
Effective Theory of 
Black Hole Horizons

(IZR +Walter Goldberger)



• Cosmological Measurements 


• Astrophysical  Populations/Production Mechanism


• GR/Beyond GR?


• Internal Structures/Equations of State.

Science of Gravitational 
Wave Observations



Probing of Internal Structure in Context of Analytic 
Calculations 

4

TIDAL DEFORMATION

off shell graviton 
exchange

Analogous to Linear Response Theory
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X TT
e g ARPES

Extract Causal Greens 
Function (e.g. conductivity)



Crucial Distinction is that we dont have 
access to the direct response field. We 
only have very indirect  information via 
phase and amplitude of gravitational 

wave.

Systematic program to extract response function from the wave signal. 
Effective Field Theory is a useful tool to describe this system.

 

Multi-Scale problem is solved by treating one scale at a time in a sequence 
of course graining



Stages of Coarse Graining

Full Theory: GR 
(BH)+(QCD 

neutron star). 
Einstein-

Hilbert+Yang Mills

Point Particle 
Theory

Composite Object with 
dynamical set of multipole 

moments

� >> R

� >> r

To maintain analytic controls we will also 
restrict ourselves to the regime where

rs/r ⇠ v2 ⌧ 1 (PN expansion)



Onia Binary

Short
distances

Strong 
coupling

Weak Coupling 
Coulomb Phase

Long
 Distances Confinement Minkowski Space

Non-
Linearities Controlled by Controlled by v2

Quantum 
Effects

Controlled by 
Controlled by 

↵s ⇠ v

↵s ⇠ v
(Mplr)

2 ⇠ ~/L

Allows for Strong Classical gravity

Sharp Analogy with QCD



We will be concentrating on the first stage of 
coarse graining

Point Particle 
Theory

� >> R

S =

Z
d

4
x

p
gR+ (

Z
d

4
x

p
gLMatter) S =

Z
�md⌧ + .....

Finite size effects controlled by multipole expansion

Write down all possible terms consistent with symmetries (GCR and 
RPI), modulo the equations of motion.

C’s are an expansion in 1/rs

S =

Z
CRR+ CvvR vµv⌫Rµ⌫ + CEE

µ⌫Eµ⌫ + CBB
µ⌫Bµ⌫ + ....

E⇢� = vµv⌫Rµ⇢⌫�



By performing a field redefinition we can reduce the 
action to give the leading terms (Birkoffs Theorem)

SFS =

Z
d⌧CEE

2 + CBB
2

These coefficients correspond to the quadrapole static susceptabilities (Love 
numbers). In the PN expansion these coefficients scale as v10

This is called the ``effacement theorem” (Damour)

These coefficients are fixed by a ``matching calculation”

h = hhi+ �h �h(x) =

Z
d

4
xG(x� x

0)hh(x0)i

Static response (time independent background)

background field



The power of the matching procedure lies in the fact that we are free 
to match any quantity we wish (even if its not gauge invariant, as long 

as we use the same gauge in the full and EFT). Thus we can match 
on-shell as that usually simplest. Moreover by working at the level of 

the Lagrangian, we have an off-shell extrapolation. 

e.g.

 

1
2
0 K o

u
µ o H shell

EXTRAPOLATOR

k 0

Thus we can extract response on shell and use it to calculate off-
shell quantities (like potential for binaries)



For the case of black holes Love numbers vanish
(Damour and Nagar, 

Binnington +Poisson, Kol 
and Smolkin)

This result implies a fine tuning as defined by Dirac since the Love numbers 
are allowed by symmetry, so should be order one in 

units of the Schwarzchild radius. 

Kol /Smolkin: no longer true outside of 4 dimensions

Consider E+M analogy atomic physics

we can exract

↵E =
1

2⇡

X

n

h0 | pz(0) | nihn | pz(0) | 0i
En � E0

(114)

which agrees with the standard text book result for the static polarizability.

IV. POWER CORRECTIONS

A. Corrections to the Casimir Polder Result

Our leading order finite size operators start at O(R3)32 , and the first corrections to our

calculation will come from the next set of allowable higher dimensional terms. These terms

are restricted by gauge and Lorentz invariance. In addition, when going to higher orders we

also have to consider charge conjugation invariance which reduces to the statement that the

action should be invariant under

Aµ ! �Aµ Jµ ! �Jµ. (115)

Finally, we have reparameterization invariance which can necessitate the inclusion of factors

of
p
v2 in the operator. We have one other constraint at our disposal. We may eliminate

operators which vanish by use of the equations of motion. So for instance, any operator

which contains @µF µ⌫ may be set to zero. To illustrate this point in a simple example let’s

consider a scalar field instead of the photon. Furthermore, let us suppose we added a term

to the free worldline action such that

S = �
Z

d4y
1

2
�@2�+

Z
d⌧CRnF (�)@2�, (116)

where C is dimensionless and n is fixed by the units of F . We can see that we can eliminate

this term via the field redefinition

�(y) ! �(y) + CRnF (�)�4(yµ � xµ(⌧)). (117)

Note that, in general, this transformation will generate new operators on the world line. For

instance plugging in the shift into the worldline operator itself will generated a, divergent,

32 Again ignoring terms which vanish in the static limit.
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= 0 Each term is positive semi-definate

logarithmic divergences. Thus the coupling does not run, if it’s zero at one scale its zero

at all scales. Its vanishing however, is quite “unnatural” (for a discussion of naturalness in

the context of QFT see [10]). This is a fine tuning problem, we would expect the coe�cient

to take a value on which scales with the UV cut-o↵ (rs), but instead it’s zero, with no

apparent symmetry to protect it. The unnaturalness is also manifest when considering[44]

the spectral decomposition of the retarded correlator16, we find that

ReF (!) = P
X

m

| h⌦ | Qab | mi |2

E⌦ � Em � !
. (24)

If we look at the DC response we are left with the rather remarkable result

X

m

| h⌦ | Qab | mi |2

E⌦ � Em
= 0. (25)

which seems to imply that the state ⌦ can not be pure given the the denominator has a

fixed sign. Suppose that the state the state | ⌦i is thermal then we find

X

m,n

e��(En) hn | Qab | mihm | Qab | ni
En � Em

= 0, (26)

which would imply a delicate cancellation. It is interesting to note that a similar e↵ect

arises in the theory of dissipative fluids [43]. Given the membrane paradigm the possible

connection is quite tantalizing.

