Outline	IQHE	FQHE	p-h in a LL	Outlook

Particle-hole symmetry for composite fermions

Ajit C. Balram cb.ajit@gmail.com

Niels Bohr International Academy and the Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen in collaboration with J. K. Jain, Ref: Phys. Rev. B **96**, 245142 (2017)

June 21, 2018

VILLUM FONDEN

Ajit C. Balram cb.ajit@gmail.com

Outline	IQHE	FQHE	p-h in a LL	Outlook
●	oo	0000000000000000000	00	00

Plan of the talk

- introduction to the fractional quantum Hall effect and composite fermions
- particle-hole symmetry of electrons exact symmetry
- particle-hole symmetry of composite fermions approximate emergent symmetry

< 回 > < 三 > < 三 >

3

conclusion and outlook

Outline	IQHE	FQHE	p-h in a LL		Outlook
	00	000000000000000000000000000000000000000	00	0000000	00

Experimental discovery of the integer QHE

K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

- Plateau in Hall resistance $R_{xy} = h/(ne^2)$ where *n* is an integer.
- Vanishing longitudinal resistance R_{xx} & R_{yy} : gapped excitations.
- Generic to two-dimensional electron and hole systems: independent of sample type and geometry and robust to disorder.
- forms the standard of resistance: Klitzing constant $R_{\rm K} = h/e^2 = 25812.807557(18) \Omega.$

Ajit C. Balram cb.ajit@gmail.com

IQHE arises from the formation of \rightarrow Landau levels (LLs)

Excitation gap is set by the cyclotron energy $\rightarrow \hbar \omega_{\rm c} = \hbar \frac{eB}{m_{\rm eff}}$.

Ajit C. Balram cb.ajit@gmail.com

Plateau at $h/(\frac{1}{3}e^2)$: Quarks???

D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982) ■ Vanishing longitudinal resistance R_{XX} & R_{VV} : gap to excitations. \bigcirc

Ajit C. Balram cb.ajit@gmail.com

FQHE arises from electron-electron interactions

fractional filling ($\nu = 2/5$)

Electrons interacting via Coulomb forces:

$$\mathcal{H} = \sum_{i < j} \frac{1}{|r_i - r_j|}$$

- Quantum mechanics \rightarrow *lowest Landau level* constraint.
- Interactions \rightarrow a unique state from the degenerate manifold.

イロト イポト イヨト イヨト

 Outline
 IQHE
 FQHE
 p-h in a LL
 p-h in a AL
 Outlook

 0
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Laughlin made a brilliant ansatz for $\nu = 1/m$

assumed a Jastrow (pairwise) correlated state.

$$\begin{split} \Psi_{\frac{1}{m}} &= \prod_{i < j} (z_i - z_j)^m \exp\left[-\frac{1}{4\ell^2} \sum_i |z_i|^2\right] \\ z &= x - iy, \quad \text{magnetic length } \ell = \sqrt{\frac{\hbar}{eB}} \end{split}$$

- fermionic (bosonic) wave functions must be antisymmetric (symmetric), hence m is odd (even) integer
- fluid with fractionally charged particles obeying fractional braid statistics

R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

イロト 不得 とくきとくきとう

Zoo of fractions following the sequence $n/(2n \pm 1)$

J. P. Eisenstein and H. L. Stormer, Science 248, 4962, 1510-1516 (1990) = + 4 = + = - >

Ajit C. Balram cb.ajit@gmail.com

Outline	IQHE	FQHE	p-h in a LL		Outlook
	00	0000000000000	00	0000000	00

FQHE is qualitatively indistinguishable from IQHE

J. P. Eisenstein and H. L. Stormer, Science 248, 4962, 1510-1516 (1990) 🖹 🕨 < 🖹 👘 🤶 🗠 🛇

Ajit C. Balram cb.ajit@gmail.com

Composite fermion theory

FQHE is understood as the integer QHE of emergent fermions called composite fermions (CFs). A composite fermion is a bound state of an electron and even number of vortices/flux quanta.

J. K. Jain Phys. Rev. Lett. 63, 199 (1989)

Ajit C. Balram cb.ajit@gmail.com

Outline	IQHE	FQHE	p-h in a LL	Outlook
0	00	000000●00000000	00	00

Composite fermions experience a reduced magnetic field

$$egin{array}{rcl} B^* &=& B-2p
ho\phi_0, & \phi_0=hc/e ext{ is a flux quantum} \
u &=& rac{
u^*}{2p
u^*+1} \end{array}$$

interacting electrons at B = weakly interacting CFs at B*
 weakly interacting CFs at B* form their own Landau-like levels called ALs and when an integer number of these are filled, there is a finite gap to excitations.

Ajit C. Balram cb.ajit@gmail.com

Mapping from IQHE to FQHE

Ajit C. Balram cb.ajit@gmail.com

Outline IQHE	FQHE	p-h in a LL	p-h in a AL	Outlook
	000000000000000000000000000000000000000			

FQHE wave functions are analogous to IQHE ones

• Jain wave functions at $\nu = n/(2pn \pm 1)$:

$$\Psi_{\nu = \frac{n}{2pn \pm 1}} = \mathcal{P}_{\text{LLL}} \Big(\Phi_{\pm n} \prod_{i < j} (z_i - z_j)^{2p} e^{-\frac{1}{4\ell^2} \sum_i |z_i|^2} \Big).$$

 Φ_n wave function of *n* filled LLs.

 \mathcal{P}_{LLL} implements lowest Landau level projection.

