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LIGO “testing GR” paper [arXiv:1602.03841]:

“According to the burst analysis, the GW150914 residual is 
not statistically distinguishable from the instrumental noise
recorded in the vicinity of the detection, suggesting that all 
of the measured power is well represented by the GR 
prediction for the signal from a BBH merger. […]
We compute the 95% upper bound on the coherent 
network residual SNR. This upper bound is  ≤ 7.3 at 95% 
confidence, independently of the maximum a posteriori 
waveform used.”

Is there any modification to GR in the (small) residual?



LIGO/Virgo: O1, O2, O3

• O1: 9/12/2015-1/19/2016: 3 BH-BH
• O2: 11/30/2016-8/25/2017: 7 BH-BH + 1 NS-NS
• O3: started 4/1/2019: about 20 BH-BH, 1 NS-NS, 1 NS-BH (?)

https://gracedb.ligo.org/latest/
https://www.gw-openscience.org/detector_status/
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FIG. 1. Left: BNS range for each instrument during O2. The break at week 3 was for the 2016 end-of-year holidays. There was an additional
break in the run at week 23 to make improvements to instrument sensitivity. The Montana earthquake’s impact on the LHO instrument
sensitivity can be seen at week 31. Virgo joined O2 in week 34. Right: Amplitude spectral density of the total strain noise of the Virgo, LHO
and LLO detectors. The curves are representative of the best performance of each detector during O2.

first-generation detector in 2011. The main modifications in-
clude a new optical design, heavier mirrors, and suspended
optical benches, including photodiodes in vacuum. Special
care was also taken to improve the decoupling of the instru-
ment from environmental disturbances. One of the main limit-
ing noise sources below 100 Hz is the thermal Brownian exci-
tation of the wires used for suspending the mirrors. A first test
performed on the Virgo configuration showed that silica fibers
would reduce this contribution. A vacuum contamination is-
sue, which has since been corrected, led to failures of these
silica suspension fibers, so metal wires were used to avoid
delaying Virgo’s participation in O2. Unlike the LIGO instru-
ments, Virgo has not yet implemented signal-recycling. This
will be installed in a later upgrade of the instrument.

After several months of commissioning Virgo joined O2 on
August 1st 2017 with a BNS range of ⇠25 Mpc. The perfor-
mance experienced a temporary degradation on August 11th

and 12th, when the microseismic activity on site was highly
elevated and it was di�cult to keep the interferometer in its
low-noise operating mode.

C. Data

Figure 1 shows the BNS ranges of the LIGO and Virgo in-
struments over the course of O2, and the representative am-
plitude spectral density plots of the total strain noise for each
detector.

We subtracted several independent contributions to the in-
strumental noise from the data at both LIGO detectors [50].
For all of O2, the average increase in the BNS range from this
noise subtraction process at LHO was ⇡18% [50]. At LLO
the noise subtraction process targeted narrow line features, re-
sulting in a negligible increase in BNS range.

Calibrated strain data from each interferometer was pro-
duced online for use in low-latency searches. Following the
run, a final frequency-dependent calibration was generated for
each interferometer.

For the LIGO instruments this final calibration benefitted
from the use of post-run measurements and removal of instru-
mental lines. The calibration uncertainties are 3.8% in ampli-
tude and 2.1 degrees in phase for LLO; 2.6% in amplitude and
2.4 degrees in phase for LHO. The results cited in this paper
use the full frequency-dependent calibration uncertainties de-
scribed in [62, 63]. The LIGO timing uncertainty of < 1 �s
[64] is included in the phase correction factor.

The calibration of strain data produced online by Virgo had
large uncertainties due to the short time available for mea-
surements. The data was reprocessed to reduce the errors by
taking into account better calibration models obtained from
post-run measurements and subtraction of frequency noise.
The reprocessing included a time dependence for the noise
subtraction and for the determination of the finesse of the cav-
ities. The final uncertainties are 5.1% in amplitude and 2.3
degrees in phase [65]. The Virgo calibration has an additional
uncertainty of 20 �s originating from the time stamping of the
data.

During O2 the individual LIGO detectors had duty factors
of ⇠60% with a LIGO network duty factor of ⇠45%. Times
with significant instrumental disturbances are flagged and re-
moved, resulting in 118 days of data suitable for coincident
analysis [66]. Of this data 15 days were collected in coin-
cident operation with Virgo, which after joining O2 operated
with a duty factor of ⇠80%. Times with excess instrumen-
tal noise, which is not expected to render the data unusable
are also flagged [66]. Individual searches may then decide to
include or not include such times in their final results.

III. SEARCHES

The search results presented in the next section were ob-
tained by two di↵erent, largely independent matched-filter
searches, PyCBC and GstLAL, and the burst search cWB.
Because of the sensitivity imbalance between the Advanced
Virgo detector as compared to the two Advanced LIGO de-

https://gracedb.ligo.org/latest/
https://www.gw-openscience.org/detector_status/


BH-BH binaries outnumber NS-NS/NS-BH binaries. Cleaner tests of gravity…against what? 
Two strategies:

1) Identify “sensible” theories with either 
- measurable deviations from GR in LIGO/LISA waveforms or
- “smoking gun” signatures (superradiance, echoes: Vitor’s and Rafael’s talks)

Einstein-scalar-Gauss-Bonnet gravity and spontaneously scalarized black hole

2) Parametrize, then map to specific theories
Preferable, but parametrizing small deviations needs a background solution

ppE formalism in the inspiral, where we can use PN theory: Yunes, Yagi, Pretorius…
Can we parametrize ringdown dynamics, where we can use perturbation theory?
Analogous to inferring nuclear structure from scattering, but harder - coupled system

General formalism for nonrotating (but otherwise general) parametrized ringdown

How can we go after deviations?



Black hole spectroscopy:
a null test



after switching to the tortoise coordinate (14) and introduc-
ing! ¼ ðr2 þ a2Þ1=2R the radial Eq. (12) takes the form of
the Schrödinger equation

d2!

dr2%
& V! ¼ 0 (20)

with the potential
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þ "
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We include the ð& !2Þ term in the definition of the poten-
tial, because even if wewere to separate it, there would be a
residual dependence on!. We present the qualitative shape
of the potential V for a typical choice of parameters in
Fig. 7. One can clearly see the potential well where the
bound Keplerian orbits are localized and a barrier separat-
ing this region from the near-horizon region where super-
radiant amplification takes place.

Consequently, the axion wave function at the horizon
r ¼ rþ (corresponding to r% ¼ & 1) is suppressed relative
to the wave function in the vicinity of the Keplerian orbit
by a tunneling exponent,

jRðrþÞj ’ jRðrcÞje& I;

where the tunneling integral I is

I ¼
Z r%ðr2Þ

r%ðr1Þ
dr%
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ffiffiffiffi
V

p
ðr2 þ a2Þ
"

; (22)

with r1;2 being the boundaries of the classically forbidden
region. We will only follow the leading exponential depen-
dence on e& I and do not aim at calculating the normaliza-
tion prefactor in front of the exponent.

To relate the tunneling exponent with the rate of super-
radiance instability let us consider again the energy flow
Eq. (6). Integrating it over the horizon we obtain

dE
dt

¼ !ðmwþ & !Þ
Z
horizon

jYð"ÞRðrþÞj2; (23)

where E is the energy in the axion cloud. The energy is
maximum in the Keplerian region, so that in the limit
where we only keep track of the dependence on the ex-
ponent e& I we can write

E / jRðrcÞj2 ’ e2IjRðrþÞj2;
and, consequently, to rewrite (23) as

dE
dt

¼ const ' ðmwþ & !Þe& 2IE: (24)

In other words, the WKB approximation for the super-
radiance rate gives1

# ¼ #ðmwþ & !Þe& 2I; (25)

where the normalization prefactor is determined mainly by
the spread of the wave function in the classically allowed
region. We will limit ourself by calculating the exponential
part #. We leave the technical details for the Appendix, and
present only the final result here. Namely, the final answer
for the tunneling integral in the extremal Kerr geometry
takes the form

I ¼ $
!
2% &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2%ð% & 1Þ

p "
; (26)

which translates in the following superradiant rate,

#WKB ( 10& 7r& 1
g e& 2$%ð2&

ffiffi
2

p
Þ ( 10& 7r& 1

g e& 3:7%; (27)

where we took the large % limit in (26) and chose the
prefactor to match the low % results of Sec. II B (this value
also agrees with that of [19,32]). As we already said, the
exponent in (27) is larger than that in [19] by a factor of two.
As explained in the Appendix, the rate (27) provides an
upper envelope for superradiance rates at different l in the
large % limit. We have presented (27) by a dotted line in
Fig. 5; it agrees reasonably well with the previous%=l ) 1
results.

III. DYNAMICS OF SUPERRADIANCE

Let us turn now to discussing the dynamical consequen-
ces of the superradiant instability. One important property
of the rates calculated in Sec. II is that the time scale for the
development of the instability is quite slow compared to
the natural dynamical scale rg close to the black hole
horizon, #& 1

sr > 107rg . Consequently, in many cases non-
linear effects, both gravitational, and due to axion self-
interactions, become important in the regime where the
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FIG. 7 (color online). The shape of the radial Schroedinger
potential for the eigenvalue problem in the rotating black hole
background. Superradiant modes are localized in a potential well
region created by the mass ‘‘mirror’’ from the spatial infinity on
the right, and by the centrifugal barrier from the ergo-region and
horizon on the left. 1Note, that at this stage we still agree with [19].
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Quasinormal (and superradiant) modes

Quasinormal modes:
q Ingoing waves at the horizon,

outgoing waves at infinity
q Spectrum of damped modes (“ringdown”) 

[EB+, 0905.2975]

Massive scalar field:
q Superradiance: black hole bomb when

[Press-Teukolsky 1972]
q Hydrogen-like, unstable bound states 

[Detweiler 1980, Zouros+Eardley, Dolan…]

[Arvanitaki+Dubovsky, 1004.3558]

0 < ! < m⌦H
<latexit sha1_base64="jYfVTIpELl6Vbm+ImvxJeEbWqUs=">AAAB/XicbVDLSsNAFJ3UV42v+Ni5CRbBVUmqoIsuim66s4J9QBPCZDpph85kwsxEqKH4K25cKOLW/3Dn3zhps9DWA5d7OOde5s4JE0qkcpxvo7Syura+Ud40t7Z3dves/YOO5KlAuI045aIXQokpiXFbEUVxLxEYspDibji+yf3uAxaS8PheTRLsMziMSUQQVFoKrCOn7nGGh7DOvNu8B03TDKyKU3VmsJeJW5AKKNAKrC9vwFHKcKwQhVL2XSdRfgaFIojiqemlEicQjeEQ9zWNIcPSz2bXT+1TrQzsiAtdsbJn6u+NDDIpJyzUkwyqkVz0cvE/r5+q6MrPSJykCsdo/lCUUltxO4/CHhCBkaITTSASRN9qoxEUECkdWB6Cu/jlZdKpVd3zau3uotK4LuIog2NwAs6ACy5BAzRBC7QBAo/gGbyCN+PJeDHejY/5aMkodg7BHxifP3uJk/E=</latexit>



Schwarzschild and Kerr quasinormal mode spectrum

[Berti-Cardoso-Will, gr-qc/0512160; EB+, gr-qc/0707.1202]

• One mode fixes mass and spin – and the whole spectrum!
• N modes: N tests of GR dynamics…if they can be measured
• Needs SNR>50 or so for a comparable mass, nonspinning binary merger



Multi-mode detectability: mass ratio and spin dependence

[Baibhav+, 1710.02156]
Strongest spin dependence:
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Spectroscopy of Kerr black holes with Earth- and space-based interferometers

Emanuele Berti1,2, Alberto Sesana3, Enrico Barausse4,5, Vitor Cardoso2,6, Krzysztof Belczynski7
1
Department of Physics and Astronomy, The University of Mississippi, University, MS 38677, USA

2
CENTRA, Departamento de F́ısica, Instituto Superior Técnico,

Universidade de Lisboa, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
3
School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

4
Sorbonne Universités, UPMC Université Paris 6, UMR 7095,
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We estimate the potential of present and future interferometric gravitational-wave detectors to
test the Kerr nature of black holes through “gravitational spectroscopy,” i.e. the measurement of
multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population
synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that
Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy
in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like
Cosmic Explorer is necessary to go beyond z ⇠ 3. In contrast, eLISA-like detectors should carry out
a few – or even hundreds – of these tests every year, depending on uncertainties in massive black
hole formation models. Many space-based spectroscopical measurements will occur at high redshift,
testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections
to general relativity (if they occur in nature) must be significant.

