Holography beyond conformality

Marika Taylor

Mathematical Sciences and STAG research centre, Southampton

June 21, 2018

프 🖌 🛪 프 🕨

Marika Taylor Holography beyond conformality

• The original example of holography in string theory is the famous AdS/CFT conjecture of Maldacena:

- String theory on a background with (d + 1)-dimensional Anti-de Sitter asymptotics is dual to a d-dimensional conformal field theory.

 Many examples of gauge/gravity dualities involving various spacetime asymptotics.

- **Top-down** models postulate a complete relationship between string theory in a given background and a specific QFT e.g. $AdS_5 \times S^5$ and $\mathcal{N} = 4$ SYM.
- In **bottom-up** models, we instead engineer the gravity theory to capture defining features of the QFT.
- The latter approach is useful in determining universal features.

- Original argument for holography: maximum entropy associated with a given spacetime volume scales as the surface area in Planck units.
- Follows from black holes being the most entropic objects for a given mass.
- No dependence on spacetime asymptotics!

('t Hooft, Susskind 1992-1994)

- Consider a timelike
 hypersurface Σ_c, in a spacetime with generic asymptotics.
- Interpret radius as RG scale.
- Can we define a QFT on Σ_c , holographically dual to the interior of the spacetime?

- Review of holography for UV conformal theories
- Holography for non-conformal theories running couplings
- Towards generic holography

프 > - 프 > -

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Consider an RG flow to a UV fixed point, driven by a single operator O.
- The minimal ingredients required to describe this holographically are:

$$S = \int d^{d+1}x \sqrt{-g} \left(R - \frac{1}{2} (\partial \phi)^2 + V(\phi) \right)$$

where ϕ is the bulk scalar dual to O and the potential is such that the action admits AdS_{d+1} extrema.

Consider solutions

$$ds^2 = dr^2 + \exp(2A(r))dx^i dx_i \qquad \phi(r)$$

- The radius corresponds to the RG scale of the dual QFT.
- As r → ∞, A(r) → r and theory approaches AdS/critical point.
- Interior behavior captures IR of QFT.

Spacetime reconstruction

- Given information about the d-dimensional theory, we reconstruct spacetime layer by layer.
- This process can be viewed as coarse-graining: taking a set of data and representing it by a smaller set of data.

イロト イポト イヨト イヨト

Holographic dictionary

 More precisely, one can expand solutions near the conformal **boundary** *ρ* = 0 as

$$ds^{2} = \frac{d\rho^{2}}{\rho^{2}} + \frac{1}{\rho^{2}} \left(g_{(0)ij} + \rho^{2} g_{(2)ij} \cdots + \rho^{d} g_{(d)ij} \cdots \right) dx^{i} dx^{j}$$

and

$$\phi = \rho^{d-\Delta}(\phi_{(d-\Delta)}(x) + \cdots) + \rho^{\Delta}(\phi_{(\Delta)}(x) + \cdots)$$

where Δ relates to the **mass** of the scalar field, and is the **scaling dimension** of O.

프 > - 프 > -

We read off the expectation values of the dual operators as

$$\langle T_{ij}
angle \sim g_{(d)ij} \qquad \langle \mathcal{O}
angle \sim \phi_{(\Delta)}$$

where T_{ij} is the *d*-dimensional QFT stress tensor.

The dilatation Ward identity is then

$$\langle T_i^i \rangle + \phi_{(d-\Delta)} \langle \mathcal{O} \rangle \sim \mathcal{A}.$$

Conformal symmetry **explicitly broken** by source $\phi_{(d-\Delta)}$ for operator \mathcal{O} ; \mathcal{A} is conformal anomaly.

Essential ingredients:

- Stress tensor \leftrightarrow bulk metric
- ② QFT operators ↔ other bulk fields
- Optiming behaviour of QFT captured by Ward identities e.g.

$$\partial_i \langle T^{ij} \rangle = \mathbf{0} \qquad \langle T^i_i \rangle + \sum_a \phi_a \langle \mathcal{O}_a \rangle \sim \mathbf{0}$$

maps into asymptotic behaviour of bulk fields/constraint equations in bulk.

The bulk partition function acts as the generating functional for QFT correlation functions.

- In the weak coupling limit of the bulk theory: the onshell gravity action gives the functional for QFT correlation functions.
- Hence for AdS gravity calculate

$$S_E = \int d^{d+1}x \sqrt{g}(R+2\Lambda) - \int d^dh \sqrt{h}K$$

for a solution of the Einstein equations, with boundary condition $g_{(0)}$.

