/r):

without the hole band, at ``zero” (low) density:

\[\text{Wigner crystal} \]

With the hole band filled and particle band empty: the system is critical!

In the RG language, the charge flows with the change of cutoff:

\[
\frac{de^2}{d \ln b} = (z + 2 - d)e^2 - 4e^4
\]

(Abrikosov, ZETF 1974; Moon, Xu, Kim, Balents PRL 2013)
Below and near the upper critical dimension, $d_{up} = 4$, the flow is towards a non-Fermi liquid fixed point, with the charge at

$$e_x^2 = \frac{15\epsilon}{76} + \mathcal{O}(\epsilon^2)$$

$$\epsilon = 4 - d$$

and the dynamical critical exponent $Z < 2$:

$$z = 2 - \frac{16}{15} e^2$$

This implies power-laws in various responses, such as specific heat:

$$c_v \sim T^{d/z} \approx T^{1.7}$$

Emergent scale (conformal?) invariance!

Cheap way to get a non-Fermi liquid phase in 3D !?

\[L = L_0 + L_a + L_\psi \]

with the free (Luttinger) part,

\[L_0 = \psi_i^\dagger [\partial_r + H_0(-i\nabla)] \psi_i \]

and long-range (Coulomb) and short-range (Coulomb) interactions

\[L_a = \frac{1}{2} (\nabla a)^2 + i e a \psi_i^\dagger \psi_i \]

\[L_\psi = g_1 (\psi_i^\dagger \psi_i)^2 + g_2 (\psi_i^\dagger \gamma_a \psi_i)^2 + g_3 (\psi_i^\dagger \gamma_{ab} \psi_i)^2 \]
The RG flow of all the couplings: (one loop)

\[
\frac{de^2}{d \ln b} = (2 + z - d - \eta_a)e^2,
\]

\[
\frac{dg_1}{d \ln b} = (z - d)g_1 - (e^2 + 2g_1)g_2 - 24g_3^2,
\]

\[
\frac{dg_2}{d \ln b} = (z - d)g_2 + \frac{4(e^2 + 2g_1)g_2}{5} - \frac{(e^2 + 2g_1)^2}{20} - \frac{37 + 16N}{5}g_2^2 + \frac{112}{5}g_2g_3 - \frac{136}{5}g_3^2,
\]

\[
\frac{dg_3}{d \ln b} = (z - d)g_3 - \frac{1}{5}(e^2 + 2g_1)g_3 + g_2^2 - 6g_2g_3 + \frac{4(11 - 4N)}{5}g_3^2
\]

with,

\[
\eta_a = Ne^2 \quad \quad z = 2 - \frac{4}{15}e^2
\]

and the “charge”

\[
e^2 = 2me_{el}^2/(4\pi\hbar^2\varepsilon)
\]
Close to and below $d=4$ there is a (IR stable) NFL fixed point, but also a (UV stable) quantum critical point at strong interaction:

They get closer, but remain separated in the coupling space!
At some “lower critical dimension” NFL and QCP collide:

In one loop calculation, this occurs at \(d_l = 3.26240 \), slightly above three dimensions.
Finally, below the NFL and QCP become complex (unphysical), and there is only a runaway flow left:

The system is unstable towards a gapped (Mott) insulator.

Scale invariance lost!
Fixed point collision and annihilation:

(Halperin, Lubensky, Ma, PRL 1974; IH & Tesanovic, PRL 1995; Kaveh & IH, PRB 2005; Gies & Jaeckel 2006; Kaplan, Lee, Son, Stephanov, PRD 2009; Nahum, PRX 2015,.........)
General number of fermions \((N)\) and dimension \((d)\):

Near \(d=2\) the collision occurs in the completely perturbative regime:

\[
N \geq N_c(\epsilon) = \frac{64}{25\epsilon^2} + \mathcal{O}(1/\epsilon)
\]

\[
\epsilon = d - 2
\]
Critical number of fermions in $d=3$:

TABLE III. Critical fermion number N_c in $d=3$ spatial dimensions from different approaches.