Introduction. The first binary black hole (BH) mer-
ger signal detected by the LIGO Scientific Collaboration,
GW150914 [1], had a surprisingly high combined signal-
to-noise ratio (SNR) of 24 in the Hanford and Livingston
detectors. The quasinormal mode signal (“ringdown”)
from the merger remnant is consistent with the predic-
tions of general relativity (GR) for a Kerr BH, but it was
observed with a relatively low SNR ⇢ ⇠ 7 [2]. The large
masses of the binary components [3] have interesting im-
plications for the astrophysics of binary BH formation [4],
and the detection placed some constraints on the merger
rates of BH binaries in the Universe [5–8].

LISA Pathfinder was successfully launched in Decem-
ber 2015, paving the way for a space-based detector such
as eLISA [9, 10], which will observe mergers of massive
BHs throughout the Universe with very large SNRs and
test the Kerr nature of the merger remnants. The basic
idea is that the dominant ` = m = 2 resonant frequency
and damping time can be used to determine the rem-
nant’s mass M and dimensionless spin j = J/M2 (we
adopt geometrical units G = c = 1 throughout this Let-
ter.) In GR, all subdominant mode frequencies (e.g. the
modes with ` = m = 3 and ` = m = 4 [11]) are then
uniquely determined by M and j. The detection of sub-
dominant modes requires high SNR, but each mode will
provide one (or more) tests of the Kerr nature of the rem-
nant [12]. As first pointed out by Detweiler in 1980, grav-
itational waves allow us to do BH spectroscopy: “After
the advent of gravitational wave astronomy, the observa-
tion of these resonant frequencies might finally provide
direct evidence of BHs with the same certainty as, say,
the 21 cm line identifies interstellar hydrogen” [13].

Such high SNRs are known to be achievable with an
eLISA-like detector [14]. The surprisingly high SNR of

GW150914 raised the question whether current detect-
ors at design sensitivity should routinely observe ring-
down signals loud enough to perform gravitational spec-
troscopy. Leaving aside conceptual issues about ruling
out exotic alternatives [15–17], here we use our current
best understanding of the astrophysics of stellar-mass
and supermassive BHs to compute the rates of events
that would allow us to carry out spectroscopical tests.

Below we provide the details of our analysis, but the
main conclusions can be understood relying on the noise
power spectral densities (PSDs) Sn(f) of present and fu-
ture detectors, as shown and briefly reviewed in Fig. 1,
and simple back-of-the-envelope estimates.
Ringdown SNR. Consider the merger of two BHs with
source-frame masses (m1, m2), spins (j1, j2), total mass
Mtot = m1 + m2, mass ratio q ⌘ m1/m2 � 1 and sym-
metric mass ratio ⌘ = m1m2/M2

tot. The remnant mass
and dimensionless spin, M and j = J/M2, can be com-
puted using the fitting formulas in [26] and [27], respect-
ively (see also [28, 29]). The ringdown SNR ⇢ can be es-
timated by following [14]. Including redshift factors and
substituting the Euclidean distance r by the luminosity
distance DL as appropriate, Eq. (3.16) of [14] implies
that ⇢ is well approximated by

⇢ =
�eq

DLFlmn


8

5

M3
z ✏rd

Sn(flmn)

�1/2

, (1)

where Mz = M(1 + z). Fits of the mass-independent di-
mensionless frequency Flmn(j) ⌘ 2⇡Mzflmn and quality
factor Qlmn(j) are given in Eqs. (E1) and (E2) of [14].
The geometrical factor �eq = 1 for Michelson interfero-
meters with orthogonal arms, while �eq =

p
3/2 for an

eLISA-like detector (where the angle between the arms
is 60�). This expression involves the non sky-averaged

[EB+, 1605.09286]

f = 170.2
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Bridging the mass gap: gravitational wave astronomy in the 2030s



Tests of GR: multi-mode detection and IMBHs at large z

[Baibhav+, 1809.03500]
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Figure 2. Rates of binary BH mergers that yield detectable ringdown signals (filled symbols) and allow for spectroscopical
tests (hollow symbols). Left panel: rates per year for Earth-based detectors of increasing sensitivity. Right panel: rates per
year for 6-link (solid) and 4-link (dashed) eLISA configurations with varying armlength and acceleration noise.

of BH-BH merger rates, and therefore model M3 should
be regarded as pessimistic [8]. In all of these models we
set the BH spins to zero, an assumption consistent with
estimates from GW150914 [4]. Even in the unrealistic
scenario where all BHs in the Universe were maximally
spinning, rates would increase by a factor . 3 (see Table
2 of [5]). Massive binaries with ringdowns detectable by
Earth-based interferometers could also be produced by
other mechanisms (see e.g. [34–37]), and therefore our
rates should be seen as lower bounds.

To estimate ringdown rates from massive BH mergers
detectable by eLISA we consider the same three models
(PopIII, Q3nod and Q3d) used in [18] and produced with
the semi-analytical approach of [38] (with incremental
improvements described in [39–41]). These models were
chosen to span the major sources of uncertainty a↵ect-
ing eLISA rates, namely (i) the nature of primordial BH
seeds (light seeds coming from the collapse of Pop III
stars in model PopIII; heavy seeds originating from pro-
togalactic disks in models Q3d and Q3nod), and (ii) the
delay between galaxy mergers and the merger of the BHs
at galactic centers (model Q3d includes this delay; model
Q3nod does not, and therefore yields higher detection
rates). In all three models the BH spin evolution is fol-
lowed self-consistently [38, 39]. For each event in the
catalog we compute ⇢ from Eq. (1), where ✏rd is rescaled
by a spin-dependent factor as necessary.

Detection rates. The ringdown detection rates (events
per year with ⇢ > 8 in a single detector) predicted by
models M1, M3, M10 (for stellar-mass BH binaries) and
PopIII, Q3d, Q3nod (for supermassive BH binaries) are
shown in Fig. 2 with filled symbols. For example, models

M1 (M10, M3) predict 3.0 (2.5, 0.57) events per year
with detectable ringdown in O1; 7.0 (5.8, 1.1) in O2; and
40 (35, 5.2) in AdLIGO. Model Q3d (Q3nod, PopIII)
predicts 38 (533, 13) events for a 6-link N2A5 eLISA
mission lasting 5 years, but in the plot we divided these
numbers by 5 to facilitate a more fair comparison in terms
of events per year.
BH spectroscopy. Suppose that we know that a signal
contains two (or possibly more) ringdown modes. We
expect the weaker mode to be hard to resolve if its amp-
litude is low and/or if the detector’s noise is large. The
critical SNR for the second mode to be resolvable can
be computed using the generalized likelihood ratio test
(GLRT) [42] under the following assumptions: (i) using
other criteria, we have already decided in favor of the
presence of one ringdown signal; (ii) the ringdown fre-
quencies and damping times, as well as the amplitude
of the dominant mode, are known. Then the critical
SNR ⇢GLRT to resolve a mode with either ` = m = 3
or ` = m = 4 from the dominant mode with ` = m = 2
is well fitted, for nonspinning binary BH mergers, by

⇢2, 3GLRT = 17.687 +
15.4597

q � 1
� 1.65242

q
, (2)

⇢2, 4GLRT = 37.9181 +
83.5778

q
+

44.1125

q2
+

50.1316

q3
.(3)

These fits reproduce the numerical results in Fig. 9 of
[42] within 0.3% when q 2 [1.01 � 100]. Spectroscopical
tests of the Kerr metric can be performed whenever either
mode is resolvable, i.e. ⇢ > ⇢GLRT ⌘ min(⇢2, 3GLRT, ⇢2, 4GLRT).
The ` = m = 3 mode is usually easier to resolve than the
` = m = 4 mode, but the situation is reversed in the

Earth vs. space-based: ringdown detections and black hole spectroscopy
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of BH-BH merger rates, and therefore model M3 should
be regarded as pessimistic [8]. In all of these models we
set the BH spins to zero, an assumption consistent with
estimates from GW150914 [4]. Even in the unrealistic
scenario where all BHs in the Universe were maximally
spinning, rates would increase by a factor . 3 (see Table
2 of [5]). Massive binaries with ringdowns detectable by
Earth-based interferometers could also be produced by
other mechanisms (see e.g. [34–37]), and therefore our
rates should be seen as lower bounds.

To estimate ringdown rates from massive BH mergers
detectable by eLISA we consider the same three models
(PopIII, Q3nod and Q3d) used in [18] and produced with
the semi-analytical approach of [38] (with incremental
improvements described in [39–41]). These models were
chosen to span the major sources of uncertainty a↵ect-
ing eLISA rates, namely (i) the nature of primordial BH
seeds (light seeds coming from the collapse of Pop III
stars in model PopIII; heavy seeds originating from pro-
togalactic disks in models Q3d and Q3nod), and (ii) the
delay between galaxy mergers and the merger of the BHs
at galactic centers (model Q3d includes this delay; model
Q3nod does not, and therefore yields higher detection
rates). In all three models the BH spin evolution is fol-
lowed self-consistently [38, 39]. For each event in the
catalog we compute ⇢ from Eq. (1), where ✏rd is rescaled
by a spin-dependent factor as necessary.

Detection rates. The ringdown detection rates (events
per year with ⇢ > 8 in a single detector) predicted by
models M1, M3, M10 (for stellar-mass BH binaries) and
PopIII, Q3d, Q3nod (for supermassive BH binaries) are
shown in Fig. 2 with filled symbols. For example, models

M1 (M10, M3) predict 3.0 (2.5, 0.57) events per year
with detectable ringdown in O1; 7.0 (5.8, 1.1) in O2; and
40 (35, 5.2) in AdLIGO. Model Q3d (Q3nod, PopIII)
predicts 38 (533, 13) events for a 6-link N2A5 eLISA
mission lasting 5 years, but in the plot we divided these
numbers by 5 to facilitate a more fair comparison in terms
of events per year.
BH spectroscopy. Suppose that we know that a signal
contains two (or possibly more) ringdown modes. We
expect the weaker mode to be hard to resolve if its amp-
litude is low and/or if the detector’s noise is large. The
critical SNR for the second mode to be resolvable can
be computed using the generalized likelihood ratio test
(GLRT) [42] under the following assumptions: (i) using
other criteria, we have already decided in favor of the
presence of one ringdown signal; (ii) the ringdown fre-
quencies and damping times, as well as the amplitude
of the dominant mode, are known. Then the critical
SNR ⇢GLRT to resolve a mode with either ` = m = 3
or ` = m = 4 from the dominant mode with ` = m = 2
is well fitted, for nonspinning binary BH mergers, by

⇢2, 3GLRT = 17.687 +
15.4597

q � 1
� 1.65242

q
, (2)

⇢2, 4GLRT = 37.9181 +
83.5778

q
+

44.1125

q2
+

50.1316

q3
.(3)

These fits reproduce the numerical results in Fig. 9 of
[42] within 0.3% when q 2 [1.01 � 100]. Spectroscopical
tests of the Kerr metric can be performed whenever either
mode is resolvable, i.e. ⇢ > ⇢GLRT ⌘ min(⇢2, 3GLRT, ⇢2, 4GLRT).
The ` = m = 3 mode is usually easier to resolve than the
` = m = 4 mode, but the situation is reversed in the

[EB+, 1605.09286]
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comparable-mass limit q ! 1, where the amplitude of
odd-m modes is suppressed [11, 43]. Extreme mass-ratio
calculations [44] and a preliminary analysis of numerical
waveforms show that the ratio of mode amplitudes is, to
a good accuracy, spin-independent, therefore this SNR
threshold is adequate for our present purpose.

