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Outline

* Quantum RG for emergent space

* Emergent time
— Black hole information puzzle (if time permits)
* Summary



AdS/CFT correspondence

[Maldacena; Gubser, Klebanov, Polyakov; Witten]

Non-perturbative dynamics of some quantum field theories can be understood
in terms of classical physics of dual gravitational theories

D-dim QFTz (D+1)-dim quantum gravity

Quantum field theories provide new perspectives on
problems in quantum gravity

* Alot of progress has been made in both directions
 However, a microscopic understanding of the correspondence is
desired for some problems
o QFT that can not be easily embedded in string theory
o Black hole information puzzle



Gravity from QFT
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* Ward identity :
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Local coarse graining
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6S includes multi-trace operators

[Becchi, Giusto, Imbimbo; Heemskerk, Polchinski; Faulkner, Liu, Rangamani;..]
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* Multi-trace operators can be removed by promoting
sources for single-trace operators into dynamical
variables s
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Sum over RG paths

* Repetition of the coarse graining leads to a sum over RG paths in the
space of single-trace sources

* Beta functions for multi-trace operators in the presence of single-trace
sources determines the quantum Hamiltonian for dynamical single-

trace sources
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Generating function as an overlap
between quantum states

defined on spacetime
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* |0) has an infinite norm
X : Euclidean spacetime



Coarse graining
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H(x) — F(ﬁ-(g;)7 (ﬁ(x), V) : generator of a local RG transformation acting
on the spacetime state of the matte field
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Radial evolution
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oarse graining
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The evolution of the wavefunction for metric is governed by a quantum
theory of gravity
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The wavefunction at UV and at any finite radial slice satisfies neither

the momentum constraint nor the Hamiltonian constraint

— A QFT with shifted sources represents a different QFT
— There is a non-trivial RG flow

Only the IR state satisfies the constraints



Emergent time?

* AdS/CFT does not directly apply to our universe

» dS/CFT aims to understand an emergent
gravity/time with the guidance from AdS/CFT

[Strominger; Anninos, Hartman, Strominger; Anninos, Denef, Monten, Sun;..]

* Here, we attempt to take a microscopic approach
for emergent gravity/time



Road map

Emergent space

Emergent time

Local QFT action defined on a

Short-range entangled quantum

"UV’ state curved spacetime with other state parameterized by space metric
sources and other collective variables
Bulk . . .
_ Coarse graining Unitary evolution
evolution
o . . . Topological state
IR’ state A fixed point action . :
with zero energy density
Physical
y , _ A wavefunction of
observable Generating function

(overlap)

the topological state




From emergent space to emergent time
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From emergent space to emergent time
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Example for emergent time
T3
* 3D manifold

* Matrix fields : @, ()
* Full Hilbert space spanned by {|CI>>}
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Sub-Hilbert space

A sub-Hilbert space V is spanned by states parameterized by
two singlet collective variables : a triad and a scalar field
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Inner product

* |nvariant under spatial diffeomorphism
(E',0'|E,0) =(F&|E,5)
Em(ﬂj) = E,“(x) — V,.§ By,

o(x) = (1=¢&"0)o(x),

* |n the large N limit, the inner product between
states with different collective variables vanishes

* The inner product induces a natural measure

/DEW;DU (E',0'|E,0) =1



Physical meaning of the collective variables

gE,W(C’f)

 Sets the notion of locality in how matter fields are
entangled in space

* Determines the number of degrees of freedom that
are entangled

* Von Neumann entanglement entropy of |E,o) obeys
the area law measured with the metric ge




Physical meaning of the collective variables
o(x)

* Determines the range of mutual information in |E,o)
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General states
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 For semi-classical states, total EE is given by the sum
of two contributions
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S(A) ~ Scp (A) + SEjg(A)

Color EE
* O(N?)
e Generated by matter fields

fluctuating on a classical
background metric

* Area law (measured with
respect to the classical
metric)

Singlet EE
O(1)
Generated by correlations

between fluctuations of the
collective variables

Can obey volume law if the
collective variables have
long-range correlations



Endomorphism

A
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 Operators that map the sub-Hilbert space into the sub-Hilbert space

* Momentum operator generates diffeomorphism for the collective
variables !
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Hamiltonian flow
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e There exists a Hamiltonian for the matter field whose
flow stays within the sub-Hilbert space, and induces the
Wheeler-DeWitt Hamiltonian for the collective variables



‘State-dependent’
Hamiltonian
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Relative local Hamiltonian

Sum over different Projection to a state with
collective variables a specific collective variables

Local Hamiltonian
with respect to

gE,uv
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Relatively local Hamiltonian
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For states with large proper distance between A and B



Relatively local Hamiltonian

For states with small proper distance between A and B

* The strength of the coupling between two points in space is
determined by the state on which the Hamiltonian acts

* The notion of locality in the Hamiltonian is determined by
states



Time evolution
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* Time evolution generated by the matter
Hamiltonian is described by a time evolution of
the collective variables governed by the Wheeler
De Witt Hamiltonian in a fixed gauge



Semi-classical states |

x(E, o)

* Normalizable states with ° -
well defined “coordinates’ - ——Al—— 7
and ‘momenta’ Al
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Time evolution as Goldstone mode

x(a,0)
A
@A )
9E, v
States that satisfy the

Hamiltonian constraint are
generally non-normalizable

9E wv

x(a,0)

There are physical states that

spontaneously break the
amiltonian constraint

The subsequent flow of time can

be viewed as Goldstone mode



Black hole formation and evaporation
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One can choose an initial state that describes a spherically
symmetric collapsing mass shell

In the large N limit, the saddle point solution describes a formation
of a black hole

Suppose a BH with rH >> Icis formed. Right after the BH formation,
it has large color EE

Sep ~ —%. Sp,~0(1)

K2’



BH evaporation =
Entanglement neutralization

1/N corrections generate Hawking radiation

The local field theory description remains valid until
the horizon size becomes I,

The Hawking radiation is emitted in the singlet sector
— N?degrees of freedom are subject to strong interaction

[cf. Hubeny, Marolf, Rangamani]

Entanglement is gradually transferred from the color
sector to the singlet sector



Entanglement neutralization

L
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»
* The color EE (identified as the Bekenstein-Hawking
entropy) captures only a part of the full EE

e The large number of singlet modes described by
effective field theory inside the horizon can in principle

support the large EE with the early Hawking radiation
while the color EE is negligible



Summary

* GR can in principle emerge from matter fields

* Such Hamiltonian is non-local, but possesses a
weaker notion of locality — relative locality

— the range of interactions in the Hamiltonian is
determined relative to states on which Hamiltonian
acts

e Black hole evaporation corresponds to a unitary
evolution in which entanglement is transferred
from the color sector to the singlet sector

— Bekenstein-Hawking entropy captures only the color
EE