<table>
<thead>
<tr>
<th>Method</th>
<th>Reference</th>
<th>$N_c(d=3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 + \epsilon$ expansion</td>
<td>Sec. III</td>
<td>2.56</td>
</tr>
<tr>
<td>RG in fixed $d=3$</td>
<td>Sec. IV</td>
<td>2.10</td>
</tr>
<tr>
<td>Functional RG</td>
<td>Sec. VI</td>
<td>1.86</td>
</tr>
<tr>
<td>$1/N$ expansion in $d=3$</td>
<td>Ref. [18]</td>
<td>$\geq 2.6(2)$</td>
</tr>
</tbody>
</table>
Order parameter for \(d < d_{\text{low}} \)

\[
\chi_i = 2g_2 \langle \Psi^\dagger \gamma_i \Psi \rangle
\]

Out of the five \(\chi_1, \ldots, \chi_5 \) not all equivalent:

1. \(\chi_1 \neq 0 \): \(\varepsilon(\vec{p}) \) gapped with minimal gap at two opposite points on equator

2. \(\chi_5 < 0 \): \(\varepsilon(\vec{p}) \) gapless with gap closing at north and south pole

3. \(\chi_5 > 0 \): \(\varepsilon(\vec{p}) \) gapped with minimal gap at entire equator

Energy \(E = \int \frac{d\vec{p}}{(2\pi)^3} \varepsilon(\vec{p}) \) is minimized for (3): \(\chi_5 > 0 \) (modulo \(O(3) \))
The fate of NFL: if d_F is above but close to $d=3$, the flow becomes slow close to (complex!) NFL fixed point. The RG escape time is long:

$$b_0 = e^{\frac{C}{\sqrt{d_{\text{low}}-d}}} - B + \mathcal{O}(d_{\text{low}} - d)$$

with non-universal constants C and B. There is wide crossover region of the NFL behavior within the temperature window

$$(T_c, T_*)$$

with the critical temperature,

$$T_c \approx T_* b_0^{-z}$$

Characteristic energy scale for interaction effects

$$k_B T_* \sim \frac{e_{\text{el}}^2}{\varepsilon L_*} = \frac{\hbar^2}{2m L_*^2} = \frac{4m}{m_{\text{el}} \varepsilon^2} E_0$$

(Sherrington & Kohn, Halperin & Rice, RMP 1968)
Some numbers: (for HgTe)

small mass \[m/m_{el} \approx 1/50 \]

high dielectric constant \[\varepsilon \approx 30 \]

still a reasonable \[T_* \sim 10 \text{ K} - 100 \text{ K} \]

and (maybe) a detectable \[T_c \approx T_*/100 \]
Cubic symmetry: realistic Luttinger Hamiltonian, cubic symmetry

\[H = \frac{\hbar^2}{2m^*} \left[\left(\alpha_1 + \frac{5}{2} \alpha_2 \right) p^2_{14} - 2\alpha_3 (\vec{p} \cdot \vec{J})^2 \right. \\
\left. + 2(\alpha_3 - \alpha_2) \sum_{i=1}^{3} p_i^2 J_i^2 \right], \]

contains particle-hole asymmetry and anisotropy parameters

\[x = -\frac{\alpha_1}{\alpha_2 + \alpha_3}, \quad \delta = -\frac{\alpha_2 - \alpha_3}{\alpha_2 + \alpha_3} \]

with (generically) particularly slow flow of the anisotropy:

\[\dot{\delta} \simeq -\frac{8}{105} e^2 \delta. \]
Flow of the charge is now

\[\dot{e}^2 = \frac{d e^2}{d \log b} = (4 - d - \eta) e^2 - \frac{f_e^2(\delta)}{1 - \delta^2} e^4 \]

which lowers the critical dimension: (Boettcher & IH, PRB 2017)
Chiral symmetry breaking in QED3 revisited

Schwinger-Dyson, large-N, calculation of the mass gap (Appelquist, Nash, Wijewardhana, PRL 1988):

\[\Sigma(0) = \alpha e^{(\delta+2)} \exp \left[\frac{-2n\pi}{(32/\pi^2N - 1)^{1/2}} \right] \]

as the number of four-component Dirac fermions \(N \)

\[N \to 32/\pi^2 \]

from below.

This should also be understandable as a fixed point collision and annihilation.
Consider QED near four space-time dimensions with (generated) quartic terms (Herbut, PRD 2016; Di Pietro et al, PRL 2016)

\[L = \bar{\Psi}_n i \gamma_\mu (\partial_\mu - ieA_\mu) \Psi_n + \sum_{a=1}^{2} g_a (\bar{\Psi}_n X_a \gamma_\mu \Psi_n)^2 + \frac{F_{\mu\nu}^2}{4} \]

with

\[X_1 = 1 \]
\[X_2 = \gamma_5 \]

i. e. with additional (axial) current – (axial) current interactions.
The flow in the IR \((\Lambda \to \Lambda/b)\), one loop:

\[
\beta_1 = (2 - d)g_1 + 4(N + 1)g_1^2 - 8g_1g_2 - 6e^2g_2, \\
\beta_2 = (2 - d)g_2 + 2(2N - 1)g_2^2 + 4g_1g_2 \\
- 6g_1^2 - 6e^2g_1 - \frac{3}{2}e^4, \\
\beta_e = (4 - d)e^2 + \beta_{e0}(e).
\]

and the charge beta-function precisely in \(d=4\) is:

\[
\beta_{e0}(e) = -\frac{4N}{3}e^4 - 4Ne^6 + O(Ne^8, N^2e^8)
\]