The rates of events with ⇢ > ⇢GLRT are shown in
Fig. 2 by curves with hollow symbols. The key obser-
vation here is that, although ringdown detections should
be routine already in AdLIGO, high-SNR events are ex-
ceedingly rare: reaching the threshold of ⇠ 1 event/year
requires Voyager-class detectors, while sensitivities com-
parable to Einstein Telescope are needed to carry out
such tests routinely. This is not the case for space-based
interferometers: typical ringdown detections have such
high SNR that ⇡ 50% or more of them can be used to
do BH spectroscopy. The total number of eLISA detec-
tions and spectroscopic tests depends on the underlying
BH formation model, but it is remarkably independent of
detector design (although the N1A1 design would sens-
ibly reduce rates in the most optimistic models).

Perhaps the most striking di↵erence between Earth-
and space-based detectors is that a very large fraction
of the “spectroscopically significant” events will occur at
cosmological redshift in eLISA, but not in Einstein tele-
scope. This is shown very clearly in Fig. 3, where we
plot redshift histograms of detected events (top panel)
and of events that allow for spectroscopy (bottom panel).
eLISA can do spectroscopy out to z ⇡ 5 (10, or even 20!)
for PopIII (Q3d, Q3nod) models, while even the Einstein
Telescope is limited to z . 3. Only 40-km detectors with
cosmological reach, such as Cosmic Explorer [22, 23],

would be able to do spectroscopy at z ⇡ 10.

Conclusions. Using our best understanding of the
formation of field binaries, we predict that AdLIGO at
design sensitivity should observe several ringdown events
per year. However routine spectroscopical tests of the
dynamics of Kerr BHs will require the construction and
operation of detectors such as the Einstein Telescope [45–
47], and 40-km detectors [22, 23] will be necessary to
reach cosmological distances. Many of the mergers for
which eLISA can do BH spectroscopy will be located at
z � 1. These systems will test GR in qualitatively dif-
ferent regimes than any low-z observation by AdLIGO:
BH spectroscopy with eLISA will test whether gravity
behaves locally like GR even at the very early epochs of
our Universe, possibly placing constraints on proposed
extensions of Einstein’s theory [48].

Given the time lines for the construction and operation
of these detectors, it is likely that the first instances of
BH spectroscopy will come from a space-based detector.
This conclusion is based on the simple GLRT criterion
introduced in [42], and it is possible that better data
analysis techniques (such as the Bayesian methods ad-
vocated in [46, 47]) could improve our prospects for grav-
itational spectroscopy with Earth-based interferometers.
We hope that our work will stimulate the development
of these techniques and their use on actual data.

As shown in Fig. 2, di↵erences in rates between models
M1 and M10 become large enough to be detectable in
A+. We estimate 34 (29) ringdown events per year for
M1 (M10) in A+, and 89 (66) events per year in A++.
Rate di↵erences are even larger when we consider the
complete signal. Therefore, while the implementation
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4

10�1

100

101

102

dN
/d

z

Tobs = 5 years
� > 8

0 5 10 15 20
z

10�1

100

101

102

dN
/d

z

� > �GLRT

PopIII, N2A5

PopIII, N2A2

PopIII, N2A1

Q3d, N2A5

Q3d, N2A2

Q3d, N2A1

Q3nod, N2A5

Q3nod, N2A2

Q3nod, N2A1

Figure 3. Left: redshift distribution of events with ⇢ > 8 (top) and ⇢ > ⇢GLRT (bottom) for model M1 and Earth-based
detectors. In the bottom-left panel, the estimated AdLIGO rate (⇡ 2.6⇥ 10�2 events/year) is too low to display. Right: same
for models Q3nod, Q3d and PopIII. Di↵erent eLISA design choices have an almost irrelevant impact on the distributions.

comparable-mass limit q ! 1, where the amplitude of
odd-m modes is suppressed [11, 43]. Extreme mass-ratio
calculations [44] and a preliminary analysis of numerical
waveforms show that the ratio of mode amplitudes is, to
a good accuracy, spin-independent, therefore this SNR
threshold is adequate for our present purpose.

The rates of events with ⇢ > ⇢GLRT are shown in
Fig. 2 by curves with hollow symbols. The key obser-
vation here is that, although ringdown detections should
be routine already in AdLIGO, high-SNR events are ex-
ceedingly rare: reaching the threshold of ⇠ 1 event/year
requires Voyager-class detectors, while sensitivities com-
parable to Einstein Telescope are needed to carry out
such tests routinely. This is not the case for space-based
interferometers: typical ringdown detections have such
high SNR that ⇡ 50% or more of them can be used to
do BH spectroscopy. The total number of eLISA detec-
tions and spectroscopic tests depends on the underlying
BH formation model, but it is remarkably independent of
detector design (although the N1A1 design would sens-
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behaves locally like GR even at the very early epochs of
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extensions of Einstein’s theory [48].

Given the time lines for the construction and operation
of these detectors, it is likely that the first instances of
BH spectroscopy will come from a space-based detector.
This conclusion is based on the simple GLRT criterion
introduced in [42], and it is possible that better data
analysis techniques (such as the Bayesian methods ad-
vocated in [46, 47]) could improve our prospects for grav-
itational spectroscopy with Earth-based interferometers.
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As shown in Fig. 2, di↵erences in rates between models
M1 and M10 become large enough to be detectable in
A+. We estimate 34 (29) ringdown events per year for
M1 (M10) in A+, and 89 (66) events per year in A++.
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[EB+, 1605.09286]



LISA: multi-mode tests

[Baibhav+EB, 1809.03500]



Which theories of gravity can we 
test with black hole mergers?
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Figure 2.1. This diagram illustrates how Lovelock’s theorem serves as a guide to classify modified
theories of gravity. Each yellow box represents a class of modified theories of gravity that arises from
violating one of the assumptions underlying the theorem. A theory can, in general, belong to multiple
classes. See Table 1 for a more precise classification.

2. Extensions of general relativity: motivation and overview

2.1. A compass to navigate the modified-gravity atlas

There are countless inequivalent ways to modify GR, many of them leading to theories
that can be designed to agree with current observations. Cosmological observations
and fundamental physics considerations suggest that GR must be modified at very
low and/or very high energies. Experimental searches for beyond-GR physics are a
particularly active and well motivated area of research, so it is natural to look for a
guiding principle: if we were to find experimental hints of modifications of GR, which
of the assumptions underlying Einstein’s theory should be abandoned?

Such a guiding principle can be found by examining the building blocks of
Einstein’s theory. Lovelock’s theorem [187, 188] is particularly useful in this context.
In simple terms, the theorem states that GR emerges as the unique theory of gravity
under specific assumptions. More precisely, it can be articulated as follows:

In four spacetime dimensions the only divergence-free symmetric rank-2
tensor constructed solely from the metric gµ⌫ and its derivatives up to second
differential order, and preserving diffeomorphism invariance, is the Einstein
tensor plus a cosmological term.

A guiding principle to modified GR: Lovelock’s theorem

[Sotiriou+, 0707.2748]

[EB+, 1501.07274] 

In four spacetime dimensions the only 
divergence-free (WEP) symmetric rank-2 
tensor constructed solely from the metric
and its derivatives up to 2nd order, and 
preserving diffeomorphism invariance, 
is the Einstein tensor plus L.

Generic modifications introduce 

additional fields (simplest: scalars)

Minimal requirements:

• Action principle

• Well-posed

• Testable predictions

• Black holes, neutron stars

• Cosmologically viable



The modified gravity zoo

[EB+, 1501.07274]

Testing
G

eneralR
elativity

12
Theory Field

content
Strong

EP
Massless
graviton

Lorentz
symmetry

Linear
Tµ⌫

Weak
EP

Well-
posed?

Weak-field
constraints

Extra scalar field
Scalar-tensor S 7 X X X X X [34] [35–37]
Multiscalar S 7 X X X X X [38] [39]
Metric f(R) S 7 X X X X X [40, 41] [42]
Quadratic gravity

Gauss-Bonnet S 7 X X X X X? [43]
Chern-Simons P 7 X X X X 7X? [44] [45]
Generic S/P 7 X X X X ?

Horndeski S 7 X X X X X?
Lorentz-violating

Æ-gravity SV 7 X 7 X X X? [46–49]
Khronometric/
Hořava-Lifshitz S 7 X 7 X X X? [48–51]
n-DBI S 7 X 7 X X ? none ( [52])

Massive gravity
dRGT/Bimetric SVT 7 7 X X X ? [17]
Galileon S 7 X X X X X? [17,53]

Nondynamical fields
Palatini f(R) – X X X 7 X X none
Eddington-Born-Infeld – X X X 7 X ? none

Others, not covered here
TeVeS SVT 7 X X X X ? [37]
f(R)Lm ? 7 X X X 7 ?
f(T ) ? 7 X 7 X X ? [54]

Table 1. Catalog of several theories of gravity and their relation with the assumptions of Lovelock’s theorem. Each theory violates at least one assumption
(see also Figure 2.1), and can be seen as a proxy for testing a specific principle underlying GR. See text for details of the entries. Key to abbreviations: S:
scalar; P: pseudoscalar; V: vector; T: tensor; ?: unknown; X?: not explored in detail or not rigorously proven, but there exist arguments to expect X. The
occurrence of 7X? means that there exist arguments in favor of well-posedness within the EFT formulation, and against well-posedness for the full theory.
Weak-field constraints (as opposed to strong-field constraints, which are the main topic of this review) refer to Solar System and binary pulsar tests. Entries
below the last horizontal line are not covered in this review.



Black holes in GR uniquely described by mass and spin
[Carter, Israel, Hawking, Robinson, 1970s]

“In my entire scientific life, extending over forty-five years, the most shattering 
experience has been the realization that an exact solution of Einstein's equations of 
general relativity, discovered by the New Zealand mathematician, Roy Kerr, provides 
the absolutely exact representation of untold numbers of massive black holes that 
populate the universe.” (S. Chandrasekhar)

Similar “no hair” theorems in modified gravity. Examples:
Brans-Dicke [Hawking, Thorne & Dykla, Chase, Bekenstein]
Multiple scalars [Heusler, gr-qc/9503053]
Bergmann-Wagoner, f(R) [Sotiriou-Faraoni, 1109.6324]
Higher-order curvature [Psaltis+, 0710.4564]
Horndeski [Hui-Nicolis, 1202.1296] – but loophole: EsGB!

Black holes are simple. Too simple?



