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Introduction

• When do we expect to encounter hydrodynamics

without boost symmetries?

• Particles moving through a medium whose interactions

break boost symmetries.

• Thermodynamic systems with dynamical scaling for

generic values of the dynamical exponent z are not

compatible with boost symmetries.

• Most general form of hydrodynamics with spatial

rotational symmetries, unifying relativistic and

non-relativistic hydrodynamics into one framework.
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Introduction: Dynamical scaling

• Dispersion relation ω ∼ kz.

• Integer z: spontaneous symmetry breaking in

non-relativistic field theories [Watanabe, Murayama, 2014].

• Non-integer z: weird but not uncommon. Just throw a

stone in the water. Capillary waves (ripples on water)

have z = 3/2.

• Field theories with z /∈ N are expected to be non-local.

Explicit example: ripplons with z = 3/2 on domain wall

between two superfluids [Watanabe, Murayama, 2014].
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Introduction: Dynamical scaling

• Biological systems can have dynamical scaling with

non-integer values of z: e.g. flocking behavior.

• In CM infrared effective theories can have non-CFT

scaling exponents.

• Near quantum critical points electrons may be strongly

coupled and thus may form a fluid. See e.g. [Lucas, Fong,

2017] for a review.

• Goal: describe the hydro phase of any field theory with

scaling z > 1 at finite temperature. Earlier work: [Hoyos,

Kim, Oz, 2013] and [Chapman, Hoyos, Oz, 2013] for superfluids.
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Outline of Talk

• Thermodynamics

• Ideal fluids and sound mode

• Hydrodynamic modes in non-ideal fluids: viscosities

and conductivities
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Part I:

Thermodynamics
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Thermodynamics

• Assumption: system is homogeneous, isotropic and

conserves particles.

• Grand canonical partition function Z(T, V, µ, vi):

temperature T , volume V , chemical potential µ

(particle number conservation) and velocity vi.

• Grand potential Ω = −kBT logZ(T, V, µ, vi)

• Ω = −PV and δP = sδT + Piδv
i + nδµ with P

pressure, s entropy, Pi momentum, n charge density

• Total energy density: E = sT + µn+ viPi − P .
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What is mass?

• Isotropy: momentum density Pi = ρvi.

• ρ is the kinetic mass density (not conserved).

• n is the particle number density (conserved).

• Example: Ideal gas of particles with dispersion ω ∝ kz.
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Ideal gas of Lifshitz particles

• Boltzmann gas of N identical free Lifshitz particles with

single-particle Hamiltonian H1 = λ|~p|z. Canonical

partition function

Z(N,T, V, vi) =
1

N !

[

Z1(T, V, v
i)
]N

,

Z1(T, V, v
i) =

V

hd

∫

dd~pe−βH1−β~v·~p = λ−d
th V
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• Approximation valid when λth ≪
(

V
N

)
1

d with

H1 = λpzth ∼ kBT and pth = h
λth

.
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Ideal gas of Lifshitz particles

• Equation of state:

P (T, µ, v2) = λ−d
th β−1eβµ

∞
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• Small α means v is small compared to speed of sound.

• Gibbs–Duhem: δP = sδT + nδµ+ 1
2
ρδv2

• Ideal gas law for any z: P = nkBT

• Mass/particle: ρ

n
= #

p2−z
th

λ
+O(v2)

• Speed of sound: v2s = γ P
ρ

with γ = CP

CV
= 1 + z

d
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Part II:

Ideal Fluids and Sound Mode
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Energy-Momentum Tensor and Particle Current

• Hydrodynamics is a theory for fluctuations of the

chemical potentials (on large length and time scales):

T , µ and vi that are conjugate to conserved charges,

whose equations of motion are the charge

conservation equations.

• There is a conserved energy-momentum tensor T µ
ν

and a conserved current Jµ.

• The charges are H = −
∫

ddxT 0
0, Pi =

∫

ddxT 0
i and

Q =
∫

ddxJ0.