E. Further De-Geometrization

Finally I would like to come back to the topic introduced at the beginning of the talk. We

have seen that thinking about GR as a gauge theory, much like QCD, has some calculational

benefits. However, we have not really fully de-geometrized the problem. We still needed

to rely on the Einstein-Hilbert action to generate a set of Feynman rules. A completely

ageometric approach should not depend upon an action which followed from the principles

of general relativity. Furthermore, we have also seen that calculating Feynman diagrams

when going to higher orders can be quite cumbersome. As previously discussed the number

16 The time ordered product and the retarded correlator di↵er only in their treatment of the poles.
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Gravitational case

This assumes a pure state, which is thus ruled out
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Note: Q’s do not excited QNM’s which are outside the validity of the EFT, they 
correspond to the long time tails of the QNMs. By necessity the systems is ungapped.

Thermal states allowed but 
not necessary

Is there is dual to this theory? 



Non-Renormalization Theorem

Straight forward to show a CLASSICAL  no renormalization theorem

CE ⇠ (r3s)(rsMpl)
n

 But this is NOT a fine tuning in the sense of ‘tHooft. i.e. it’s is 
technically natural (e.g. C.C)

Classical power counting implies that

We can fix n by enforcing that it scale classically:  n=2

Consider all Feynman diagrams which have classical 
scaling and could contribute to the renormalization of 

the Love number.



Any diagram which renormalizes Love number must have five and 
only five mass insertions i.e. rs^5.

 

3 S

11

In 4d no way to hook   
up bulk vertices and 
get powers of Planck 

mass needed

Generalize to 
other  static 

susceptabilities 

No static susceptibility get 
renormalized

L = CNSĖ
2

However, non-static cases are renormalized and expected tone non-vsnihsing



S =

Z
d⌧Qµ⌫

E (⌧)Eµ⌫ +

Z
d⌧Qµ⌫

B (⌧)Eµ⌫ + ....

(Izr/Goldberger)

This EFT (with local world line couplings) can 
not be the end of the story, as it leads to 

conservative propagation. Does not account for 
absorption

Need to include internal dynamics that can arise from gapless degrees of freedom

Introduce a Hilbert space  with a ground state | ⌦i

The action of which we are ignorant. We do know 
how the relevant operators couple to gravity 

QE,B
µ⌫ (⌧) Interpolate for gapless DOF 

Note: at this point we have not specified the nature of the 
UV theory. i.e. could be NS or BH or something else



What can we say about correlation functions? 

Concentrate on the two point functions for the 
moment, in particular let us try to construct the 

Wightman functions as building blocks

Let us for the moment confine ourselves to classical processes where 

A�(!) = 0 We are considering pure absorption for the moment

h⌦ | Q(t1).....Q(tn) | ⌦i

A+ =

Z
dth⌦ | Q(t)Q(0)) | ⌦ie�i!t

A� =

Z
dth⌦ | Q(0)Q(t) | ⌦ie�i!t

ALO
+ (!) = ALO

� (!) = (2⇡)
�(0)(!)

rs!2
⇠ �/! (0.14)

In the EFT there is an order � corrections coming from a mass insertions. i.e. a tail correction

on one side of the cut. The imaginary part is IR divergent but cancels when adding the two cuts.

All that is left over is a real piece leaving for the

PEFT (1|0)NLO =
!

2⇡
(ANL0

+ +ALO
+ rs!)

PEFT (0|1)NLO =
!

2⇡
(ANL0

� +ALO
� rs!)

(0.15)

Matching to the full theory result (0.12)

��(0)

2
� 2(�(0))2

x2
+

�(1)

x
= (2⇡)2!(ANL0

+ +
1

(2⇡)2
�(0)(!)

rs!2
⇥ rs!)

=
1

2⇡
!(ANL0

+ ) + �(0) (0.16)

ANLO
+ (!) =

2⇡

!
[�3

2
�(0) � 2(�(0))2

x2
+

�(1)

x
] (0.17)

1

2
�(0) � 2(�(0))2

x2
+

�(1)

x
= (2⇡)2!(ANL0

� ) + �(0) (0.18)

ANLO
� (!) =

1

(2⇡)2!
[�1

2
�(0) � 2(�(0))2

x2
+

�(1)

x
] (0.19)

Now let us match for four point function. From Bekenstein we have

P (2|0) = (ex � 1)�2

(ex � 1 + �)3
⇡ �2/x2 + ... (0.20)

1 Caclulate Gret

Gret =

Z
d!0

2⇡

A+(!
0)�A�(!

0)

! � !0 + i✏
+ C =

Z
d!0

(2⇡)3
�(0)(!0)/!0

! � !0 + i✏
+ C (1.1)
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We can extract by matching to absorptive cross section 

f

FIG. 7. Diagram showing the leading order contribution to graviton scattering o↵ of a compact
object. The heavy dot is an insertions of the Q · E operator.

where Pf is the final state momentum of the black hole, which is in the state f , � are the

graviton polarizations and

W⇢⌫ ⌘ � 1

2Mpl
(kµ(k�✏

(�)
⇢⌫ + k⌫✏

(�)
⇢� � k⇢✏

(�)
⌫� )� k⌫(k�✏

(�)
⇢µ + kµ✏

(�)
⇢� � k⇢✏

(�)
µ� ))u

�u⌫). (69)

