Particle-hole symmetry for composite fermions

Ajit C. Balram cb.ajit@gmail.com

Niels Bohr International Academy and the Center for Quantum Devices,
Niels Bohr Institute, University of Copenhagen in collaboration with J. K. Jain, Ref: Phys. Rev. B 96, 245142 (2017)

$$
\text { June 21, } 2018
$$

VILLUM FONDEN

Plan of the talk

- introduction to the fractional quantum Hall effect and composite fermions
■ particle-hole symmetry of electrons - exact symmetry
- particle-hole symmetry of composite fermions - approximate emergent symmetry
■ conclusion and outlook

Experimental discovery of the integer QHE

K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

■ Plateau in Hall resistance $R_{x y}=h /\left(n e^{2}\right)$ where n is an integer.
■ Vanishing longitudinal resistance $R_{x x} \& R_{y y}$: gapped excitations.

- Generic to two-dimensional electron and hole systems: independent of sample type and geometry and robust to disorder.
- forms the standard of resistance: Klitzing constant

$$
R_{\mathrm{K}}=h / e^{2}=25812.807557(18) \Omega .
$$

IQHE arises from the formation of \rightarrow Landau levels (LLs)

■ Excitation gap is set by the cyclotron energy $\rightarrow \hbar \omega_{\mathrm{c}}=\hbar \frac{e B}{m_{\mathrm{eff}}}$.

Plateau at $h /\left(\frac{1}{3} e^{2}\right):$ Quarks???

D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

■ Vanishing longitudinal resistance $R_{x x} \& R_{y y}$: gap to excitations.

Ajit C. Balram cb.ajit@gmail.com

Particle-hole symmetry for composite fermions

FQHE arises from electron-electron interactions

■ Electrons interacting via Coulomb forces:

$$
\mathcal{H}=\sum_{i<j} \frac{1}{\left|r_{i}-r_{j}\right|}
$$

■ Quantum mechanics \rightarrow lowest Landau level constraint.
■ Interactions \rightarrow a unique state from the degenerate manifold.

Laughlin made a brilliant ansatz for $\nu=1 / m$

■ assumed a Jastrow (pairwise) correlated state.

$$
\begin{aligned}
\Psi_{\frac{1}{m}} & =\prod_{i<j}\left(z_{i}-z_{j}\right)^{m} \exp \left[-\frac{1}{4 \ell^{2}} \sum_{i}\left|z_{i}\right|^{2}\right] \\
z & =x-i y, \quad \text { magnetic length } \ell=\sqrt{\frac{\hbar}{e B}}
\end{aligned}
$$

- fermionic (bosonic) wave functions must be antisymmetric (symmetric), hence m is odd (even) integer
■ fluid with fractionally charged particles obeying fractional braid statistics

$$
\text { R. B. Laughlin, Phys. Rev. Lett. 50, } 1395 \text { (1983) }
$$

Zoo of fractions following the sequence $n /(2 n \pm 1)$

J. P. Eisenstein and H. L. Stormer, Science 248, 4962, 1510-1516 (1990)

FQHE is qualitatively indistinguishable from IQHE

J. P. Eisenstein and H. L. Stormer, Science 248, 4962, 1510-1516 (1990)

Ajit C. Balram cb.ajit@gmail.com
Particle-hole symmetry for composite fermions

Composite fermion theory

FQHE is understood as the integer QHE of emergent fermions called composite fermions (CFs). A composite fermion is a bound state of an electron and even number of vortices/flux quanta.

J. K. Jain Phys. Rev. Lett. 63, 199 (1989)

Composite fermions experience a reduced magnetic field

$$
\begin{aligned}
B^{*} & =B-2 p \rho \phi_{0}, \quad \phi_{0}=h c / e \text { is a flux quantum } \\
\nu & =\frac{\nu^{*}}{2 p \nu^{*}+1}
\end{aligned}
$$

■ interacting electrons at $B=$ weakly interacting CFs at B^{*}
■ weakly interacting CFs at B^{*} form their own Landau-like levels called Λ Ls and when an integer number of these are filled, there is a finite gap to excitations.

Mapping from IQHE to FQHE

$$
B^{*}=B-2 \rho \phi_{0}
$$

FQHE wave functions are analogous to IQHE ones

■ Jain wave functions at $\nu=n /(2 p n \pm 1)$:

$$
\Psi_{\nu=\frac{n}{2 p n \pm 1}}=\mathcal{P} \text { LLL }\left(\Phi_{ \pm n} \prod_{i<j}\left(z_{i}-z_{j}\right)^{2 p} e^{-\frac{1}{4 c^{2}} \sum_{i}\left|z_{i}\right|^{2}}\right) .
$$

Φ_{n} wave function of n filled LLs.
$\mathcal{P}_{\text {LLL }}$ implements lowest Landau level projection.