- no adjustable parameters in these wave functions
- not just a qualitative theory but a quantitative one

Outline	IQHE	FQHE	p-h in a LL	Outlook
0	00	000000000●00000	00	00

Spherical geometry

$$I = |Q|, |Q| + 1, |Q| + 2, \cdots$$
 $I_n = |Q| + n$ $m = -I, -I + 1, \cdots, I - 1, I$
L and its z-component L_z are good quantum numbers

$$N_{\phi} = 2Q = \nu^{-1}N - S$$

2

Ajit C. Balram cb.ajit@gmail.com

Outline	IQHE	FQHE	p-h in a LL	Outlook
0	00	000000000●0000	00	00

Haldane pseudopotentials

 V_m energy of two electrons in a state of relative angular momentum m

F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983)

Ajit C. Balram cb.ajit@gmail.com

Ajit C. Balram, A. Wójs and J. K. Jain, Phys. Rev. B 88, 205312 (2013)

イロト イポト イヨト イヨト

Ajit C. Balram cb.ajit@gmail.com

Exquisite agreement for ground state: CF vs exact

Ajit C. Balram, A. Wójs and J. K. Jain, Phys. Rev. B 88, 205312 (2013)

Ajit C. Balram cb.ajit@gmail.com

Exquisite agreement for excited state: CF vs exact

Ajit C. Balram, A. Wójs and J. K. Jain, Phys. Rev. B 88, 205312 (2013)

Ajit C. Balram cb.ajit@gmail.com

Outline	IQHE	FQHE	p-h in a LL	Outlo
		000000000000000		

Build the full spectrum by constructing CF excitions

Ajit C. Balram, A. Wójs and J. K. Jain, Phys. Rev. B 88, 205312 (2013)

< ロ > < 回 > < 回 > < 回 > < 回 >

Ajit C. Balram cb.ajit@gmail.com

particle-hole symmetry in a Landau level

- Particle-hole symmetry of electrons confined to a single Landau level is an <u>exact</u> symmetry of any *two-body* interaction such as the Coulomb one.
- under particle-hole symmetry:
 - \blacksquare creation operator $c^{\dagger} \rightarrow$ annihilation operator c and vice-versa
 - fully filled Landau level \rightarrow empty one and vice-versa
 - filling factor $\nu \rightarrow$ filling factor 1ν
 - any two-body Hamiltonian remains unchanged (up to a constant)
- an exact mapping of eigenstates and eigenenergies for the Coulomb Hamiltonian from filling factor ν to $1-\nu$

$$[\mathsf{oo}{-}{-}{-}] \rightarrow [-{-}\mathsf{oooo}]$$

イロト イポト イヨト イヨト

Outline	IQHE	FQHE	p-h in a LL	Outlook
0	00	000000000000000000000000000000000000	⊙●	00

particle-hole symmetry in the lowest Landau level

J. P. Eisenstein and H. L. Stormer, Science 248, 4962, 1510-1516 (1990) 🔍 🔍 🔍 🔍

Ajit C. Balram cb.ajit@gmail.com

FQHE states which are not IQHE states of CFs

Ajit C. Balram cb.ajit@gmail.com

Outline	IQHE	FQHE	p-h in a LL	p-h in a ΛL	Outlook
0	oo	000000000000000	00	0●00000	00

Coulomb spectra at 4/11 and 5/13

Ajit C. Balram cb.ajit@gmail.com

particle-hole symmetry in a Λ level

- Is there an analog of particle-hole symmetry for composite fermions confined to a single Λ level?
- The two-body electron interaction induces higher-body interaction between composite fermions
- Is the two-body interaction between CF particles and CF holes identical?
- Are the three and higher-body interactions between CFs negligible?
- Relate states at

$$\frac{n+\bar{\nu}}{2(n+\bar{\nu})\pm 1} \rightarrow \frac{n+1-\bar{\nu}}{2(n+1-\bar{\nu})\pm 1}$$

イロト イポト イヨト イヨト

particle-hole symmetry in a Λ level: some examples

Ajit C. Balram cb.ajit@gmail.com

Outline	IQHE	FQHE	p-h in a LL	p-h in a ΛL	Outlook
0	00	000000000000000	00	0000●00	00

Composite fermion pseudopotentials

energy of two composite fermions in relative angular momentum m

Ajit C. Balram cb.ajit@gmail.com

Outline	IQHE	FQHE	p-h in a LL	p-h in a ΛL	Outlook
0	00	000000000000000000000	00	00000●0	00

Two-body interactions between CF particles and holes

interaction between CF particles and CF holes is nearly the same

イロト イポト イヨト イヨト

æ

Outline	IQHE	FQHE	p-h in a LL	p-h in a ΛL	Outlook
0	oo	0000000000000000000	00	000000●	00

Three-body interactions between composite fermions

an order of magnitude smaller than the two-body interaction

イロト イポト イヨト イヨト

Outline	IQHE	FQHE	p-h in a LL	Outlook
0	00	00000000000000000000	00	●0

Outlook

Approximate symmetry relating states at:

$$\frac{n+\bar{\nu}}{2(n+\bar{\nu})\pm 1} \rightarrow \frac{n+1-\bar{\nu}}{2(n+1-\bar{\nu})\pm 1}$$

for small values of n.

- This symmetry is not present in the original electronic Hamiltonian and arises entirely due to the formation of composite fermions: particlle-hole symmetry of composite fermions.
- Two-body interactions between composite fermion holes is approximately the same as that between composite fermion particles.
- Three- and higher-body interactions between composite fermions is negligible.

Outline	IQHE	FQHE	p-h in a LL	Outlook
0	oo	000000000000000	00	0●

Thank you for your attention!

Source: Kwon Park

cb.ajit@gmail.com

3

< ロ > < 回 > < 回 > < 回 > < 回 >

Ajit C. Balram cb.ajit@gmail.com