• *S_E* is the generating functional in the CFT, and *g*₍₀₎ is the source for the stress energy tensor:

$$\langle \mathcal{T}_{\mu
u}
angle = rac{2}{\sqrt{g_{(0)}}} rac{\delta S_{\mathcal{E}}[g_{(0)}]}{\delta g_{(0)}^{\mu
u}}$$

- However, S_E diverges, due to the infinite volume of AdS!
- Equivalent to the UV divergences of the CFT.

Holographic renormalization

 Convenient to use radial foliation near the conformal boundary

$$ds^2 = dr^2 + \gamma_{ij}(r, x) dx^i dx^j$$

where for AAdS $\gamma_{ij}(r, x) \sim e^{2r}g_{(0)ij} + \cdots$ as $r \to \infty$.

 The conjugate momentum to γ is the Brown-York quasi-local stress tensor

$$\mathcal{T}_{ij} = (K_{ij} - K\gamma_{ij})$$

where the extrinsic curvature $K_{ij} = \frac{1}{2} \partial_r \gamma_{ij}$.

Holographic renormalization

- \mathcal{T}_{ij} is not finite as $r \to \infty$.
- Boundary counterterms added to the Einstein-Hilbert action

$$S_{\mathrm{ct}} = -\int d^d x \sqrt{-h} \left((d-1) + \cdots \right)$$

render the onshell action finite and give additional contributions to the quasi-local stress tensor:

$$T_{ij} = (K_{ij} - K\gamma_{ij} + (d-1)\gamma_{ij} + \cdots)$$

(Balasubramanian and Kraus; de Haro, Skenderis and Solodukhin)

• T_{ij} does have a finite limit as $r \to \infty$:

$$\mathcal{L}_{r \to \infty} (T_{ij}) = \langle T_{ij} \rangle \sim g_{(d)ij}.$$

 The renormalized stress tensor satisfies the expected CFT identities e.g. for d = 2

$$\langle T_i^i \rangle = rac{c}{6} \mathcal{R}(g_{(0)})$$

where *c* is the central charge.

- Review of holography for UV conformal theories
- Holography for non-conformal theories (running couplings)
- Towards generic holography

・ロト ・四ト ・ヨト ・ヨト

- Framework described above suffices for spontaneous and explicit breaking of conformal symmetry.
- Asymptotically free: weak UV coupling ↔ high curvature (not Einstein gravity).
- What kind of UV behaviour can we accommodate in Einstein gravity?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• To describe a holographic RG flow, we can still use

$$S = \int d^{d+1}x \sqrt{-g} e^{\gamma\phi} \left(R - rac{1}{2} (\partial\phi)^2 + V(\phi)
ight)$$

where ϕ is the bulk scalar dual to operator ${\cal O}$ driving flow.

• The potential is chosen to capture required **asymptotic behaviour**.

 Exponential potential; choose γ such that equations admit anti-de Sitter solutions

$$ds^2 = dr^2 + e^{2r} dx^i dx_i \qquad \phi = \alpha r$$

- Dual QFT has **generalized conformal structure**: scale invariance is broken only by a dimensionally running coupling.
- Scalar field diverges at boundary (UV) or deep interior (IR): classical gravity description breaks down.

Example 1: dimensionally driven flow

 Prototypical example of dual QFT: (super) Yang-Mills in d ≠ 4

$$S \sim \int d^d x \operatorname{Tr} \left(-\phi_s(F_{ij}F^{ij}) + (D_i X^a D^i X^a) + \frac{1}{\phi_s} [X^a, X^b]^2 + \cdots \right)$$

• Here the scalar is dual to operator \mathcal{O}

$$\mathcal{O} = \mathrm{Tr}(F_{ij}F^{ij}) + \frac{1}{\phi_s^2}\mathrm{Tr}[X,X]^2$$

and the generalized conformal structure is respected at the quantum level (due to supersymmetry).

Generalized conformal structure

 Not conformally invariant but symmetric under scaling transformations provided that we also transform coupling i.e. invariant under

$$\phi_s
ightarrow {m e}^{-(d-\Delta_\phi)\sigma} \phi_s \qquad {m g}_{(0)ij}
ightarrow {m e}^{2\sigma} {m g}_{(0)ij} \qquad \cdots$$

- This **generalized conformal structure** is captured by Ward identities, which imply an infinite set of relations for correlation functions.
- Associated with ϕ_s is a dimensionless coupling

$$g_{\rm eff}^2(x) = |x|^{\Delta_{\phi} - d} \phi_s^{-1}$$

STAG

Two point functions

• A general scalar operator \mathcal{O} then has a two point function

$$\langle \mathcal{O}(x)\mathcal{O}(0) \rangle = rac{f(g_{\mathrm{eff}}^2(x), N, \cdots)}{|x|^{2\Delta}}$$

where *any* function of the dimensionless quantities is consistent with the conformal structure. (Kanitscheider, Skenderis, M.T.)