Keep in mind that we are interested in the long wavelength limit, so we are expanding

around flat space. At leading order in this expansion we may ignore the di↵erences between

the local and global coordinate systems. Furthermore, restricting ourselves to the physical

polarization restricts the non-vanishing components of W to be spatial (working in the rest

frame of the hole)

Wij =
1

2Mpl
!2✏ij, (70)

so that

� =
X

�

!3

8M2
pl

Z
dte�i!th0 | QE

ij(t)Q
E
kl(0) |0i✏�ij✏�?kl ,

(71)

where we have utilized the completeness of the black hole Hilbert space. We can relate the

RHS of this equation to the time ordered product by considering the tensor

Iijkl(!) ⌘
Z

dte�i!t | h0 | T (Qij(t)Qkl(0))) | 0i ⌘ Ã(!)(
2

3
�ij�kl � �ik�jl � �il�jk)

=
X

P

1

2⇡i

Z
d⌧

⌧ � i✏
dth0 | Qij(0) | P ihP | Qkl(0) | 0i

⇥
eit(⌧+!�EP+E0) + eit(�⌧+!+EP�E0)

⇤

=
X

P

1

i
h0 | Qij(0) | P ihP | Qkl(0) | 0i


1

(EP � ! � E0 � i✏)
+

1

(! + EP � E0 � i✏)

�

(72)
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A+(!)

one graviton absorption process

Cross section

This cross section (in low energy limit) is given by

where E0 is the ground state energy and use has been made of the integral representation

of the step function. Then we note that

Im(iIijkl(!)) = ⇡
X

P

1

i
h0 | Qij(0) | P ihP | Qkl(0) | 0i [�(! � EP + E0) + �(! + EP � E0)] .

(73)

The second term corresponds to spontaneous emission (Hawking radiation). We can then

write (working in the rest frame of the black hole where E has only spatial indices)

Z
e�i!th0 | Qij(t)Qkl(0) | 0i = ✓(!)

1

⇡
Im(iIijkl(!)), (74)

so that

�abs =
!3

8M2
pl

X

�

✓(!)Im(
i

⇡
Ã(!))(

2

3
�ij�kl � �il�jk � �ik�jl)✏ij✏

?
kl. (75)

Summing over polarization and performing the requisite contraction gives

�abs =
!3

2M2
pl

Im(iÃ(!)). (76)

At leading order in the derivative expansion the absorptive cross section for a graviton

scattering on a black hole is given by [18]

�abs =
4⇡r6s!

4

45
, (77)

where rs = 2GNM is the Schwarzchild radius. Now recall that this is the total cross

section so to match we must include both the magnetic and electric parts of the world line

interactions. The magnetic part of the calculation follows in the same way as the electric

and is left as an exercise for the reader. We also use the fact that the magnetic analog of

Ã(!) is equal to Ã(!) which can be seen by studying the full theory scattering (Teukolsky)

equation [19]. Using this result we find

Im(iÃ(!)) =
16

45
m6G5

N |! | . (78)

25

h0, k |
Z

dtQ(t) · E(e) | 00i

Z
dte�i!th0 | QE

ij(t)Q
E
kl(0) | 0i ⌘ A(!)(

2

3
�ij�kl � �il�kj � �ik�lj)

A(!) =
16

45
m6GN!

This is an on shell piece of data which we can now use to 
calculate off-shell



Given the Wightman function we can predict the power loss in a binary 
inspired due to (internal) dissipative processes

off-shell 
gravitons

Wightman function

By fluctuation dissipation theorem this can be written as 
the imaginary part of the potential between the two 

constituents i.e. the absorptive power loss.



dPabs

dω
= −

1

T

GN

64π2

∑

a̸=b

σ
(b)
abs(ω)

ω2
m2

a|q
(a)
ij (ω)|2 q

(a)
ij (t) = ∂a

i ∂a
j |x12(t)|

−1 (a = 1, 2)

For a black hole this reduces to

Pabs =
32

5
G

7
N (m6

1m
2
2 + m

6
2m

2
1)

〈

v
2

|x|8
+ 2

(x · v)2

|x|10

〉

.

This is a general result that for a neutron star is sensitive to the equation of state. 
Given an model for the neutron stars low energy modes one can calculate the 

power loss and its subsequent effect on the wave templates.

The imaginary part of the potential 
gives the power loss 

Only justified to keep leading order 
cross section

(Poisson)



What about the real part? The relevant observable is 
the EOM in which case we must use the in-in 

formalism

Gret(!)

Real part yields the susceptibilities with the zero frequency 
response being the Love number

One can match onto the retarded greens function directly by calculating the 
tidal response

ALO
+ (!) = ALO

� (!) = (2⇡)
�(0)(!)

rs!2
⇠ �/! (0.14)

In the EFT there is an order � corrections coming from a mass insertions. i.e. a tail correction

on one side of the cut. The imaginary part is IR divergent but cancels when adding the two cuts.

All that is left over is a real piece leaving for the

PEFT (1|0)NLO =
!

2⇡
(ANL0

+ +ALO
+ rs!)

PEFT (0|1)NLO =
!

2⇡
(ANL0

� +ALO
� rs!)

(0.15)

Matching to the full theory result (0.12)
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1
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x2
+

�(1)

x
] (0.17)

1

2
�(0) � 2(�(0))2
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+
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x
= (2⇡)2!(ANL0

� ) + �(0) (0.18)

ANLO
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1

(2⇡)2!
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�(0) � 2(�(0))2

x2
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�(1)

x
] (0.19)

Now let us match for four point function. From Bekenstein we have

P (2|0) = (ex � 1)�2

(ex � 1 + �)3
⇡ �2/x2 + ... (0.20)

1 Caclulate Gret

Gret =

Z
d!0

2⇡

A+(!
0)�A�(!

0)

! � !0 + i✏
+ C =

Z
d!0

(2⇡)3
�(0)(!0)/!0

! � !0 + i✏
+ C (1.1)

3

Gret(0) = 0

subtraction/counter-term



Open Questions

How do we go beyond leading order in absorption?