Orbital period derivative:

For black hole binaries,                       and dipole vanishes identically
Quadrupole:

Result extended to higher PN orders, BH-NS, and is exact in the large mass ratio limit
[Will & Zaglauer 1989; Alsing+, 1112.4903; Mirshekari & Will, 1301.4680; 
Yunes+, 1112.3351; Bernard 1802.10201, 1812.04169, 1906.10735]
Ways around: matter (but EOS degeneracy), cosmological BCs (but small corrections), or
curvature itself sourcing the scalar field: dCS, EsGB [Yagi+ 1510.02152]

Dynamical no-hair results in scalar-tensor theories



Horndeski Lagrangian: most general scalar-tensor theory with second-order EOMs

Set:

Shift symmetry: invariance under                         ,  i.e.

EsGB is a special case of Horndeski and of quadratic gravity
[Kobayashi+, 1105.5723; Sotiriou+Zhou, 1312.3622; Maselli+, 1508.03044]

A loophole in no-hair theorems: Einstein-scalar-Gauss-Bonnet gravity



Scalarization



Scalar-tensor theory and spontaneous scalarization
§ Action (in the Einstein frame):

§ Gravity-matter coupling:

§ Field equations:

[Damour+Esposito-Farese, PRL 70, 2220 (1993); PRD 54, 1474 (1996)]
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(')U(�(')). The price paid for the minimal coupling of the scalar field in
the gravitational sector is the non-minimal coupling in the matter sector of the action:
particle masses and fundamental constants depend on the scalar field.

We remark that the actions (2.3) and (2.4) are just different representations
of the same theory: the outcome of an experiment will not depend on the chosen
representation, as long as one takes into account that the units of physical quantities
do scale with powers of the conformal factor A [189, 217]. It is then legitimate, when
modeling a physical process, to choose the conformal frame in which calculations are
simpler: for instance, in vacuum the Einstein-frame action (2.4) formally reduces to
the GR action minimally coupled with a scalar field. It may then be necessary to
change the conformal frame when extracting physically meaningful statements (since
the scalar field is minimally coupled to matter in the Jordan frame, test particles
follow geodesics of the Jordan-frame metric, not of the Einstein-frame metric).

The relation between Jordan-frame and Einstein-frame quantites is simply � =
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�2, where ↵(') ⌘ d(ln A('))/d' [2]. Note that the theory
is fixed once the function !(�) – or, equivalently, ↵(') – is fixed, and the form of the
scalar potential is chosen. Moreover, most phenomenological studies neglect the scalar
potential. This approximation corresponds to neglecting the cosmological term, the
mass of the scalar field and any possible scalar self-interaction. In an asymptotically
flat spacetime the scalar field tends to a constant �0 at spatial infinity, corresponding
to a minimum of the potential. Taylor expanding U(�) around �0 yields a cosmological
constant and a mass term for the scalar field to the lowest orders [32,210].

Scalar-tensor theory with a vanishing scalar potential is characterized by a single
function ↵('). The expansion of this function around the asymptotic value '0 can be
written in the form

↵(') = ↵0 + �0(' � '0) + . . . (2.5)

As mentioned above, the choice ↵(') = ↵0 =constant (i.e., !(�) =constant)
corresponds to Brans-Dicke theory. A more general formulation, proposed by Damour
and Esposito-Farèse, is parametrized by ↵0 and �0 [111,112]. Another simple variant
is massive Brans-Dicke theory, in which ↵(') is constant, but the potential is non-
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The field equations of scalar-tensor theory in the Jordan frame are (see e.g. [218],
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where Tµ⌫
= �2(�g)

�1/2�SM ( , gµ⌫)/�gµ⌫ is the Jordan-frame stress-energy tensor
of matter fields, and T = gµ⌫Tµ⌫ .
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The field equations of scalar-tensor theory in the Jordan frame are (see e.g. [218],
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where Tµ⌫
= �2(�g)

�1/2�SM ( , gµ⌫)/�gµ⌫ is the Jordan-frame stress-energy tensor
of matter fields, and T = gµ⌫Tµ⌫ .
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In the Einstein frame, the field equations are

G?

µ⌫
= 2

✓
@µ'@⌫' �

1

2
g?
µ⌫

@�'@�'

◆
�

1

2
g?
µ⌫

V (') + 8⇡T ?

µ⌫
, (2.7a)

⇤g?' = �4⇡↵(')T ?
+

1

4

dV

d'
, (2.7b)

where T ?µ⌫
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�1/2�SM ( , A2g?
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is the Einstein-frame stress-energy
tensor of matter fields and T ?
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µ⌫
(see e.g. [34]). Eq. (2.7b) shows that ↵(')

couples the scalar fields to matter [220], as does (3 + 2!(�))
�1 in the Jordan frame:

cf. Eq. (2.6b)].
Astrophysical observations set bounds on the parameter space of scalar-tensor

theories. In the case of Brans-Dicke theory, the best observational bound (↵0 <
3.5 ⇥ 10

�3) comes from the Cassini measurement of the Shapiro time delay. In the
more general case with �0 6= 0, current constraints on (↵0, �0) have been obtained
by observations of NS-NS and NS-WD binary systems [33], and will be discussed in
Section 6 (cf. Figure 6.3). Observations of compact binary systems also constrain
massive Brans-Dicke theory, leading to exclusion regions in the (↵0, ms) plane [32].

An interesting feature of scalar-tensor gravity is the prediction of certain
characteristic physical phenomena which do not occur at all in GR. Even though we
know from observations that ↵0 ⌧ 1 and that GR deviations are generally small,
these phenomena may lead to observable consequences. There are at least three
possible smoking guns of scalar-tensor gravity. The first is the emission of dipolar
gravitational radiation from compact binary systems [218,221], which will be discussed
in Section 5.1. Dipolar gravitational radiation is “pre-Newtonian,” i.e. it occurs at
lower PN order than quadrupole radiation, and it does not exist in GR. The second is
the existence of non-perturbative NS solutions in which the scalar field amplitude is
finite even for ↵0 ⌧ 1. This spontaneous scalarization phenomenon [111, 112] will be
discussed in detail in Section 4.2. Here we only remark that spontaneous scalarization
would significantly affect the mass and radius of a NS, and therefore the orbital
motion of a compact binary system, even far from coalescence. The third example is
also non-perturbative, and it involves massive fields. The coupling of massive scalar
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superradiance, matter can hover into “floating orbits” for which the net gravitational
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The phenomenology of scalar-tensor theory in vacuum spacetimes, such as BH
spacetimes, is less interesting. When the matter action SM can be neglected, the
Einstein-frame formulation of the theory is equivalent to GR minimally coupled to
a scalar field. BHs in Bergmann-Wagoner theories satisfy the same no-hair theorem
as in GR, and thus the stationary BH solutions in the two theories coincide [51, 54].
Moreover, dynamical (vacuum) BH spacetimes satisfy a similar generalized no-hair
theorem: the dynamics of a BH binary system in Bergmann-Wagoner theory with
vanishing potential are the same as in GR, up to at least 2.5 PN order for generic
mass ratios [223] and at any PN order in the extreme mass-ratio limit [224] (see
Section 5.1.1). These no-hair theorems will be discussed in Section 3.2.
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[Leonardo: Introduction extended] Modifications of general relativity (GR)
generically lead to the introduction of additional degrees of freedom [?]. The simplest
and best studied extension of GR is scalar-tensor (ST) theory, in which one or more
scalar fields are included in the gravitational sector of the action, through a non-
minimal coupling between the Ricci scalar and a function of the scalar field(s). A
further motivation to study ST theories is that they appear in different contexts
in high-energy theories and models: they can be obtained as low-energy limit of
string theories [?], in Kaluza-Klein-like theories [?] or in braneworld scenarios [?,?].
Moreover, ST theories appear in cosmological models [?].

Already in the middle of the XXth century, Jordan, Fierz, Brans and Dicke
proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
generalized by Bergmann and Wagoner, who considered the most general ST theory
with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
on, Damour and Esposito-Farese proposed the tensor-multi-scalar (TMS) theory,
which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
by advanced gravitational-wave detectors.
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spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
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by advanced gravitational-wave detectors.

Tensor-multi-scalar theories 3

1. Introduction

⇤g⇤' = �4⇡↵(')T ⇤ (1.1)

↵(') = �0' (1.2)

�T ⇤ = A4(✏⇤ � 3p⇤) ⇠
3

4⇡R2

m

R
for r < R (1.3)

r
2' = sign(�0)


3|�0|(m/R)

R2

�
' = sign(�0)

2' (1.4)

�0 < 0 =) 'inside = 'c
sin(r)

r
(1.5)

'c =
'0

cos(R)
� '0 (1.6)

R ⇠ ⇡/2 (1.7)

� ⇠ �4 (1.8)

[Leonardo: Introduction extended] Modifications of general relativity (GR)
generically lead to the introduction of additional degrees of freedom [?]. The simplest
and best studied extension of GR is scalar-tensor (ST) theory, in which one or more
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further motivation to study ST theories is that they appear in different contexts
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fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
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therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
by advanced gravitational-wave detectors.

Tensor-multi-scalar theories 3

1. Introduction

⇤g⇤' = �4⇡↵(')T ⇤ (1.1)

↵(') = �0' (1.2)

�T ⇤ = A4(✏⇤ � 3p⇤) ⇠
3

4⇡R2

m

R
for r < R (1.3)

r
2' = sign(�0)


3|�0|(m/R)

R2

�
' = sign(�0)

2' (1.4)

�0 < 0 =) 'inside = 'c
sin(r)

r
(1.5)

'c =
'0

cos(R)
� '0 (1.6)

R ⇠ ⇡/2 (1.7)

� ⇠ �4 (1.8)

[Leonardo: Introduction extended] Modifications of general relativity (GR)
generically lead to the introduction of additional degrees of freedom [?]. The simplest
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scalar fields are included in the gravitational sector of the action, through a non-
minimal coupling between the Ricci scalar and a function of the scalar field(s). A
further motivation to study ST theories is that they appear in different contexts
in high-energy theories and models: they can be obtained as low-energy limit of
string theories [?], in Kaluza-Klein-like theories [?] or in braneworld scenarios [?,?].
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proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
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with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
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which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
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proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
generalized by Bergmann and Wagoner, who considered the most general ST theory
with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
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which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
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binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
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generically lead to the introduction of additional degrees of freedom [?]. The simplest
and best studied extension of GR is scalar-tensor (ST) theory, in which one or more
scalar fields are included in the gravitational sector of the action, through a non-
minimal coupling between the Ricci scalar and a function of the scalar field(s). A
further motivation to study ST theories is that they appear in different contexts
in high-energy theories and models: they can be obtained as low-energy limit of
string theories [?], in Kaluza-Klein-like theories [?] or in braneworld scenarios [?,?].
Moreover, ST theories appear in cosmological models [?].

Already in the middle of the XXth century, Jordan, Fierz, Brans and Dicke
proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
generalized by Bergmann and Wagoner, who considered the most general ST theory
with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
on, Damour and Esposito-Farese proposed the tensor-multi-scalar (TMS) theory,
which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
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[Leonardo: Introduction extended] Modifications of general relativity (GR)
generically lead to the introduction of additional degrees of freedom [?]. The simplest
and best studied extension of GR is scalar-tensor (ST) theory, in which one or more
scalar fields are included in the gravitational sector of the action, through a non-
minimal coupling between the Ricci scalar and a function of the scalar field(s). A
further motivation to study ST theories is that they appear in different contexts
in high-energy theories and models: they can be obtained as low-energy limit of
string theories [?], in Kaluza-Klein-like theories [?] or in braneworld scenarios [?,?].
Moreover, ST theories appear in cosmological models [?].