• In particular, in certain limits we may find

$$f(g_{\mathrm{eff}}^2(x), N, \cdots) \sim |x|^{\beta}$$

i.e. a Taylor/Laurent series dominated by one single term.

• The Lagrangian for N fermions in 1d is

$$\mathcal{L} = \frac{1}{2} \sum_{i} \psi^{i} \partial_{\tau} \psi^{i} + \sum_{ijkl} \lambda_{ijkl} \psi^{i} \psi^{j} \psi^{k} \psi^{l}$$

- SYK: **couplings** λ_{ijkl} are randomly taken from a Gaussian distribution with zero mean and width $\mathcal{J}/N^{3/2}$, where \mathcal{J} is dimensionful.
- SYK has generalized conformal structure.

Example 2: The Sachdev-Ye-Kitaev (SYK) model

• The bilocal field $G(\tau_1, \tau_2)$

$$G(\tau_1,\tau_2) = \frac{1}{N} \sum_i \langle \psi^i(\tau_1) \psi^i(\tau_2) \rangle$$

is classical in the large N limit and

$$G(\tau_1, \tau_2) \sim \frac{1}{|\tau_1 - \tau_2|^{\frac{1}{2}}} + \cdots$$

for $(\tau_1 - \tau_2) \gg 1/\mathcal{J}$.

• \mathcal{J} is the dimensionful scale.

◆聞 ▶ ◆ 臣 ▶ ◆ 臣 ▶ □

SYK should not be describable by two derivative gravity/finite number of bulk fields:

- No gap in spectrum.
- No truncation to finite set of operators $\psi_{i_1}\psi_{i_2}\psi_{i_3}\psi_{i_4}\cdots$.

(Maldacena and Stanford; Gross and Rosenhaus;.....)

Why does Einstein-dilaton gravity capture SYK features?

Generalized conformal structure

Consider a bulk action

$$S \propto -\int d^{d+1}x \sqrt{g} e^{\gamma \phi} \left(R + eta (\partial \phi)^2 + C
ight)$$

• Constants (γ, β, C) related to give solutions

$$ds^2 = dr^2 + e^{2r} dx \cdot dx \qquad \phi = \alpha r$$

i.e AdS_{d+1} with running coupling.

(Kanitscheider, Skenderis, M.T)

- Holographic dictionary: metric dual to stress energy tensor T_{ij} and scalar dual to scalar operator O.
- Dual operators indeed satisfy Ward identity:

$$\langle T_i^i
angle + (d - \Delta) \phi_s O \sim 0$$

capturing dimensionally driven flow.

• All such theories can be viewed as a formal dimensional reduction from an AdS theory:

$$S \propto -\int d^{2\sigma+1}x\sqrt{g}\left(R+2\Lambda
ight)$$

over a torus of dimension

$$(2\sigma - d) = -2\alpha\gamma$$

 In special cases, -2αγ is a positive integer but formal structure persists even for non-integer values.

- Two independent parameters control **dimension of coupling** and **thermodynamics**.
- For SYK, d = 2, $\beta = 0$, $\gamma = 1$ gives

$$\log Z = -\frac{E_0}{T} + S_0 + \frac{1}{2}cT$$

 E_0 and S_0 ground state energy/entropy and c is specific heat, plus required Lyapunov exponent.

• Parent AdS theory is AdS₃.

・ロト ・四ト ・ヨト・

- Review of holography for UV conformal theories
- Holography for non-conformal theories running couplings
- Towards generic holography

프 > - 프 > -

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Finite radius hypersurface

- Natural to ask about duality for finite radius hypersurface.
- From QFT perspective: radial evolution is RG flow.
- In presence of horizons, one obtains a fluid/gravity relation.

(Minwalla et al; Polchinski et al; Strominger et al; Compère, McFadden, Skenderis and Taylor;) STAG Defining the quasilocal stress energy tensor at finite radius as before,

$$T_i^i = -4\pi G\left(T_{ij}T^{ij} - rac{1}{(d-1)}(T_i^i)^2
ight)$$

on flat hypersurfaces.

• Follows from Einstein equations with negative cosmological constant in Gauss-Codazzi form.