What about higher order correlation functions?

What happens quantum mechanically? Hawking Radiation?

What can this EFT teach us about soft radiation from black holes?

Black Hole Soft theorems

What can we say about the black hole S-matrix? i.e. 

Can we use it to calculate in the interacting theory, i.e. QM 
cross section for black hole?

hm | ni



Black hole Scattering

• Regge-Wheeler/Zerilli eqs: BH perturbation theory, wish 
to go beyond classical wave equation.


• Black holes not asymptotic states (quarks)


• ``non-unitary”  horizon absorption. (information loss)


• Contains relevant information for constructing classical 
observable (gravitational wave astronomy)


• What rolls does Hawking radiation play? Is there any way 
in which it is not Planck suppressed?



We could just choose to ignore particle emission in our classical higher 
order analysis, but this would seem to contradict power counting

� = !/Mpl

Naively one might think at A�(!)/A+(!) ⇠ �

However, this would fly in the face of detailed balance: 

A�(!)/A+(!) ⇠ f(!)

E/TH ⇠ (~!)/(~/rs)

Classical 

Quantum

This is consistent with the 
fact that Hawking give hn(!)i = �(!)

e�E � 1

Einstein Coefficients : A ~ B

� = !rc

Extend to Quantum Mechanics: allow for 
spontaneous/stimulate emission



So in the extraction of the Wightman functions we have a power expansion in rs!
Note that power counting can not distinguish between quantum gravity 

effects and classical effects!

None the less in free field theory, if the only observable 
quantity is the retarded propagator then all of the effects  

having to do with the state must cancel

C number if phi satisfies linear wave 
equation

Therefore there must be a  Cancellation between + 
and - Wightman functions in any FREE field theory

In the EFT there is an order � corrections coming from a mass insertions. i.e. a tail correction

on one side of the cut. The imaginary part is IR divergent but cancels when adding the two cuts.

All that is left over is a real piece leaving for the
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(0.15)

Matching to the full theory result (0.12)
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Gret = Tr(⇢✓(t)[�(t),�(0)])

e.g free field theory in thermal state

AT
+ = i(2⇡)�(k2 �m2)(F (!) + ✓(!)) AT

� = i(2⇡)�(k2 �m2)(F (!) + ✓(�!))

F (!) = 1/(e�|!| � 1)

=
1

k2 �m2 + isgn(!)✏



Extracting Wightman Functions for positive freq.

1) Use full theory Wightman functions in asymptotic limit (Candelas)

2) Extract from (n|m) probabilities (Bekenstein+Meisels, Panafanden+Wald) 

In the matching calculation we do below, it is convenient to take the events x, x0 to be spatially

coincident at (r, ✓,�) at r ! 1. From Candelas’ paper, the asymptotic formulas as r ! 1
1X

`=0

(2`+ 1)|
 
R` (!|r)|2 ⇠ 4!2 (1.9)

1X

`=0

(2`+ 1)|
!
R` (!|r)|2 ⇠ 1

r2

1X

`=0

(2`+ 1)|B`(!)|2 (1.10)

allow us to write the respective Greens functions for  = B,U as

h |�(x)�(x0)| i = h0|�(x)�(x0)|0i+ 1

4⇡r2

Z 1

�1

d!

2⇡
e�i!(t�t

0)
X

`

(2`+ 1)F ` (!), (1.11)
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Unruh vacuum: no incoming flux from infinity

Hartle/Hawking vacuum: thermal equilibrium at T.
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where |ini is the initial state of the system defined by Eq. (0.1). The correct framework for
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d⌧Q� is given by

G(x, x0) = h0|�(x)�(x0)|0i

+

Z
d⌧d⌧ 0G2a(x, x(⌧))G1b(x0, x(⌧ 0))hQa(⌧)Qb(⌧

0)i

+ · · · (2.2)

3

Boulware vacuum:

Each choice of vacua should lead to the same causal (retarded) 
Greens function, but differing Wightman functions

~x ! ~x
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Now to match onto EFT utilize Schwinger Keldysh

where x(⌧) = (⌧, 0) is the worldline of the black hole at rest at the origin of the coordinate system,

Gab(x, x0) is the Schwinger-Keldysh propagator matrix

Ga,b(x, x0) =

 
DF (x� x0) �W (x0 � x)

�W (x� x0) DD(x� x0)

!
, (2.3)

with W (x � x0) = h0|�(x)�(x0)|0i, DD(x � x0) = DF (x � x0)⇤ the interaction picture (i.e. free)

propagators, and

hQa(⌧)Qb(⌧
0)i =

 
hTQ(⌧)Q(⌧ 0)i hQ(⌧ 0)Q(⌧)i
hQ(⌧)Q(⌧ 0)i hT ⇤Q(⌧)Q(⌧ 0)i

!
. (2.4)

The · · · in Eq. (2.2) denote more insertions of the operator Q(⌧), diagrams where the scalar scat-

ters o↵ the wordline through graviton exchange (from expanding out SBH = �M
R
dt
p
1 + h00+

· · · ), interactions with higher multipole worldline operators (not displayed in Eq. (0.1)), etc.