Already in the middle of the XXth century, Jordan, Fierz, Brans and Dicke
proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
generalized by Bergmann and Wagoner, who considered the most general ST theory
with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
on, Damour and Esposito-Farese proposed the tensor-multi-scalar (TMS) theory,
which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
by advanced gravitational-wave detectors.
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[Leonardo: Introduction extended] Modifications of general relativity (GR)
generically lead to the introduction of additional degrees of freedom [?]. The simplest
and best studied extension of GR is scalar-tensor (ST) theory, in which one or more
scalar fields are included in the gravitational sector of the action, through a non-
minimal coupling between the Ricci scalar and a function of the scalar field(s). A
further motivation to study ST theories is that they appear in different contexts
in high-energy theories and models: they can be obtained as low-energy limit of
string theories [?], in Kaluza-Klein-like theories [?] or in braneworld scenarios [?,?].
Moreover, ST theories appear in cosmological models [?].

Already in the middle of the XXth century, Jordan, Fierz, Brans and Dicke
proposed a ST theory as a possible modification of GR [?, ?, ?]. This theory was
generalized by Bergmann and Wagoner, who considered the most general ST theory
with a single scalar field and an action at most quadratic in the fields [?, ?]. Later
on, Damour and Esposito-Farese proposed the tensor-multi-scalar (TMS) theory,
which generalized the Bergmann-Wagoner theory to the case of a collection of scalar
fields [?]. In recent years, ST theory (in the Bergmann-Wagoner formulation) has been
extensively studied in the case of a single scalar field (see e.g. [?,?,?] and references
therein), but very few results have been extended to the multi-scalar case.

ST theories have a potentially rich phenomenology. Although their action is
linear in the curvature tensor, and the coupling between the scalar field(s) and the
spacetime metric is small (due to observational bounds from the Solar System [?]),
ST theories can modify the strong-field regime of GR. Indeed, the field equations
of compact stars can admit non-perturbative solutions with large amplitudes of the
scalar fields. This phenomenom, called spontaneous scalarization, can significantly
affect the masses and radii of neutron stars. These effects are strongly constrained by
binary pulsar observations [?], but could still leave a signature in the late inspiral of
compact binaries, the so-called dynamical scalarization [?,?], which could be observed
by advanced gravitational-wave detectors.



Kerr is a solution with constant scalar field if:

Dilatonic theories                          and shift-symmetric theories               do not have a GR limit!

No-hair theorem: in addition,

[Silva+, 1711.02080]

No-hair conditions in EsGB

Matter: zero in vacuum

GB contribution



Integrate by parts, divergence theorem:

The RHS vanishes for stationary, asymptotically flat spacetimes; if  
both terms on the LHS vanish separately, i.e.

In alternative, linearize the scalar field equation: 

is an effective mass for the perturbation – tachyonic instability?

A proof, and a heuristic argument

[Silva+, 1711.02080]
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FIG. 1. Scalar field in the decoupling limit. Results of the numerical
integration of the decoupled scalar field equation (9), assuming ℓ = 0
and a Schwarzschild background. Top panel: asymptotic value of the
scalar field as a function of η/M2. Cusps correspond to scalarized
solutions. Bottom-left panel: effective potential Veff for η/M2

= 0
and 5. In the latter case Veff develops a negative region and it can
support bound states. Bottom-right panel: radial profiles of δϕ for
the first three scalarized solutions, corresponding to η/M2

= 2.902,
19.50 and 50.93. These profiles have 0, 1 and 2 nodes, respectively.

Scalarized black holes in qsGB gravity. We now consider
BH solutions obtained by integrating the full set of equa-
tions (2a) and (2b). We search for static, spherically sym-
metric solutions, i.e. a = a(r), b = b(r), ϕ = ϕ(r). We define
Γ = log a, Λ = log b, as in [24]. The field equations can be
cast as three coupled ordinary differential equations for Γ, Λ
and ϕ. Since these equations are not particularly illuminating,
we do not present them here.

The equation for Λ can be integrated algebraically [16, 17,
24]:

eΛ =
−A + δ

√
A2 − 4B

2
, δ = ±1 , (11)

where A = (1/4)r2ϕ′2−(r+ηϕϕ′/2)Γ′−1 and B = (3/2)Γ′ϕ′ϕ.
In BH solutions exp(−Λ), exp(Γ) → ∞ at the event horizon
rh, and this implies δ = 1 [24]. Replacing Eq. (11) in the
remaining equations,we are left with two differential equations
for Γ and ϕ. A near-horizon expansion of the field equations
shows that ϕ′′

h
= ϕ′′(r = rh) is finite if

ϕ′h =
rh

ηϕh

(

−1 + ξ
√

1 − 6η2ϕ2
h
/r4

h

)

, (12)

where ξ = ±1. The ξ = −1 branch does not result in a BH
solution, as discussed in [24] for the exponential coupling.
Therefore, regularity on the horizon requires

r4
h − 6η2ϕ2

h ≥ 0 . (13)

Eq. (13) defines a region in the (rh, ϕh)–plane within which BH
solutions with a regular (real) scalar field configuration exist.

The value of the scalar field at the horizon is bound in
the range 0 ≤ ϕh ≤ ϕmax

h
= r2

h
/(
√

6η). We do not consider

FIG. 2. Spontaneous scalarization of black holes. Left: the regions
in the η − M (in solar mass units) space where scalarized BHs exist.
The solutions belonging to each band are characterized by the number
of nodes of the scalar field radial profile. We only show the first three
scalarization regions, but our numerical analysis suggests an infinite
number of them. Top-right: the scalar field profiles for sample BH
solutions in each of the first three bands. Bottom-right: normalized
scalar charge Q/M as a function of η/M2. The most charged BHs
belong to the n = 0 band.

solutions with ϕh < 0 because qsGB gravity is invariant under
ϕ → −ϕ. The field equations are invariant under the rescalings
rh → rh/l, M → M/l, η → η/l2, corresponding to a freedom
in choosing length units. BH solutions are then characterized
by dimensionless quantities such as η/M2 and η/r2

h
.

For each value of η/M2 we have numerically solved the
field equations, with ϕh in the range [0, ϕmax] and the other
boundary conditions fixed from the requirement of regularity
at the horizon. We have then extracted the scalar quantities
characterizing the solution – the mass M, the scalar charge
Q, and the asymptotic value of the scalar field ϕ∞ – from the
asymptotic expansions [17, 24, 30]:

eΓ = 1 − 2M/r + Q2M/(12r2) , (14)

ϕ = ϕ0 +Q/r +QM/r2
+ (32QM2 − Q3)/(24r3) . (15)

While the Schwarzschild solution (ϕh = 0, ϕ0 = 0) is allowed
for any value of η, a solution with ϕh ! 0, ϕ∞ = 0 only ex-
ists when η/M2 belongs to a set of scalarization bands, i.e.
[2.53, 2.89], [17.86,19.50], [47.90, 50.92], etc. The right-end
values of these bands correspond to the eigenvalues of η/M2

found by solving the linear equation of the scalar field on a
fixed background. The scalarization bands in η/M2 corre-
spond to regions bounded by parabolas in the η − M plane
(shadowed regions in the left panel of Fig. 2). The scalar field
profiles of these solutions have n = 0, 1, . . . nodes (top-right
panel of Fig. 2), corresponding to the order number of the
scalarization band. A similar ladder of excited states was ob-
served for scalarized NSs in scalar-tensor theory [31, 32]. The
normalized scalar charge1 Q/M of these solutions is shown in

1 In other theories with a Gauss–Bonnet coupling the scalar charge and the

Discrete solutions (scalarization thresholds) with n nodes for
Linearized case: monopolar perturbations, asymptotic flatness
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FIG. 1. Scalar field in the decoupling limit. Results of the numerical
integration of the decoupled scalar field equation (9), assuming ℓ = 0
and a Schwarzschild background. Top panel: asymptotic value of the
scalar field as a function of η/M2. Cusps correspond to scalarized
solutions. Bottom-left panel: effective potential Veff for η/M2

= 0
and 5. In the latter case Veff develops a negative region and it can
support bound states. Bottom-right panel: radial profiles of δϕ for
the first three scalarized solutions, corresponding to η/M2

= 2.902,
19.50 and 50.93. These profiles have 0, 1 and 2 nodes, respectively.

Scalarized black holes in qsGB gravity. We now consider
BH solutions obtained by integrating the full set of equa-
tions (2a) and (2b). We search for static, spherically sym-
metric solutions, i.e. a = a(r), b = b(r), ϕ = ϕ(r). We define
Γ = log a, Λ = log b, as in [24]. The field equations can be
cast as three coupled ordinary differential equations for Γ, Λ
and ϕ. Since these equations are not particularly illuminating,
we do not present them here.

The equation for Λ can be integrated algebraically [16, 17,
24]:

eΛ =
−A + δ

√
A2 − 4B

2
, δ = ±1 , (11)

where A = (1/4)r2ϕ′2−(r+ηϕϕ′/2)Γ′−1 and B = (3/2)Γ′ϕ′ϕ.
In BH solutions exp(−Λ), exp(Γ) → ∞ at the event horizon
rh, and this implies δ = 1 [24]. Replacing Eq. (11) in the
remaining equations,we are left with two differential equations
for Γ and ϕ. A near-horizon expansion of the field equations
shows that ϕ′′

h
= ϕ′′(r = rh) is finite if

ϕ′h =
rh

ηϕh

(

−1 + ξ
√

1 − 6η2ϕ2
h
/r4

h

)

, (12)

where ξ = ±1. The ξ = −1 branch does not result in a BH
solution, as discussed in [24] for the exponential coupling.
Therefore, regularity on the horizon requires

r4
h − 6η2ϕ2

h ≥ 0 . (13)

Eq. (13) defines a region in the (rh, ϕh)–plane within which BH
solutions with a regular (real) scalar field configuration exist.

The value of the scalar field at the horizon is bound in
the range 0 ≤ ϕh ≤ ϕmax

h
= r2

h
/(
√

6η). We do not consider

FIG. 2. Spontaneous scalarization of black holes. Left: the regions
in the η − M (in solar mass units) space where scalarized BHs exist.
The solutions belonging to each band are characterized by the number
of nodes of the scalar field radial profile. We only show the first three
scalarization regions, but our numerical analysis suggests an infinite
number of them. Top-right: the scalar field profiles for sample BH
solutions in each of the first three bands. Bottom-right: normalized
scalar charge Q/M as a function of η/M2. The most charged BHs
belong to the n = 0 band.

solutions with ϕh < 0 because qsGB gravity is invariant under
ϕ → −ϕ. The field equations are invariant under the rescalings
rh → rh/l, M → M/l, η → η/l2, corresponding to a freedom
in choosing length units. BH solutions are then characterized
by dimensionless quantities such as η/M2 and η/r2

h
.