• We view this relation as a Ward identity:

$$T_i^i = -\lambda T$$

where

$$\mathcal{T} = \left(T_{ij}T^{ij} - \frac{1}{(d-1)}(T_i^j)^2\right)$$

- In d = 2, T is the $T\overline{T}$ operator explored by Zamoldchikov.
- Holographic relation in d = 2 proposed by (McGough et al).

$T\bar{T}$ operator in 2d

Zamoldchikov showed that this operator has a remarkable
 OPE structure as x → y:

$$T\overline{T}(x,y) = T(y) + \sum_{\alpha} A_{\alpha}(x-y) \nabla_{y} \mathcal{O}_{\alpha}(x)$$

i.e. we can identify the operator as local, modulo derivatives of other local operators.

 Smirnov and Zamoldchikov also explored the behaviour of a CFT under deformations by T i.e.

$$S_{\rm CFT}
ightarrow S_{
m CFT} + \lambda \int d^2 x \ {\cal T}.$$

- Consider the (Euclidean) theory on a cylinder of radius *R*.
- In a stationary state such that

$$\langle T_{ au au}
angle = -rac{E}{R}$$

the defining relation for the family of QFTs implies that

$$\frac{\partial E}{\partial \lambda} + 2E \frac{\partial E}{\partial R} = 0$$

• This can be re-expressed in terms of dimensionless quantities (ϵ, α) using

$$\alpha = \frac{\lambda}{R^2} \qquad E = \frac{1}{R}\epsilon$$

with

$$\partial_{\alpha}\epsilon = \mathbf{2}\epsilon \left(\epsilon + \mathbf{2}\alpha\partial_{\alpha}\epsilon\right)$$

• This is the defining ODE for the **energy spectrum** $\epsilon(\alpha)$.

・ロト ・四ト ・ヨト ・ヨト ・

In general dimensions:

$$\mathcal{T} = \left(T_{ij}T^{ij} - \frac{1}{(d-1)}(T_i^j)^2\right)$$

- Definite of composite operator more subtle; renormalization required as operators approach each other.
- Details of operator definition not required for energy spectrum, but would be needed for correlation functions, entanglement entropy etc.

• The conjectured holographic theory dual for finite radius is

$$S_{\text{CFT}} o S_{\text{CFT}} + \lambda \int d^{D+1}x \ \mathcal{T}.$$

- Identifying the quasi-local stress tensor as the dual stress tensor,
 Ward identity matches by construction.
- Can we also reproduce energy spectrum in gravity?

Consider a static black brane in (D+2) dimensions

$$ds^{2} = (\rho^{2} - \frac{\mu}{\rho^{D-1}})d\tau^{2} + \frac{d\rho^{2}}{(\rho^{2} - \frac{\mu}{\rho^{D-1}})} + \rho^{2}dx^{a}dx_{a}$$

We can then read off from the quasi local stress tensor the dimensionless energy:

$$\epsilon = \frac{D\rho^d}{2\lambda} \left(1 - \left(1 - \frac{\lambda M}{\rho^d} \right)^{\frac{1}{2}} \right)$$

where $\mu = 4\pi GM$.

Black brane solutions

• In terms of dimensionless coupling $\alpha = \lambda / \rho^d$,

$$\epsilon = \frac{D}{2\alpha} \left(1 - (1 - \alpha M)^{\frac{1}{2}} \right)$$

Note that the CFT energy is

$$\epsilon(\mathbf{0}) = \frac{D}{4}M$$

and $\epsilon(\alpha)$ indeed satisfies:

$$\partial_{\alpha}\epsilon = \left(1 + \frac{1}{D}\right)(\epsilon + 2\alpha\epsilon\partial_{\alpha}\epsilon)$$

・ロン・(理)・ ・ ヨン・

- Trivial to generalize to boosted (spinning) branes.
- Addition of extra **bulk fields** (gauge fields, scalars etc) modifies CFT deformation e.g.

$$T_i^i = -\lambda \left(T^{ij} T_{ij} - \frac{1}{D} (T_i^i)^2 + 2 \mathcal{J}^i \mathcal{J}_i \right)$$

Also noticed in d = 2 by (Bzowski and Guica; Kraus et al).

ヘロト ヘアト ヘビト ヘビト

- Examples of holography beyond conformality, from bootstrapping dilatation Ward identities.
- Dimensionful coupling plus thermodynamics of SYK captured by AdS₃ gravity.
- Weakly coupled theories cannot be described by Einstein gravity (no go for asymptotic freedom).

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Conclusions and outlook

- At finite radius, bootstrap dual QFT from dilatation Ward identity.
- For AdS, suggests family of Zamoldchikov TT theories.
- Beyond AdS: proposals at finite temperature for gravity/fluid relations.