We will focus on matching the EFT for the case where the full theory is in the Boulware or

Unruh state,  = B,U . Eq. ?? suggest that the initial state of the EFT is of the form

⇢in = |0ih0|⌦ ⇢BH , (2.5)

where |0i is the usual (Poincare invariant) free field vacuum, and ⇢BH is some density matrix

acting on the Hilbert space of BH states, whose form we need not specify in the calculation. Thus

the propagators appearing in Eq. (2.3) are given by

DF (x� x0) = � 1

4⇡2

1

(x� x0)2 � i✏
,

W (x� x0) = � 1

4⇡2

1

(x0 � x00 � i✏)2 � (~x� ~x0)2
. (2.6)

We find it convenient to compare the EFT and full theory in the spatial coincidence limit

r = r0 with r ! 1, so that the scattering phase shifts (i.e the phase of the reflection coe�cient

A`) cancel in the full theory. Then there is no need to subtract Feynman diagrams in the EFT

involving graviton exchange between the point mass and the scalar. After dropping terms with

rapidly oscillating phases ⇠ e±i!r whose integrals vanish in the limit r ! 1, the second term in

Eq. (2.2) becomes

1
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2⇡
e�i!(t�t0) [A+(!) + ✓(!)(A+(!)�A+(�!))] (2.7)

where A+(!) =
R
dtei!thQ(t)Q(0)i is the frequency space Wightman function. Comparing with

the Unruh state propagator Eq. (1.11), the integrand of this equation must match the quantity

We therefore find that in the EFT, the state  is described by a worldline theory whose two-point

correlator is

hQ(t)Q(t0)i ⌘ A +(t� t0) =

Z
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2⇡
e�i!(t�t0)A +(!), (2.8)

where, for  = B,

AB
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`=0(!) (2.9)

4

Where

Taking the coincident point limit as well as as taking r to infinty leaves

Matching to the full theory result we find

In the matching calculation we do below, it is convenient to take the events x, x0 to be spatially

coincident at (r, ✓,�) at r ! 1. From Candelas’ paper, the asymptotic formulas as r ! 1
1X

`=0

(2`+ 1)|
 
R` (!|r)|2 ⇠ 4!2 (1.9)

1X

`=0

(2`+ 1)|
!
R` (!|r)|2 ⇠ 1

r2

1X

`=0

(2`+ 1)|B`(!)|2 (1.10)

allow us to write the respective Greens functions for  = B,U as

h |�(x)�(x0)| i = h0|�(x)�(x0)|0i+ 1

4⇡r2

Z 1

�1

d!

2⇡
e�i!(t�t

0)
X

`

(2`+ 1)F ` (!), (1.11)

where the first term is the flat spacetime Wightman function from Eq. (1.1), while the term

proportional to 1/r2 represents the e↵ects of spacetime curvature, and is of the form

FB
` (!) =

1

2!
✓(!)|B`(!)|2 (1.12)

FU
` (!) =

1

2!

|B`(!)|2

1� e��H!
(1.13)

(1.14)

in the Boulware, Unruh states respectively. Similarly, in the Hartle-Hawking state,

hH|�(x)�(x0)|Hi = h�(x)�(x0)i� +
1

4⇡r2

Z 1

�1

d!

2⇡
e�i!(t�t

0)
X

`

(2`+ 1)FH
` (!), (1.15)

with leading term given by the thermal Wightman function Eq. (1.2), and

FH
` (!) = FU

` (!) =
1

2!

|B`(!)|2

1� e��H!
. (1.16)
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where A+(!) =
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the Unruh state propagator Eq. (1.11), the integrand of this equation must match the quantity
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hQ(t)Q(t0)i ⌘ A +(t� t0) =
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where, for  = B,
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where we have used the relation �abs
`=0(!) =

⇡
!2 |B`=0|2 (from Page) between the classical absorption

cross section and the transmission coe�cient. Similarly, in the Unruh state

AU
+(!) =

!�abs(|!|)
e�H! � 1

h
2e�H!✓(�!) + ✓(!)(1 + e�H!)

i
. (2.10)

There are two checks of these results. First, consider the flux of radiation seen by an observer

at r ! 1 from ther black hole. In the EFT, this is given by

hin|T rt(x)|ini = �1

2
lim
x0!x

(@r@t0 + @t@r0)G(x, x0). (2.11)

At r ! 1, this reduces to

hin|T rt(x)|ini = 1

8⇡2r2

Z
d!

2⇡
✓(!)!2A+(�!), . (2.12)

In particular, the energy emission rate is

dM

dt
= lim

r!1
4⇡r2hin|T rt(x)|ini =

Z 1

0
d!~! d�

d!
, (2.13)

where the frequency distribution of quanta emitted per unit time

d�

d!
=

!

4⇡2
✓(!)A +(�!). (2.14)

As expected, we see that there is no particle emission in the Boulware state, while in the Unruh

state, the emission rate is, from Eq. (2.10)

d�

d!
=

!2

2⇡2

�abs
`=0(!)

e�H! � 1
, (2.15)

which agrees with the low energy emission rate of spin-0 particles given in Page’s 1975 paper.

As a second check, note that in the full theory, the commutator

h |[�(x),�(x0)]| i (2.16)

is independent of the state | i, up to e↵ects suppressed by powers of !/MP l ⌧ 1. This follows be-

cause, up to Planck scale e↵ects, the full theory describes a free field propagating in a background

gravitational field. Because the field has linear equations of motion, canonical quantization then

implies that [�(x),�(x0)] is proportional to the identity operator times a c-number function of

x, x0. (It is straightforward to check explicitly from the expression in the previous section that

h |[�(x),�(x0)]| i does not depend on  ). On the other hand, in the EFT we have at coincident

spatial points

h[�(x),�(x0)]i = 1

8⇡r2

Z
d!

2⇡
e�i!t

⇥
A +(!)�A +(�!)

⇤
. (2.17)

But from Eqs. (2.9), (2.10),

AB
+(!)�AB

�(!) = AU
+(!)�AU

�(!) = !�abs(|!|) [✓(!)� ✓(�!)] , (2.18)

as expected from the point of view of the full theory.
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It is interesting to see how Hawking cancels in the retarded propagator
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implies that [�(x),�(x0)] is proportional to the identity operator times a c-number function of

x, x0. (It is straightforward to check explicitly from the expression in the previous section that

h |[�(x),�(x0)]| i does not depend on  ). On the other hand, in the EFT we have at coincident

spatial points

h[�(x),�(x0)]i = 1

8⇡r2

Z
d!

2⇡
e�i!t

⇥
A +(!)�A +(�!)