• The objects T µ
ν , Jµ transform in a representation of

the full spacetime symmetry algebra (incl. e.g. SO(d)).
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Energy-Momentum Tensor and Charge Current

• T 0
0 is the energy density

• T i
0 is the energy flux

• T 0
i is the momentum density

• T i
j = T j

i is the stress (rotational symmetries Jij)

• J0 is the charge density

• J i is the charge flux

• Energy (H), momentum (Pi), charge conservation (Q):

∂µT
µ
ν = 0 , ∂µJ

µ = 0

• Lorentz boosts: T 0
i = −T i

0

Galilean boosts: T 0
i = J i.
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Perfect fluid

• In LAB frame we have

T 0
0 = −E , T i

0 = − (E + P ) vi , T 0
i = ρvi , T i

j = Pδij + ρvivj

J0 = n , J i = nvi

• The most general energy-momentum tensor and

particle current with SO(d) symmetry obeying the

thermodynamic condition: flux = charge × vi.

• Constant velocity: ∃ a frame in which all fluxes vanish:

T̃ 0
0 = −Ẽ , T̃ i

0 = 0 , T̃ 0
i = ρvi , T̃ i

j = Pδij , J̃0 = n , J̃ i = 0

• Internal energy: Ẽ = E − Piv
i = Ts+ µn− P

• vi breaks rotations SO(d) → SO(d− 1) spontaneously.
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Boost invariant cases

• Lorentz boost invariance: T 0
i = −T i

0 means ρ = Ẽ+P
1−v2

.

• Galilei boost invariance: T 0
i = J i implies ρ = n. In this

case the thermodynamics becomes:

Ẽ = Ts− P + µn , dẼ = Tds−
1

2
ndv2 + µdn

• We can remove the dv2 terms by defining the variables

Ê = Ẽ + 1
2
nv2 and µ̂ = µ+ 1

2
v2 [Jensen, 2014] so that

Ê = Ts− P + µ̂n , dÊ = Tds+ µ̂dn

Here Ê is the internal energy.
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Scale invariance: a nogo result

• Dilatation current: ∂µ (T
µ
νD

ν) = zT 0
0 + T i

i = 0 where

D = zt∂t + xi∂i.

• The scale Ward identity implies that

dP = zẼ + (z − 1)ρv2.

• Lorentz: ρ = Ẽ+P
1−v2

with P , Ẽ independent of v2 → z = 1.

• Galilei: ρ = n with P , Ê = Ẽ + 1
2
nv2 and n independent

of v2, so dP = zÊ + z−2
2
nv2 → z = 2.

• In Galilean case we can add scale with any z to the

algebra but we cannot form a perfect fluid with z 6= 2.

See also [Grinstein, Pal, 2018].
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Speed of sound

• Modified Euler equation:

ρ(∂t + vi∂i)v
j = −∂jP − vj

[

∂tρ+ ∂i(ρv
i)
]

• Fluctuate the eom around a constant background:

ρ = ρ0+δρ , E = E0+δE , P = P0+δP , vi = vi0+δvi

• If we assume scale invariance and vi0 = 0 we have

zδE = dδP so

(ω2 − v2sk
2)δP = 0 , v2s =

z

d

E0 + P0

ρ0

• For vi0 6= 0 the speed of sound depends on the angle

between vi0 and ki.
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Part V:

Hydrodynamic modes in non-ideal

fluids: viscosities and

conductivities
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Hydro Frame

• We will work up to first order in derivatives and first

order in fluctuations around global equilibrium at rest.

• Landau frame: energy current and charge density are

those of a perfect fluid.

T 0
0 = −Ẽ0 − δẼ , T i

0 = −
(

Ẽ0 + P0

)

δvi

T 0
j = ρ0δv

j + T 0
(1)j , T i

j = (P0 + δP ) δij + T i
(1)j

J0 = n0 + δn , J i = n0δv
i + J i

(1)

T i
(1)j = −ζ0δij∂kδv

k − η0

(

∂iδv
j + ∂jδv

i −
2

d
δij∂kδv

k

)

T 0
(1)j = −π0∂tδv

j + T0 (α0 + γ0) ∂jδ
µ

T

J i
(1) = (α0 − γ0) ∂tδv

i − T0σ0∂iδ
µ

T
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Entropy Current

• Entropy current Sµ = Sµ
can + Sµ

non-can where

Sµ
can = −

1

T
T µ

νu
ν +

P

T
uµ −

µ

T
Jµ

• One shows (using Gibbs–Duhem), (0)=perfect fluid:

∂µS
µ = −

(

T µ
ν − T µ

(0)ν

)

∂µ
uν

T
−
(

Jµ − Jµ

(0)