- no adjustable parameters in these wave functions

■ not just a qualitative theory but a quantitative one

Spherical geometry

$$
I=|Q|,|Q|+1,|Q|+2, \cdots \quad I_{n}=|Q|+n \quad m=-I,-I+1, \cdots, I-1, I
$$

L and its z-component L_{z} are good quantum numbers

$$
N_{\phi}=2 Q=\nu^{-1} N-\mathcal{S}
$$

Haldane pseudopotentials

V_{m} energy of two electrons in a state of relative angular momentum m
F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983)

Exact spectrum in the spherical geometry: $\nu=3 / 7$

Ajit C. Balram, A. Wójs and J. K. Jain, Phys. Rev. B 88, 205312 (2013)

Exquisite agreement for ground state: CF vs exact

Ajit C. Balram, A. Wójs and J. K. Jain, Phys. Rev. B 88, 205312 (2013)

Exquisite agreement for excited state: CF vs exact

Ajit C. Balram, A. Wójs and J. K. Jain, Phys. Rev. B 88, 205312 (2013)

Build the full spectrum by constructing CF excitions

Ajit C. Balram, A. Wójs and J. K. Jain, Phys. Rev. B 88, 205312 (2013)

particle-hole symmetry in a Landau level

■ Particle-hole symmetry of electrons confined to a single Landau level is an exact symmetry of any two-body interaction such as the Coulomb one.

- under particle-hole symmetry:
- creation operator $c^{\dagger} \rightarrow$ annihilation operator c and vice-versa
- fully filled Landau level \rightarrow empty one and vice-versa
- filling factor $\nu \rightarrow$ filling factor $1-\nu$

■ any two-body Hamiltonian remains unchanged (up to a constant)
■ an exact mapping of eigenstates and eigenenergies for the Coulomb Hamiltonian from filling factor ν to $1-\nu$

$$
[\mathrm{oo----}] \rightarrow[--\infty \circ \circ \circ]
$$

particle-hole symmetry in the lowest Landau level

J. P. Eisenstein and H. L. Stormer, Science 248, 4962, 1510-1516 (1990)

Ajit C. Balram cb.ajit@gmail.com

Particle-hole symmetry for composite fermions

FQHE states which are not IQHE states of CFs

Pan et al., Phys. Rev. B 91, 041301(R) (2015)

$$
\begin{gathered}
4 / 11 \text { maps into } \nu^{*}=1+1 / 3=4 / 3 \\
5 / 13 \text { maps into } \nu^{*}=1+(1-1 / 3)=5 / 3
\end{gathered}
$$

Coulomb spectra at $4 / 11$ and $5 / 13$

$1+1 / 3$ of composite fermions

$\nu=\frac{5}{13}=\frac{\frac{5}{3}}{2 \frac{5}{3}+1}$
$2-1 / 3$ of composite fermions

particle-hole symmetry in a Λ level

- Is there an analog of particle-hole symmetry for composite fermions confined to a single Λ level?
- The two-body electron interaction induces higher-body interaction between composite fermions
- Is the two-body interaction between CF particles and CF holes identical?
- Are the three and higher-body interactions between CFs negligible?
- Relate states at

$$
\frac{n+\bar{\nu}}{2(n+\bar{\nu}) \pm 1} \rightarrow \frac{n+1-\bar{\nu}}{2(n+1-\bar{\nu}) \pm 1}
$$

particle-hole symmetry in a Λ level: some examples

$$
\frac{n+\bar{\nu}}{2(n+\bar{\nu}) \pm 1}
$$

$$
\frac{n+1-\bar{\nu}}{2(n+1-\bar{\nu}) \pm 1}
$$

Composite fermion pseudopotentials

energy of two composite fermions in relative angular momentum m

Two-body interactions between CF particles and holes

interaction between CF particles and CF holes is nearly the same

Three-body interactions between composite fermions

an order of magnitude smaller than the two-body interaction

Outlook

- Approximate symmetry relating states at:

$$
\frac{n+\bar{\nu}}{2(n+\bar{\nu}) \pm 1} \rightarrow \frac{n+1-\bar{\nu}}{2(n+1-\bar{\nu}) \pm 1}
$$

for small values of n.

- This symmetry is not present in the original electronic Hamiltonian and arises entirely due to the formation of composite fermions: particlle-hole symmetry of composite fermions.
- Two-body interactions between composite fermion holes is approximately the same as that between composite fermion particles.
- Three- and higher-body interactions between composite fermions is negligible.

Thank you for your attention!

cb.ajit@gmail.com