⇤
. (2.17)

But from Eqs. (2.9), (2.10),

AB
+(!)�AB

�(!) = AU
+(!)�AU

�(!) = !�abs(|!|) [✓(!)� ✓(�!)] , (2.18)

as expected from the point of view of the full theory.

5

Note that this result only holds for free field theory, beyond which there is no a 
priori reason that the state effects (i.e. Hawking radiation) can not show up that is 
NOT Planck suppressed. However, physical arguments would indicate that some 

cancellations must still occur. Calculation is technically challenging.

No trace of Hawking radiation remains! This had to be 
the case, otherwise the effects of Hawking radiation would not 

be Planck Suppressed at LIGO.



How do we include higher orders to 
match high n-pnt functions?
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We now ask if this form of P„(n)is what would be
expected if ordinary scattering (by the potential
barrier surrounding the hole& were the only pro-
cess responsible for returning the incident black-
body quanta outward. The probability distribution
for scattering is calculated as follows: Let F, be
the probability that a single quantum incident on
the hole is absorbed; 1-I', is the probability that
it will be scattered outward. Then the probability
P,(n) that n quanta are scattered outward is con-
structed by combining-the probability distribution
+b for the incident quanta with the binomial prob-
ability distribution with parameter I', :

p.(m) =Q p(m I n) p„(n).
n =0

(14)

Substituting P, (m) from (7) and Pbb(n) from (9), and
writing z =e 'we see that

sion as well as ordinary scattering. Effectively
p(m In) is the square of the matrix element
(n+m, m In}, in the notation of Ref. 4, which has
been calculated under various restrictions for
the case n =0 by Parker, ' Wald, ' and Hawking. ' It
is a crucial assumption of our arguments that
P(m In) does not depend on the black hole's environ-
ment, but only on its intrinsic properties.
For a black hole immersed in a blackbody bath

we clearly have

One finds that

p, (n) =(1—e ")e "",
e z=-(1-1',)(e'- I', ) '.

(12) g p(m I
n)z" = (1-e & ')(1—z) ' e "i' '

n =0

where y(z) is defined by (8). Expanding the right-
hand side in powers of z we find" that

The sum can be verified by expanding out (13) in
powers of I', e ' (see Appendix of Ref. 8).
We see that P„(n)and P,(n) are not of the same

form regardless of the choice of I",. What can
cause the discrepancy? There can be no doubt
about the correctness of P,(n) in (7). As shown in
Ref. 8 any other distribution would clash with the
second law. The construction scheme (10) is the
only possible one if the spontaneous emission is
independent of the "scattering"; and the scatter-
ing probability distribution P,(n) is the only one
possible if the quanta are indistinguishable bosons.
Thus we are forced to conclude that scattering is
not the only process that returns incident quanta
outward. We are led to believe that stimulated
emission must also be present. To be sure, the
suggestion is not new. Zel'dovich' and Starobin-
ski" interpreted the phenomenon of black-hole
superradiance~ as implying stimulated emission
in modes with u&&mQ (uncharged black hole). This
view is verified by a quantum calculation of Wald. "
However, we are led by thermodynamics to expect
stimulated emission in all modes, even in those
for which there is no classical superradiance. We
now proceed to extract the contribution of stimu-
lated emission to P,(n), and to the definition of the
Einstein coefficients.

(16)

The expansion considered is natural, as it is
about the point T =0. Writing A=I'(e"-1) '+I"-1.
and changing to the new independent variable 5'
=(1—z)(1—I') ' we have

1 (-1)" 8" (1+AW)"
n( I")

~ (( r(""an" I(+((+n(n(""}
(17)

Performing the differentiation and simplifying,
we get

(en 1)enn rm+n nnn(n, m& (-1)n(m +n —k)!
p( I }- ( I,r)n+ m+1 p t, i(n y)((m g}(

x 1—2, (cosh x- 1), (18}
where the sum extends up to m or n, whichever
is smaller.
This expression is so complicated that it is

worthwhile checking it in a simple limit. For n =0
we get

p(m IO) =(e"—1)(e"-1+r)™1r
= (1—e 8)e zm (19)

III. THE CONDITIONAL PROBABILITY p(m In)

We define P(m In) as the conditional probability
that a rotating charged Kerr black hole emits
exactly m quanta in a given mode when precisely
n are incident in the corresponding mode. The
P(m In) includes spontaneous and stimulated emis- .

the last step following from the definition of e 6,
Eq. (2}. We thus find that p(m IO) =p,~(m), as
would be expected: The conditional probability
for emission when nothing is incident is just the
probability of spontaneous emission.
We notice that the sum in (18) is symmetric in

Bekenstein+Meirels

� x = rs!Grey Body Factor

Probability of having m incoming and n out  going 
 modes (same partial wave and frequency)

We can extract Wightman functions directly from these 
results including higher order correlators

Notes on matching the BH correlators Using Bekenstein

Walter D. Goldberger, Ira Z. Rothstein

June 3, 2019

In this note we present an alternative matching calculation using the result derived by Beken-

stein using thermodyncamical argmuments.

He derived a result for the probability for a BH to emit m quanta in a given mode given n

such quanta are incoming

p(m|n) = (ex � 1)enx�m+n

(ex � 1 + �)(n+m+1)

min(m,n)X

k=0

(�1)k(m+ n� k)!

k!(n� k)!(m� k)!
(1� 2

1� �

�3
(coshx� 1))k (0.1)

where x = rs! and � is the absorbtivity (fracition of radiation absorbed).

At leading order the probability for spontaneous emission of one quanta is

P full(1|0) = �
(ex � 1)

(ex � 1 + �)2
(0.2)

and the absorptive probability

P (0|1)full = exP full(1|0). (0.3)

� is a positive definate dimensionless quantity less than 1. At leading order in the derivative

expansion we have

�LO =
A

⇡
!2 (0.4)

where A is the horizon area.