For each value of η/M2 we have numerically solved the
field equations, with ϕh in the range [0, ϕmax] and the other
boundary conditions fixed from the requirement of regularity
at the horizon. We have then extracted the scalar quantities
characterizing the solution – the mass M, the scalar charge
Q, and the asymptotic value of the scalar field ϕ∞ – from the
asymptotic expansions [17, 24, 30]:

eΓ = 1 − 2M/r + Q2M/(12r2) , (14)

ϕ = ϕ0 +Q/r +QM/r2
+ (32QM2 − Q3)/(24r3) . (15)

While the Schwarzschild solution (ϕh = 0, ϕ0 = 0) is allowed
for any value of η, a solution with ϕh ! 0, ϕ∞ = 0 only ex-
ists when η/M2 belongs to a set of scalarization bands, i.e.
[2.53, 2.89], [17.86,19.50], [47.90, 50.92], etc. The right-end
values of these bands correspond to the eigenvalues of η/M2

found by solving the linear equation of the scalar field on a
fixed background. The scalarization bands in η/M2 corre-
spond to regions bounded by parabolas in the η − M plane
(shadowed regions in the left panel of Fig. 2). The scalar field
profiles of these solutions have n = 0, 1, . . . nodes (top-right
panel of Fig. 2), corresponding to the order number of the
scalarization band. A similar ladder of excited states was ob-
served for scalarized NSs in scalar-tensor theory [31, 32]. The
normalized scalar charge1 Q/M of these solutions is shown in

1 In other theories with a Gauss–Bonnet coupling the scalar charge and the



Einstein-dilaton-Gauss-Bonnet:
Kerr not a solution, minimum BH mass

Shift-symmetric Gauss-Bonnet:
Kerr not a solution!

Minimal scalarization model:

Nonminimal scalarization model:

Polynomial, inverse polynomial, logarithmic…

EsGB: black hole scalarization and other solutions

[Mignemi-Stewart 93, Kanti+ 96,
Pani-Cardoso 09, Yunes-Stein 11…]

[Sotiriou-Zhou 14, Barausse-Yagi 15, 
Benkel+ 16…]

[Silva+ 1711.02080]

[Doneva+ 1711.01187]

[Antoniou+ 1711.03390/07431; 
Brihaye-Ducobu 1812.07438…]



Are the solutions stable under radial perturbations?

Dashed/dotted: stable (no unstable modes, or positive potential); solid: unstable

: Schwarzschild is stable; threshold is coupling-independent

Intermediate mass: nodeless scalarized BHs with exponential coupling are stable

No BHs are stable below a certain mass (as in EdGB)

Radial instability of the minimal scalarization model

[Blazquez-Salcedo+, 1805.05755]
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Vertical line: scalarization threshold

Left: radially stable

Right: radially unstable

Small charge Q:

exponential = quartic                       model

Key: 

• The scalar EOM is linear in

in the minimal scalarization model

• Backreaction is sufficient to

quench the instability

• From an EFT viewpoint, this is 

not the most natural choice

Stabilizing the solutions: quartic coupling is enough

[Macedo+, 1812.05590; Minamitsuji-Ikeda, 1812.03551]



A better EFT-motivated choice

Schwarzschild

Scalarized black holes

[Macedo+, 1903.06784]



A better EFT-motivated choice

Blue dots: marginal radial stability – minimum mass, maximum charge for any given theory



• For each spin J, scalarized BHs exist
between two critical mass values
(lowest bound: zero in static limit)

• Scalarized black holes are
entropically favored

• Spin reduces difference between
scalarized/unscalarized solutions:
differences nearly unmeasurable
for                (LIGO range!)

• Coupling dependence?

What about spin?

[Cunha+, 1904.09997]
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FIG. 6. (Color online) Scalar waveforms, rescaled by the
extraction radius Rex = 100M , sourced by an equal-mass,
nonspinning BH binary whose waveform  4,22 is displayed
in the bottom panel for comparison. t̂ = 0M indicates the
merger time. We show the l = m = 2 (top panel) and l =
m = 4 (mid panel) modes of the scalar field. During the
inspiral phase we also display the PN waveform (black dashed
lines, see Appendix B 2). In the right panels we zoom in on
the merger-ringdown phase and observe a modulation due to
the presence of both scalar-led and gravitational-led modes.

dxc = 1.8M and dxh = 1.0M . We estimate the numer-
ical error to be about (i) � 4,22/ 4,22 . 1.5% in the
gravitational waveforms; (ii) ��22/�22 . 1.5% in the
scalar waveforms; and (iii) . 0.5% in both the gravita-
tional and scalar phases. The corresponding convergence
plot is shown in Fig. 5.

Waveforms: We present the background gravita-
tional waveform and the O(✏) scalar waveform for bi-
naries with mass ratio q = 1 and q = 1/2, 1/4 in Figs. 6
and 7, respectively. All presented waveforms are shifted
in time such that t̂/M = (t � tmerger � Rex)/M = 0
indicates the maximum in the dominant gravitational
mode as measure for the time of merger. The wave-
forms exhibit the typical morphology: a sinusoid with
increasing frequency that is driven by the orbital mo-
tion of the BHs, the highly nonlinear merger followed by
the exponentially damped ringdown. During the inspi-
ral we compare the numerical results to the analytical
expressions obtained at leading PN order in [24] (see Ap-
pendix B 2). We remark that these expressions depend
on the time-dependent orbital frequency ⌦(t), which, at
this PN order, can not be obtained with good approxi-
mation. Therefore, we extract the orbital frequency from
the numerical data (measuring, at each half-cycle, the
wavelength of the gravitational waveform). Within this
approach, which is similar to that used in [43], the com-
parison between PN and numerical results concerns the
amplitudes of the scalar waveforms, while their phases
agree by definition.

Interestingly, while the scalar signal for l � 2 is qualita-
tively similar to the gravitational waveform and displays
the classical chirp, the dipole is qualitatively di↵erent.
As shown in Fig. 7, the frequency of the dipole mode
grows as expected during the merger, but the amplitude
remains almost constant. This is a strong-field behavior
that is not captured by the PN approximation. A po-
tential explanation of this behaviour is that the scalar
configuration ceases to be dominantly dipolar before the
merger, i.e. the dynamical evolution of the scalar is more
complex and it involves additional oscillations and recon-
figuration. Our simulations, and in particular the time
evolution of the scalar distribution, do seem to be con-
sistent with this explanation, though limitations in reso-
lution do not allow us to make a conclusive statement.
In the post-merger phase the background approaches

a stationary spinning BH, so we expect to observe the
same multiple ringing discussed in the previous section
for an isolated BH. This is confirmed in the insets of
Figs. 6 and 7 and by the postmerger ringdown frequen-
cies extracted from the scalar waveform using the two-
mode fit (60) and presented in Table IV. Note that, in
contrast to the single BH case, the background is now a
perturbed BH plus gravitational radiation, both of which
modify the source term of the scalar field. In particular,
gravitational radiation seems to cause an enhancement of
the gravitational-led quadrupole modes, which dominate
over the scalar-led one in some configurations (see, e.g.,
the l = m = 2 case for q = 1, 1/2 in Table IV).
Finally, the scalar field monopole for the same values

of the mass ratio is shown in Fig. 8. The pre-merger
amplitude is larger for smaller values of the mass ratio q,
while the final amplitude is approximately independent
of q. This behaviour can be understood noting that the
post-merger amplitude is, as a first approximation, � '
↵GB/(2Mr) (see App. B 1 a), where (by construction) the
total mass M is the same in all cases, i.e., independent
of the mass ratio. Instead, when the two BHs are well
separated, the scalar field amplitude is

� ' ↵GB

2m1r
+

↵GB

2m2r
=

↵GB

2Mr

1

⌘
, (63)

for su�ciently large radii encompassing the entire binary.
Therefore, the ratio between the pre-merger and the post-
merger amplitude is expected to be determined by the
(inverse of the) symmetric mass ratio ⌘. In particular we
have 1/⌘ = 4, 4.5 and 6.25 for mass ratios q = 1, 1/2
and 1/4. These values are in agreement with Fig. 8.
Energy and momentum fluxes: Next, we inves-

tigate the energy radiated in gravitational and scalar
waves. We compute their energy fluxes using (52)– (53)
with (56), i.e. accounting for both the canonical scalar’s
and Gauss–Bonnet contributions to the energy flux. We
furthermore estimate the total radiated energy by inte-
grating Eqs. (52) and (53) in time, measuring it at dif-
ferent extraction radii and performing the extrapolation

EGW/M =EGW
1 /M +B/Rex , (64)

• Post-Newtonian calculations in the weak coupling limit:
[Yagi+, 1110.5990]
Higher-order in coupling, generic EsGB:
[Julié+, in preparation]

• Dynamical scalarization:
[Khalil+, 1906.08161]

• Numerical simulations (weak coupling limit):
Scalar waveforms
Scalar-led QNMs + gravitational-led QNMs
[Witek+, 1810.05177]

• Related work in dynamical Chern-Simons (weak coupling limit):
Scalar and gravitational waveforms
[Okounkova+ 1705.07924, 1906.08789]

Binaries in Einstein-scalar-Gauss-Bonnet



Black hole thermodynamics, skeletonization and the two-body Lagrangian

• Analytical solutions for generic coupling functions (up to fourth order in the EsGB coupling 

constant) satisfy the first law of black hole thermodynamics

• Skeletonization à la Eardley: slow inspiral means that black holes evolve with 

constant Wald entropy and a nontrivial asymptotic value of the scalar field

• Padé resummation seems to correctly predict poles in coupling of black holes to scalar fields

• EsGB-induced corrections to the (conservative) two-body Lagrangian: 

formally 1PN contribution, but for small coupling, effectively a 3PN term

“Miraculously”, no regularization is needed to solve the EOMs at 1PN: “simple” Fock integral

• Apply to dynamical black hole scalarization?

• Can we find analytic solutions and skeletonize scalarized black holes?

[Julié+EB, in preparation]



Parametrized ringdown



Inspiral: GR solution known, parametrized post-Einstein

[Yunes-Pretorius+, 0909.3328]
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data. Indeed, a similar approach was successfully pursued when carrying out tests
with Solar System observations, which led to the development of the parameterized
PN framework of Will and Nordtvedt [152– 155].

The first attempt at such a generic test consisted of verifying the PN structure of
the waveform phase [156]. The idea was to decompose the Fourier-domain waveform
model into a frequency-dependent amplitude and a frequency-dependent phase, and
to then rewrite the phase as2

Ψ ( f ) =
n=7∑

n=0

αnv( f )−5+n , (18)

where αn are PN coefficients, which in GR are known functions of the parameters of
the binary (to be more precise , the individual masses m1 and m2 for non-spinning
black hole binaries), and v( f ) = (πm f )1/3 is the orbital velocity, with m the binary’s
total mass. The proposal was then to treat all of these coefficients as independent and
find the best-fit values by comparing the above template waveform with the data. One
can then draw error regions of each coefficient in the m1–m2 plane assuming GR is
correct to check for consistency, namely to check if there is a region where all of error
regions overlap. Later the authors only considered three out of eight coefficients, so
that correlations among parameters could be reduced and one could carry out a stronger
test by shrinking the error regions [157,158]. This procedure resembles binary pulsar
tests in the parameterized post-Keplerian formalism [7,159].

Although feasible in principle, the above test has a few limitations. First, it has
the strong bias of assuming Nature follows the same exact functional structure of the
PN approximation in GR, i.e. that the Fourier phase can be expressed as a series in
integer powers of velocity, with the leading-order term starting at v−5. Indeed, many
examples of modified gravity effects and modified gravity theories exist which do not
admit this structure; examples of this include dipole emission (∝ v−7), variability of
the fundamental constants (∝ v−13), parity violation in eccentric binaries (∝ v−7.3),
and massive gravitons in eccentric binaries (∝ v−9.3), to name a few. Second, the
framework does not allow for tests of modified gravity theories that lead predominantly
to amplitude modifications, without affecting the phase evolution much; examples of
this include gravitational birefringence [160– 162]. Third, the framework assumes that
polynomials in velocity are a good basis to expand the Fourier phase during the entire
inspiral, including right up to plunge and merger. Today, we know that this is not the
case, with the series requiring arctangent corrections [163,164].