(Gorishny, Kataev, Larin 1991 (four loop))
Introducing linear combinations:

\[g_{\pm} = g_1 \pm g_2 \]

equations (almost) decouple

\[\beta_+ = (2 - d)g_+ + 2(N - 1)g_+^2 + 2Ng_-^2 - 6g_+e^2 - \frac{3}{2}e^4, \]

\[\beta_- = (2 - d)g_- + 6g_-^2 + 4(N + 1)g_+g_- + 6g_-e^2 + \frac{3}{2}e^4 \]

When \(N=0 \) the first equation decouples. At zero charge:

1) Gaussian stable FP \(g_{\pm} = 0 \)

2) Critical FP \(g_+ = 0, \ g_- = 1/3 \)

and two more (unimportant) FPs.
Note that

\[\sum_{a=1}^{2} g_a (\bar{\psi} X_a \gamma_\mu \psi)^2 = -g_- [(\bar{\psi} \psi)^2 - (\bar{\psi} \gamma_5 \psi)^2] \]

So a large positive \(g_- \) indeed favors CSB.

Turning on a small charge by hand FP 1 (conformal phase) and FP 2 (critical point for CSB) approach each other.

At one loop and near \(d=4 \) the fixed points collide at

\[e_c^2 = 3 - 2\sqrt{2} = 0.17157 \]

At which

\[g_+ = -e_c^4 / 2 = -0.0147 \quad g_- = e_c^2 / 2 = 0.0857 \]

at least are reasonably small.
Equating the critical and the IR fixed point value of the charge yields

\[\frac{4 - d}{N_c} = -\lim_{N \to 0} \frac{\beta_{e_0}(e_c)}{Ne_c^2} \]

and finally

\[N_c = \frac{3(4 - d)}{4(e_c^2 + 3e_c^4)} \approx 2.88596(4 - d) + O((4 - d)^2) \]

Compared well with other analytical approaches; numerically, CSB maybe only at \(N=0 \)? (Karthik and Narayan, PRD 2016)
O(N) critical point above four (space-time) dimensions

Above four dimensions Wilson-Fisher fixed point moves to unphysical region and becomes IR unstable (bicritical):

\[\epsilon = 4 - d \]

(IH, A modern approach to critical phenomena (CUP 2007), p. 53)

Can it be understood as an IR stable FP of another theory?
Fei, Giombi, Klebanov (PRD 2014): consider

\[L = \frac{1}{2} (\partial_\mu z)^2 + \frac{1}{2} (\partial_\mu \phi_i)^2 + g z \phi_i \phi_i + \lambda z^3 \]

which is (log) renormalizable at \(d = 6 \).

Below \(d = 6 \) there is an IR stable fixed point for \((d = 6 - \epsilon)\)

\[N_{\text{crit}} = 1038.266 - 609.840 \epsilon - 364.173 \epsilon^2 + \mathcal{O} (\epsilon^3) \]

(Fei, Giombi, Klebanov, Tarnopolsky, PRD 2015)
Alternative formulation (IH and Janssen, PRD 2016)

Consider XY model \((N=2)\):

\[
(\phi_1^2 + \phi_2^2)^2 = (\phi_1^2 - \phi_2^2)^2 + (2\phi_1\phi_2)^2 = (\phi^T \sigma_3 \phi)^2 + (\phi^T \sigma_1 \phi)^2.
\]

Alternative Hubbard-Stratonovich decoupling

\[-\frac{g^2}{2}(\phi_1^2 + \phi_2^2)^2 = \frac{1}{2} z_a z_a + gz_a \phi^T \sigma_a \phi \quad a \in \{1, 3\}\]

to motivate an another representation of the XY model:

\[
L = \frac{1}{2} z_a (m_z^2 - \partial_\mu) z_a + \frac{1}{2} \phi_i (m_\phi^2 - \partial_\mu) \phi_i + gz_a \phi^T \sigma_a \phi
\]
For a general N:

\[
\frac{1}{2}z_a z_a + g z_a \phi^T \Lambda^a \phi = -\frac{g^2}{2} \phi_i \Lambda^a_{ij} \phi_j \phi_k \Lambda^a_{kl} \phi_l
\]

\[a = 1, \ldots, M_N\]

\[M_N = (N - 1)(N + 2)/2\]

is the number of components of second rank irreducible tensor. Completeness of the set of real symmetric Λ^a - matrices

\[
\Lambda^a_{ij} \Lambda^a_{kl} = \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{N} \delta_{ij} \delta_{kl}
\]