)

∂µ
µ

T

• Split in dissipative and non-dissipative parts:

T µ
ν = T µ

Dν+T µ
NDν , Jµ = Jµ

D+Jµ
ND , ∂µS

µ
non-can = T µ

NDν∂µ
uν

T
+Jµ

ND∂µ
µ

T

• Sµ
non-can is the most general current obeying the above

as well as ∂µS
µ ≥ 0 for all fluid configurations.
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Entropy Current

ζ0 = ζ̄0 + aTT
2
0

(

∂P0

∂Ẽ0

)

n0

+ a µ

T

(

∂P0

∂n0

)

Ẽ0

π0 = π̄0 − aT
ρ0T

2
0

Ẽ0 + P0

α0 = ᾱ0 +
aT
2

n0T
2
0

Ẽ0 + P0

−
a µ

T

2

• Bars are dissipative and a(T, µ/T ) is non-dissipative.

• Positive entropy production:

ζ̄0 ≥ 0 , η0 ≥ 0 , π̄0 ≥ 0 , σ0 ≥ 0 , ᾱ2
0 ≤ π̄0σ0

• Onsager relations: γ0 = 0.
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Hydrodynamic Modes

ωshear = −i
η0
ρ0
k2 multiplicity d− 1

ωsound = ±vsk − iΓk2 multiplicity 2

ωdiff = −iDk2 multiplicity 1

• Diffusion constant: D = (Ẽ0+P0)2

n3

0
T0cP

σ0

• Γ ≥ 0 is the sound attenuation constant:

Γ =
1

2ρ0v2s





[

ζ̄0 +
2

d
(d− 1)η0

]

v2s + π̄0v
4
s + σ0

(

(

∂P0

∂n0

)

Ẽ0

)2

+2ᾱ0v
2
s

(

∂P0

∂n0

)

Ẽ0

]

• Lorentz: π̄0 = ᾱ0 = 0 and Galilei: π̄0 = σ0 = −ᾱ0.
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Outlook

• One formalism that only assumes H, Pi, Jij and Q

symmetries which includes all boost invariant cases.

• At perfect fluid level it just requires the specification of

one extra function: kinetic mass density ρ.

• Scaling with z > 1 and z 6= 2 cannot have Galilean

boost symmetry. Hence systems in condensed matter

with z > 1 scaling and a hydro regime are non-boost

invariant.
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Outlook

• At first order in derivatives and fluctuations around rest

we find 5 dissipative (2 viscosities and 3 conductivities)

and 1 non-dissipative transport coefficients.

• Full result at first order in derivatives is under

construction.

• Find examples of more interesting equations of state

and compute transport coefficients in simple models.

• Applications to CM.
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Geometry

• In general the geometry is some absolute space-time

with metrics τµτν and hµν where hµν has signature

(0, 1, . . . 1) and some U(1) potential mµ.

• Local symmetries are diffeos and a U(1).

• Special cases of this are:

◦ Newton–Cartan geometry: local (Galilean) boosts

acting on hµν and mµ

◦ Lorentzian geometry: gµν = −τµτν + hµν

◦ Other non-Lorentzian geometries
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Energy-Momentum Tensor and Charge Current

• Energy-momentum tensor T µ
ν as response to varying

non-Lorentzian geometry:

δS =

∫

dd+1xe

(

−T µδτµ +
1

2
T µνδhµν + JµδAµ

)

e =
√

−det (−τµτν + hµν) , T µ
ν = −T µτν + hνρT

µρ

• Hydrostatic partition function: logZ = −S with

S =

∫

dd+1xeP (T, u2) , u2 = hµνu
µuν

T is the local temperature and βµ = T0u
µ/T with

uµτµ = 1 is a Killing vector of τµ and hµν [Jensen, 2014]

where T0 is the global temperature.
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Hyperscaling violation and anomalous dimension

• Hyperscaling violation exponent θ: replace d by d− θ in

scaling of variables, e.g. δP = (d− θ + z)λP

• Anomalous dimension α : δµ = (z + α)λµ

• Scaling of T and v2 : δT = zλT , δv2 = 2(z − 1)λv2.

• Equation of state:

(d− θ)P = zÊ + αµ̂n+
z − 2− α

2
nv2

• Compatible with Galilean boost invariance if α = z − 2.
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