An extension and generalization of this method that resolves all of the above prob-
lems is the parameterized post-Einsteinian (ppE) approach [165]. In this framework,
one extends the GR waveform model via

h̃ ( f ) = ÃGR( f )
[
1 + αppE v( f )a

]
eiΨGR( f )+iβppE v( f )b, (19)

2 The terms α5 and α6 contain contributions that depend on ln v, which the authors treat as constant in
[156]. In their follow-up papers [157,158], they modified Eq. (18) by adding further terms of the form∑

k αn ,l ln v.

123



Mapping to theories – can we do the same for ringdown?
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Table 2 Mapping of ppE parameters to those in each theory for a black hole binary

Theory βppE b

Scalar–tensor
[36,179,
180]

− 5
1792 φ̇2η2/5 (

m1sST
1 − m2sST

2
)2 −7

EdGB, D2GB
[23]

− 5
7168 ζGB

(
m2

1s
GB
2 −m2

2s
GB
1

)2

m4η18/5 −7

dCS [181] 1549225
11812864

ζCS

η14/5

[(
1 − 231808

61969 η
)

χ2
s +

(
1 − 16068

61969 η
)

χ2
a − 2δmχsχa

]
−1

EA [182] − 3
128

[(
1 − c14

2
) (

1
wÆ

2
+ 2c14c

2+
(c++c−−c−c+)2wÆ

1
+ 3c14

2wÆ
0 (2−c14)

)
− 1

]
−5

Khronometric
[182]

− 3
128

[
(1 − βKG)

(
1

wKG
2

3βKG
2wKG

0 (1−βKG)

)
− 1

]
−5

Extra
dimension
[183]

25
851968

(
dm
dt

)
3−26η+34η2

η2/5(1−2η)
−13

Varying G
[151]

− 25
65536 ĠM −13

Mod. disp. rel.
[184]

π2−αMDR

(1−αMDR)
DαMDR

λ
2−αMDR
A

M1−αMDR

(1+z)1−αMDR
3(αMDR − 1)

In scalar–tensor theories, black holes acquires a scalar charge for a cosmologically evolving scalar field
[179,180]. Such a scalar charge is proportional to sST

A ≡ [1+(1−χ2
A)

1/2]/2. sGB
A is related to the black hole

scalar charge µ in D2GB in Eq. (37) as µGB
A = 2(αGB/m2

A)s
GB
A . The dimensionless coupling constant in

quadratic-curvature theories is defined by ζGB,CS = 16πα2
GB,CS/m

4. Propagation speeds wÆ,KG
i in Lorentz-

violating theories are summarized in Table 1. dm/dt = dm1/dt+dm2/dt can be calculated from Eq. (17).
λA ≡ h A1/(α−2), where h is the Planck constant. The distance DαMDR is defined in Eq. (22)

the results of [191–193] to non-spinning binary systems on quasi-circular orbits in
scalar–tensor gravity at 2PN relative order.3 Such waveforms introduce PN corrections
to the mapping presented in Table 2. Julié and Deruelle [195,196] use these higher order
PN results to begin to extend the effective-one-body (EOB) formalism of Buonanno
and Damour [197] to scalar–tensor gravity. Such resummed waveform models cannot
be analytically mapped to the ppE waveforms directly.

All the mappings in Table 2 (except for the last one) originate from non-GR effects
created at the level of generation of GWs, while such waves in general acquire modi-
fications also at the level of their propagation. The dispersion relation of the graviton

3 By imposing the stringent constraints set by current astrophysical observations (cf. Table II of [194]),
they find that dipolar radiation is subdominant to quadrupolar radiation for most prospective GW sources: in
the absence of spontaneous scalarization, the dipole term can dominate only at frequencies f ! 100 µHz
in binary neutron star or neutron-star/stellar-mass-black-hole systems, and at frequencies f ! 5 µHz
in neutron-star/intermediate-mass-black-hole systems. Therefore, ground- and space-based GW detectors
would only observe binary systems whose inspiral is driven by the next-to-leading order flux.

123



Gravitational perturbations of a Schwarzschild BH: Regge-Wheeler/Zerilli equations

Isospectrality: the odd/even potentials

have the same quasinormal mode spectrum [Chandrasekhar-Detweiler 1975]
Scalar, electromagnetic and (odd) gravitational perturbations:

[e.g. EB+, 0905.2975]

Scalar, electromagnetic and gravitational perturbations in GR



Maximum of                                    is                                      , so corrections are small if:

Generic (but decoupled) corrections to GR potentials

[Cardoso+, 1901.01265]

Modifications to the gravity sector and/or beyond Standard Model physics: expect 
• small modifications to the functional form of the potentials – parametrize!
• coupling between the wave equations (more later)



QNM frequency correction coefficients 
by direct integration [Pani, 1305.6759]
Asymptotics:

Damped oscillatory behavior for large j

Fitting the numerics by

confirms this.

Correction coefficients and their asymptotic behavior

[Pani, 1305.6759]

III. RESULTS

The most important results of our analysis are the
numerical values of the complex factors e!j and dsj, which
were obtained via high-precision direct integration of the
relevant equations. Figure 1 and Table I show representa-
tive results for the coefficients e!j and dsj in (10) and (11)
for odd gravitational and scalar modes, respectively.
Results for all fields and the lowest multipole numbers
l ¼ jsj, jsþ 1j;…; 10 are available online [30]. Our
calculated e!j (and dsj) have a five-digit accuracy for j≲ 30.

A. Isospectrality

A remarkable result in GR concerns the isospectrality of
potentials (2) and (3). These potentials are sometimes
referred to as “superpartners,” since they can both be
obtained from a “superpotential” W0 [4,31]:

fV! ¼ W2
0 ∓ f

dW0

dr
−
λ2ðλþ 2Þ2

36r2H
; ð12Þ

W0 ¼
3rHðrH − rÞ
r2ð3rH þ λrÞ

−
λðλþ 2Þ
6rH

: ð13Þ

When the potentials are perturbed from their GR values
as in Eq. (6), isospectrality will in general be broken, unless
the coefficients αþj are related in some way to α−j .

The linearized superpartner relations now yield

2
dδW
dr

¼ δV− − δVþ; ð14Þ

4
W0

f
δW ¼ δVþ þ δV−; ð15Þ

with δW the induced change in the superpotential W with
respect to its GR value W0 [Eq. (13)].
Let us admit that the theory predicts a set of α−j . The

relations above give us a unique possibility for αþj , namely,

αþ0 ¼ α−0 ; αþ1 ¼ α−1 ; ð16Þ

αþ2 ¼ α−2 þ 6ðα−0 − α−1 Þ
λðλþ 2Þ

;… : ð17Þ

These relations show that isospectrality is very fragile, and
that in general it will be broken.

IV. ASYMPTOTIC BEHAVIOR AND
CONVERGENCE OF SERIES

Having defined the “basis vectors” ej, it is crucial to
investigate their behavior, and the overall convergence of
the QNM frequency expansion (10). For large j, the
contribution to the potential from the jth term can be
described by a Gaussian profile depending on the tortoise
coordinate2 r⋆, i.e.,

fr2HδVj ¼ fα!j

!
rH
r

"
j
≃
α!j
ej

e−ðr&þrH ln jÞ2=ð2r2HÞ; ð18Þ

showing that the location of the peak is proportional to
− ln j (in terms of the tortoise coordinate r&). Moreover,

FIG. 1. Real and imaginary parts of the components e−j defined in (10) for j ¼ 1;…; 20 and odd-parity gravitational perturbations.

TABLE I. Real and imaginary part of a few of the first
frequency components for odd-parity gravitational (e−j ) and
scalar field (d0j ) perturbations with l ¼ 2. The full set of
frequencies up to j ¼ 100 is provided online [30].

j rHe−j rHd0j
0 0.24725þ 0.092643i 0.15782þ 0.054078i
1 0.15985þ 0.018208i 0.11307þ 0.015119i
2 0.096632 − 0.0024155i 0.076570þ 0.00016782i
3 0.058491 − 0.0037179i 0.051121 − 0.0032973i
4 0.036679 − 0.00043870i 0.034527 − 0.0024724i
10 0.0036853þ 0.0065244i 0.0050350þ 0.0037363i

2The Gaussian fit (18) represents a good approximation for the
peak of the potential’s modifications fr2HδVj. Although its pre-
cision is limited for large values r⋆, far from the maximum of the
function, the fit is accurate enough for the purposes of this section.
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since the amplitude of fδVj is proportional to 1=j for large
j, we can expect that ej → 0 for j → ∞. Following [32], a
perturbative expansion of the QNM frequency yields the
following correction:

ejα!j ∝
Z

∞

−∞
dr"fr2HδVjΦ2

0; ð19Þ

where Φ0 is the unperturbed mode itself.
Let us assume that fδVj has support only in

−rH ln j − rHσ ≤ r" ≤ −rH ln j þ rHσ, with a constant
σ ¼ Oð1Þ (the particular choice of σ does not affect our
results). Then the integral can be estimated as follows:

ejα!j ∝
Z

−rH ln jþ rHσ

−rH ln j−rHσ
dr"fδVjΦ2

0

¼
Z

−rH ln jþ rHσ

−rH ln j−rHσ
dr"

α!j
ej

e−ðr"þ rH ln jÞ2=ð2r2HÞe−i2ω0r"

¼
α!j
j
j2irHω0 × constant: ð20Þ

In conclusion we find

ej ∝
j2iω0rH

j
¼ j2irHωR−2rHωI

j
¼ e2irHωR ln j

j1þ 2rHωI
; ð21Þ

where ω0 ¼ ωR þ iωI . Equation (21) shows that the basis
frequency ej decays as 1=j1þ 2rHωI , and oscillates as
sinð2rHωR ln jÞ. For tensor perturbations3 with l ¼ 2,
we have ej ≃e1.5i ln j

j0.64 . This result is also confirmed by a
numerical study of ej for large j. We fitted our large-j
numerical results to the following functional form:

ej ∼
κ
jβ
sinðγ ln j þ ζÞ; ð22Þ

with ðκ; β ; γ; ζÞ numerical coefficients to be determined. We
find β ≃0.66 and γ ≃1.5, in very good agreement with the
analytical estimate of Eq. (21). Figure 2 compares the fit
with the actual data for ej. The agreement is extremely
good, and it is strong evidence in support of the asymptotic
behavior (21).
Having assessed the asymptotic properties of the basis

ej, we can now study in detail the convergence of the
frequenciesωQNM. We assume that the effective potential of
the specific theory under consideration is C∞, such that we
can expand it for large distances as δV ¼

P∞
j¼0

aj
rj , where

the aj’s are constant coefficients. Moreover, following our
formalism developed in Sec. II, we expand the corrections
with respect to the Schwarzschild term according to Eq. (6),

such that a mapping exists between the α!j and the
coefficients of the theory aj, i.e., α!j ¼ r2H

aj
rjH
. To study

the convergence of the QNM expansion (10), we can
compute the ratio

ϒ ¼ lim
n→∞

!!!!
α!n þ 1en þ 1

α!n en

!!!!: ð23Þ

The series converges when ϒ < 1. Replacing the explicit
form of the expansion coefficients α!j , and using the fact
that the frequency basis vectors ej behave as in Eq. (22)—
or equivalently Eq. (21)—we find

ϒ ¼ lim
n→∞

!!!!
an þ 1

an

n β

n βþ 1

sin½γ lnðn þ 1Þ þ ζ(
rH sin½γ ln n þ ζ(

!!!! ¼ lim
n→∞

!!!!
an þ 1

an

!!!!:

The previous equation implies that, in our approach, the
convergence of the QNM frequencies depends on the
behavior of the coefficients of the (expanded) potential
for the specific theory of gravity.
As a nontrivial example to test the formalism, consider

the case

r2HδV ¼ 10−2
ρk0

ρk0 þ rk
¼ 10−2

X∞

j¼1

ð−1Þjþ 1

"
ρ0
r

#
kj
; ð24Þ

where ρ0 is a constant, and α!j ¼ ð−1Þjþ 110−2ðρ0=rHÞkj.
For this potential the convergence criterion reduces to

ϒ ¼ lim
n→∞

!!!!
ρn þ 1
0

ρn0

!!!! ¼ jρ0j; ð25Þ

and therefore the perturbative formalism is valid if ρ0 < 1.