Well match this result to the EFT with coupling

S =

Z
dtO(t)�(0, t) (0.5)

where the black hole has been placed at the origin. We will power count using � ⇠ rs!. In the

EFT the correlators of O must scale according to dimensional analysis since the scale rs is not

in the theory. Assuming that the scalar is a free field, the subleading operators will all involved

time derivatives acting on the operator that is we can write

S =
X

n

Cn

Z
dt�(0, t)O(n)(t) (0.6)

up to operators that involve the curvature tensor. We would like to use these full theory proba-

bilities to extract the correlation function of On.
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� ⇠ a!2 + b!3 + ....

Utilizes only 
Hawking result 

detailed balance 
and principle of 

maximal entropy, 
and agrees with 

Walds curved 
space calculation

(For a scalar grey body factor)



Leading order matching in EFT
 

e
nr i

0 At At O

Matching with wave 
packets

0.1 Power Counting

We have at our disposal two power counting parameters � ⌘ (!rs) and � ⌘ !/Mpl. We have the

following scalings

�(x) ⇠ h(x) ⇠ !

O(0, t) ⇠ �

dt ⇠ 1/!

(0.7)

So that the operator scales as Z
dt�O ⇠ � (0.8)

We will directly extract the Wightman correlators defined as

A+(!) =

Z
dte�i!th⌦ | O(t)O(0) | ⌦i

A�(!) =

Z
dte�i!th⌦ | O(0)O(t) | ⌦i

(0.9)

such that A+ (�!) = A�(!). The leading order correlator thus scales as !A± ⇠ �2.

0.2 Matching

We take the incoming our going states to be wave packets centered at a momentum k.

| ki =
Z

d3p g(k, p)a†p | 0i (0.10)

such that hk | ki = 1. Then a simple calculation gives

PEFT (0|1) =
!

2⇡
A+(!)

PEFT (1|0) =
!

2⇡
A+(�!)

(0.11)

where we using the notation | ~k |⇠ !.

P full(1|0) =
�(0)(!)

x
� 1

2
�(0) � 2(�(0))2

x2
+

�(1)

x
...

P full(0|1) =
�(0)(!)

x
+

1

2
�(0) � 2(�(0))2

x2
+

�(1)

x
... (0.12)

and � starts at O(�2), so we have written

� = �(0) + ��(1) + ... (0.13)

2

ALO
+ (!) = ALO

� (!) = (2⇡)
�(0)(!)

rs!2
⇠ �/! (0.14)

In the EFT there is an order � corrections coming from a mass insertions. i.e. a tail correction

on one side of the cut. The imaginary part is IR divergent but cancels when adding the two cuts.

All that is left over is a real piece leaving for the

PEFT (1|0)NLO =
!

2⇡
(ANL0

+ +ALO
+ rs!)

PEFT (0|1)NLO =
!

2⇡
(ANL0

� +ALO
� rs!)

(0.15)

Matching to the full theory result (??)

��(0)

2
� 2(�(0))2

x2
+

�(1)

x
= (2⇡)2!(ANL0

+ +
1

(2⇡)2
�(0)(!)

rs!2
⇥ rs!)

=
1

2⇡
!(ANL0

+ ) + �(0) (0.16)

ANLO
+ (!) =

2⇡

!
[�3

2
�(0) � 2(�(0))2

x2
+

�(1)

x
] (0.17)

1

2
�(0) � 2(�(0))2

x2
+

�(1)

x
= (2⇡)2!(ANL0

� ) + �(0) (0.18)

ANLO
� (!) =

1

(2⇡)2!
[�1

2
�(0) � 2(�(0))2

x2
+

�(1)

x
] (0.19)

Now let us match for four point function. From Bekenstein we have

P (2|0) = (ex � 1)�2

(ex � 1 + �)3
⇡ �2/x2 (0.20)

1 Caclulate Gret

Gret =

Z
d!0

2⇡

A+(!
0)�A�(!

0)

! � !0 + i✏
+ C =

Z
d!0

(2⇡)3
�(0)(!0)/!0

! � !0 + i✏
+ C (1.1)
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2

S =

Z
dt�O ⇠ ��

Determine sigma by matching at LO

�0 ⇠ !2�abs
l=0 ⇠ !2r2s



NLO matching

At NLO in the EFT we have 
to subtract mass insertions. 

note higher partial wave 
don’t mix in not relevant for 

s wave matching.

Imaginary part diverges but cancels in sum over cuts
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3

µq g

Mass insertion

Note mass insertion cancel in the retarded 
propagator, this had to be the case since its part of 

the state (geometry). As such, if were only interested 
in classical physics we can ignore mass insertions in 

the matching.
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In addition at this order we can also have  more insertions of the composite 
operator
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Matching P(2|0) to study non Gaussianities 
allows us to extract four point function

Subtract Gaussian piece from the full theory, see whats left over 
(nothing)

vanishes by momentum 
conservation

= p1p2A+(p1)A+(p2)(2⇡)
2

= �2
0/(r

2
s!1!2) = P (2|0)
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In general P(0,n)=P(0,1)^n !!



Consider P(0,3) to probe three point function  

a
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=0 since result is saturated by

hOOi3



BH soft theorem for Photons/Gravitons

What effect does a collision have on Hawking radiation?

M = HS(k, vi) Canonical Soft Factor

Is there an analogous factorization with 
Universal soft function ?

C
E

and C
B

are the Love numbers responsible for the deformability of the sources. The series is

an expansion in the ratio �/r
s

where � is the wavelength of the probe radiation, and r
s

is the

Schwartzchild radius, or more generally the radius of the compact object.

Such an action, to any order, is, however, still not su�cient to describe all of the finite size

e↵ects since it can not account for dissipative e↵ects. This inadequacy, of the action (1.2) is a

consequence of the fact that there are gapless modes within the bodies. Thus these modes should

be “integrated back in”. This can be accomplished by introducing operators on the world line [2].