So that

\[
\frac{1}{2}z_a z_a + g z_a \phi^T \Lambda^a \phi = g^2 \left(\frac{1}{N} - 1\right) (\phi_i \phi_i)^2
\]

is just the original quartic term!
Alternative O(N) model: (IH, Janssen, PRD 2016)

\[L = \frac{1}{2} (\partial_\mu z_a)^2 + \frac{1}{2} (\partial_\mu \phi_i)^2 + g z_a \phi_i \Lambda^a_{ij} \phi_j + \lambda \text{Tr}[(z_a \Lambda^a)^3]. \]

which is also renormalizable in \(d=6 \). Right below \(d=6 \), one loop:

\[\frac{d\lambda}{d \ln b} = \frac{1}{2} (\epsilon - 3 \eta_z) \lambda + 36 \left(N + 4 - \frac{24}{N} \right) \lambda^3 + \frac{4}{3} g^3, \]

\[\frac{dg}{d \ln b} = \frac{1}{2} (\epsilon - \eta_z - 2 \eta_\phi) g + 4 \left(1 - \frac{2}{N} \right) g^3 + 12 \left(N + 2 - \frac{8}{N} \right) g^2 \lambda, \]

\[\eta_z = 12 \left(N + 2 - \frac{8}{N} \right) \lambda^2 + \frac{4}{3} g^2, \quad \eta_\phi = \frac{4}{3} \left(N + 1 - \frac{2}{N} \right) g^2. \]
This flow has an **IR stable fixed point** for:

\[1 < N < 2.6534 \]

and again for

\[2.9991 < N < 3.6846 \]

For \(N=2 \):

\[\eta_\phi = 2\eta_z = \frac{2}{5}e \]

and for \(N=3 \):

\[\eta_z = \eta_\phi = \frac{5}{33}e \]

and positive!
Flow for $N=3$:

For $3.6847 < N < 4$ the fixed point A becomes stable, but runs to infinity as $N \to 4$.
At $N=3$, at the stable fixed point C the theory becomes:

$$L = \frac{1}{2} \text{Tr} \left(\partial_\mu M \right)^2 + g^* \text{Tr} M^3$$

$$M = \sum_{a=1}^{5} Z_a \Lambda^a + \sum_{i=1}^{3} \phi_i S_i$$

$$(S_i^z) = i \varepsilon_{ijk} \phi_j^i$$

and SU(3)-symmetric! (IH, unpublished)
Beyond one-loop: (Roscher and IH, PRD 2018; Gracey, Roscher, IH, in prep.)

\[N_c = 2.65 - 3.7 \varepsilon^{\frac{n}{2}} - 2.5 \varepsilon + \mathcal{O}(\varepsilon^{3/2}) \]

Anything surviving in $d=5$?
Conclusion:

1) Two possible examples of fixed point collision:
 a) interacting Luttinger fermions in 3D semiconductors,
 b) QED at low N; probably many other examples

2) Characteristic separation of scales; gaps could appear “unnaturally” small

3) Tensor representation of the O(N) models: new IR-stable O(N) fixed points close to d=6. Non-triviality in d=5?
Di Pietro et al PRL 2016: neglect of e^4 terms gives

1) Fixed points near $d=4$ are at the line $g_+ = 0$

2) Gaussian FP is pinned at $g_- = 0$

3) Critical point goes through it and destabilizes it at

$$1 - 3e_c^2 = 0$$

4) From the leading order beta function for the charge then

$$N_c = \left(\frac{9}{4}\right)(4 - d)$$
Yukawa-like field theory for the nematic (IR) critical point:
(Janssen & IH, PRB 2015)

\[L = L_\psi + L_{\psi \phi} + L_\phi \]

\[L_\psi = \psi^\dagger \left(\partial_\tau + \gamma_a d_a(-i\nabla) \right) \psi, \]
\[L_{\psi \phi} = g\phi_a \psi^\dagger \gamma_a \psi, \]
\[L_\phi = \frac{1}{4} T_{ij} \left(-c\partial_\tau^2 - \nabla^2 + r \right) T_{ji} + \lambda T_{ij} T_{jk} T_{ki} + \mathcal{O}(T^4). \]

where the nematic tensorial order parameter is

\[T_{ij} = \phi_a \Lambda_{a,ij} \quad \langle \phi_a \rangle = \frac{-g}{r} \langle \psi^\dagger \gamma_a \psi \rangle \]

And \(\Lambda_a \) are the five three dimensional Gell-Mann matrices.
RG flow, close to four (spatial) dimensions:

“B”: “classical” nematic critical point \(^{(Priest \text{ and Lubensky, 1976)}}\)

“F”: new fermionic fixed point