These operators act on some Hilbert space which represents the state of the object. For instance,

the dissipative power loss due to tidal gravitational forces can be accounted for by including two

operators QE

IJ

(�) and QB

IJ

(�) on the world

S =

Z
d�QE

IJ

(�)EIJ +

Z
d�QB

IJ

(�)BIJ , (1.3)

here the capital Roman indicies represent the local orthogonal frame. The correlation functions

of these operators encode the dissipative e↵ects.

Here we will be interested in electromagnetic radiation, as such we introduce a set of operators

S =

Z
d� p

I

(�)EI(x(�)) +

Z
d� m

I

(�)B(Ix(�)), (1.4)

The e↵ects of internal dynamics of the black hole are then captured by correlation function of

E
I

(�), B
I

(�). The action (1.4) is corrected by higher multipole interactions which are subleading

in the soft limit of interest.

2 Power Counting

This e↵ective theory is valid as long as we probe the objects with frequencies small compared to

the inverse size of the target. Furthermore, we will be working to leading order in the soft limit

where corrections scale as k/Q, where k is the photon energy and Q is the injected momentum,

thus our calculation will be valid given the following hierarchy

k ⌧ Q ⌧ r�1
s

. (2.1)

Furthermore, the theory will not be valid for arbitrary long times. To see this we note that we

will be considering correlators in a state | ⌦i which represents the state of the black hole at the

time of scattering. Since we will be allowing for Hawking radiation the hole is unstable, with the

mass of the hole decaying in time. Thus the e↵ective theory is no longer valid in the far infrared.

Which is to say, we can not study the system for arbitrarily long times, we will see that this

breakdown will manifest itself as a pathology below. Thus we introduce another time scale t
c

which will act as an IR cut-o↵, with the following hierarchy

Q � 1/r
c

� k � 1/t
c

. (2.2)

– 2 –

Confines of EFT

3 The prediction for the squared amplitude in terms of the Wightman Func-

tion

We will assume that the black hole undergoes a hard scattering and emits a soft photon with

momentum k. The soft emission will factorize from the hard scattering up to corrections of order

k/Q ⌧ 1 such that the amplitude can be written in the form (1.1).

The hard scattering induces a kink in the world line such that the path is given by

xµ(�) = vµ� � < 0

xµ(�) = v0µ� � > 0.

(3.1)

Focussing for the electric piece for the moment, the leading contribution to the amplitude

for the emission of a photon o↵ of a Schwarzchild black hole is given by

iM = H(Q)

Z
d�hX, ✏�(l) | (p

I

(�) · EI(x(�)) | ⌦i

(3.2)

There is also a contribution from the magnetic operator, whose e↵ects will be derivable via

electric-magnetic duality.

H is the hard scattering amplitude that factorizes from the soft emission via the usual

arguments [? ]. Namely, if we insert the operator inside a hard loop, with typical momentum q,

the result will be power suppressed, relative to the leading order factorized result.

We now consider the inclusive cross cross section
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where

F
µ⌫

(k) = ik
µ

✏
⌫

� ik
⌫

✏
µ

(3.4)

and v1, v2 is the path defined by (3.1). We will be working to leading order in the derivative

expansion so that, since were considering large black holes with small horizon curvature, we may

take ea
µ

(x(�)) = �a
µ

. Also not that electric-magnetic duality implies that the magnetic piece will

give the same contribution as the electric piece [2].
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S =
Y

i

vi · ✏
vi · k

Factorization follows the usual proof ( valid up to power of k/Q)
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Contrary to the canonical soft theorems, this theorem 
will hold at the level of the amplitude squared

As before we may extract the Wightman function from Bekenstein full 
theory calculation

(3.3) leads to four terms. The diagonal terms are,
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Where the i✏ prescription is determined by the direction of the Wilson line. Note the integral

over ! is ill defined, as there is a pinch in the contour. These contribution are simply the net

radiation from past infinity. This is the aforementioned pathology which is a consequence of the

fact the the state | ⌦i is unstable over long time scales. If we were to impose the IR cut-o↵ on

the theory the integrals would be regulated.

The terms of interest are the cross terms, i.e. the interference terms between emission o↵ of

the v and v0 paths. This contribution can be thought of as the induced emission from the We

expect these to be finite, as long as v 6= v0, as the scattering time scale cuts-o↵ the integral and

is given by
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These terms are finite, as the IR divergence is cut o↵ by the scattering time scales q.

4 The matching calculation

To determine the cross section we need to extract that correltator T (!) by doing a matching

calculation as was done in [2] where the absorptive potential was calculated where we were

interested in the amplitude

M = h⌦ |
Z
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Z
d�h⌦ | pI(�)pJ(0) | ⌦ie�i!� = �IJT (!)

+ trivial Hawking radiation off of external legs

Performing the omega integral

S = (2⇡)(v0 · k)T (v0 · k) = (2⇡)(v · k)T (v · k) +O(q/M)



Sub-Leading Corrections to Dissipative Power Loss 
(LIGO phenomenology)

 

I i f l
l l
l i i 1

i Ii
i 1 l I I
en i l l
n l l l l
e I l l l

s t

 

I i f l
l l
l i i 1

i Ii
i 1 l I I
en i l l
n l l l l
e I l l l

s t

Pure retarded (no Hawking radiation) generalizes our old 
result (spin important phenomenologically)

No Obstruction to working to arbitrary order, 
as all of the necessary correlators are known.



Effects Off-Shell Hawking 
Radiation

P (0 | 1) Is an on shell process that lets us extract W±(!)

Heavy particle not 
produced in Hawking 

radiation
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• Internal (UV) physics rife with discovery potential


• Response Theory in the context of EFT allows for systematic 
predictions for effect of internal structure on templates. 


• BH EFT shows remarkable surprises (?). Can match to extract 
horizon correlators which can then be used to calculate off shell 
quantities


• Quantum gravity effects from Hawking radiation do not cancel in 
all observables (but do for classical response function). Not 
suppressed by E/Mpl.


• Many open questions about this theory. What are the relevant 
DOF? Scattering off of Hawking radiation, quantum 
mechanically.

Conclusions