V. EXAMPLES

In this section we will provide some specific examples of
theories of gravity whose gravitational perturbations can be
described in terms of a master equation with the same
functional form of Eq. (1). In order to determine the domain
of validity and the accuracy of our semianalytical approach,

FIG. 2. Values of the frequency components e−j (red dots) for
the odd tensor modes with l ¼ 2, compared against the numeri-
cal fit of Eq. (22) (black dashed curve).

3Note that Eq. (19) holds regardless of the overtone number
and of the multipole number of the mode, if j is sufficiently large.

PARAMETRIZED BLACK HOLE QUASINORMAL RINGDOWN: … PHYS. REV. D 99, 104077 (2019)

104077-5



Isospectrality follows from the existence of a “superpotential” such that:

Perturb to find conditions for isospectrality to hold:

Preserving isospectrality needs fine tuning!

Generic isospectrality breaking

[Chandrasekhar-Detweiler 1975]



EFT corrections quartic in the curvature lead to a modified Regge-Wheeler equation:

Trivially read off the correction coefficient:

Plug into

to find

in agreement with numerical integrations.

Example 1: EFT

[Cardoso+, 1808.08962]



Odd gravitational perturbations of Reissner-Nordström satisfy

A simple change of variables brings the wave equation in our “canonical” form, with

for small charge.
Read off coefficients to find:

Example 2: Reissner-Nordström

ΔI ¼ jImðωQNM − ωGRÞ=Imðωfull − ωGRÞ − 1j; ð36Þ

where ωfull is computed by numerically solving the exact
master equation without any approximation, and ωQNM is
given by Eq. (34). ForQ=M ¼ 0.2, for example, the QNMs
frequencies derived using Eq. (34) agree to within 0.05%
with those in Ref. [33]. The errors obtained for different
values of Q=M are listed in Table II.
The relative uncertainties ΔR;I grow with Q=M up to

∼10% (4%) for the real (imaginary) component of the
mode’s frequency when Q=M ¼ 0.5. This behavior is
consistent with the assumptions made to obtain Eq. (34),
in which we neglected terms that are order Oððα$j Þ2Þ, the
latter corresponding to ignoring OðQ4Þ corrections to the
RN perturbations. Therefore, for large values of Q, a better
accuracy would require to compute ωQNM by including
second-order terms in both αþj and α−j .

C. Scalars around a slowly spinning black hole

The massless Klein-Gordon equation □Ψ ¼ 0 around a
slowly rotating Kerr BH can be written as

f
d
dr

!
f
d
dr

"
Φþ

!
ω2− fV0 −

4amMω
r3

"
Φ ¼ 0; ð37Þ

at OðaÞ, where f ¼ 1–2M=r, a=M is the BH angular
momentum, and we assumed Ψ ¼ e−iωtYlmðθ;ϕÞΦðrÞ=r.
We can rewrite this equation in the following form:

f
d
dr

!
f
d
dr

"
Φþ

#!
ω −

am
r2H

"
2

− f
!
V0 −

2amω
r2H

−
2amω
r2H

rH
r
−
2amω
r2H

!
rH
r

"
2
"$

Φ ¼ 0; ð38Þ

where we used rH ¼ 2M þOða2Þ. Thus

β00 ¼ β01 ¼ β02¼ −2amω0
0; ð39Þ

and we find

ωQNM ¼ ω0
0 þ

am
r2H

−2amω0
0ðd00 þ d01 þ d02Þ: ð40Þ

Comparing these results with numerical data for l ¼
m ¼ 2 [4,30], we find the relative percentage errors
ðΔR;ΔIÞ listed in Table III. Our formula is a good
approximation for very small a=M ∼ 10−4. For a=M ∼
10−2the agreement gets worse, especially in the imaginary
component. We find that a=M ≪ 10−2 is a necessary
condition for our approximation to be valid.

VI. STATISTICAL ERRORS

In this section we analyze the detectability of the
modifications of the QNM spectrum by space and terres-
trial GW interferometers. We follow the approach described
in Ref. [5], and we refer the reader to this paper and
references therein for further details. Since we are inter-
ested only in an order-of-magnitude estimate of the
associated observational errors, we assume that the mass
of the BH is known (and therefore that the fundamental GR
frequencies are known). For a more sophisticated analysis,
we refer the reader to Refs. [7,35].
The gravitational waveform measured by the interfer-

ometers is a linear superposition of two polarization states
of the form h ¼ hþFþ þ h×F×, where Fþ and F× denotes
the standard pattern functions (which depend on the source
orientation with respect to the detector and on a “polari-
zation angle”). In the frequency domain, the two GW
components are simply given by

h̃þðfÞ ¼
Aþ
lmnffiffiffi
2

p ½eiϕþ
lmn S lmnbþðfÞ þ e−iϕ

þ
lmn S ⋆lmnb−ðfÞ';

h̃×ðfÞ ¼ −
iA×

lmnffiffiffi
2

p ½eiϕ×
lmn S lmnbþðfÞ þ e−iϕ

×
lmn S ⋆lmnb−ðfÞ';

where the amplitude coefficients Aþ;×
lmn and the phase

coefficients ϕþ;×
lmn are real, S lmn represent the (complex)

spin-weighted spheroidal harmonics of spin weight 2,
which depend on the polar and azimuthal angles, and
b$ðfÞ are the Breit-Wigner functions:

TABLE II. Relative percentage errors on the real and imaginary
parts of the QNMs for RN BHs, as a function of the charge-to-
mass ratio Q=M.

Q=M ΔR ΔI

0.00 0% 0%
0.05 0.11% 0.042%
0.10 0.43% 0.17%
0.20 1.7% 0.66%
0.30 3.8% 1.5%
0.40 6.8% 2.6%
0.50 11% 4.2%

TABLE III. Relative percentage errors in the real and imaginary
parts of the QNM frequencies for scalar perturbations around a
slowly spinning black hole, as a function of the BH angular
momentum a=M.

a=M ΔR ΔI

0 0% 0%
10−4 0.0050% 0.83%
10−3 0.049% 5.1%
10−2 0.49% 34%

PARAMETRIZED BLACK HOLE QUASINORMAL RINGDOWN: … PHYS. REV. D 99, 104077 (2019)

104077-7



Example 3: Klein-Gordon in slowly rotating Kerr

ΔI ¼ jImðωQNM − ωGRÞ=Imðωfull − ωGRÞ − 1j; ð36Þ

where ωfull is computed by numerically solving the exact
master equation without any approximation, and ωQNM is
given by Eq. (34). ForQ=M ¼ 0.2, for example, the QNMs
frequencies derived using Eq. (34) agree to within 0.05%
with those in Ref. [33]. The errors obtained for different
values of Q=M are listed in Table II.
The relative uncertainties ΔR;I grow with Q=M up to

∼10% (4%) for the real (imaginary) component of the
mode’s frequency when Q=M ¼ 0.5. This behavior is
consistent with the assumptions made to obtain Eq. (34),
in which we neglected terms that are order Oððα$j Þ2Þ, the
latter corresponding to ignoring OðQ4Þ corrections to the
RN perturbations. Therefore, for large values of Q, a better
accuracy would require to compute ωQNM by including
second-order terms in both αþj and α−j .

C. Scalars around a slowly spinning black hole

The massless Klein-Gordon equation □Ψ ¼ 0 around a
slowly rotating Kerr BH can be written as

f
d
dr

!
f
d
dr

"
Φþ

!
ω2− fV0 −

4amMω
r3

"
Φ ¼ 0; ð37Þ

at OðaÞ, where f ¼ 1–2M=r, a=M is the BH angular
momentum, and we assumed Ψ ¼ e−iωtYlmðθ;ϕÞΦðrÞ=r.
We can rewrite this equation in the following form:

f
d
dr

!
f
d
dr

"
Φþ

#!
ω −

am
r2H

"
2

− f
!
V0 −

2amω
r2H

−
2amω
r2H

rH
r
−
2amω
r2H

!
rH
r

"
2
"$

Φ ¼ 0; ð38Þ

where we used rH ¼ 2M þOða2Þ. Thus

β00 ¼ β01 ¼ β02¼ −2amω0
0; ð39Þ

and we find

ωQNM ¼ ω0
0 þ

am
r2H

−2amω0
0ðd00 þ d01 þ d02Þ: ð40Þ

Comparing these results with numerical data for l ¼
m ¼ 2 [4,30], we find the relative percentage errors
ðΔR;ΔIÞ listed in Table III. Our formula is a good
approximation for very small a=M ∼ 10−4. For a=M ∼
10−2the agreement gets worse, especially in the imaginary
component. We find that a=M ≪ 10−2 is a necessary
condition for our approximation to be valid.

VI. STATISTICAL ERRORS

In this section we analyze the detectability of the
modifications of the QNM spectrum by space and terres-
trial GW interferometers. We follow the approach described
in Ref. [5], and we refer the reader to this paper and
references therein for further details. Since we are inter-
ested only in an order-of-magnitude estimate of the
associated observational errors, we assume that the mass
of the BH is known (and therefore that the fundamental GR
frequencies are known). For a more sophisticated analysis,
we refer the reader to Refs. [7,35].
The gravitational waveform measured by the interfer-

ometers is a linear superposition of two polarization states
of the form h ¼ hþFþ þ h×F×, where Fþ and F× denotes
the standard pattern functions (which depend on the source
orientation with respect to the detector and on a “polari-
zation angle”). In the frequency domain, the two GW
components are simply given by

h̃þðfÞ ¼
Aþ
lmnffiffiffi
2

p ½eiϕþ
lmn S lmnbþðfÞ þ e−iϕ

þ
lmn S ⋆lmnb−ðfÞ';

h̃×ðfÞ ¼ −
iA×

lmnffiffiffi
2

p ½eiϕ×
lmn S lmnbþðfÞ þ e−iϕ

×
lmn S ⋆lmnb−ðfÞ';

where the amplitude coefficients Aþ;×
lmn and the phase

coefficients ϕþ;×
lmn are real, S lmn represent the (complex)

spin-weighted spheroidal harmonics of spin weight 2,
which depend on the polar and azimuthal angles, and
b$ðfÞ are the Breit-Wigner functions:

TABLE II. Relative percentage errors on the real and imaginary
parts of the QNMs for RN BHs, as a function of the charge-to-
mass ratio Q=M.

Q=M ΔR ΔI

0.00 0% 0%
0.05 0.11% 0.042%
0.10 0.43% 0.17%
0.20 1.7% 0.66%
0.30 3.8% 1.5%
0.40 6.8% 2.6%
0.50 11% 4.2%

TABLE III. Relative percentage errors in the real and imaginary
parts of the QNM frequencies for scalar perturbations around a
slowly spinning black hole, as a function of the BH angular
momentum a=M.

a=M ΔR ΔI

0 0% 0%
10−4 0.0050% 0.83%
10−3 0.049% 5.1%
10−2 0.49% 34%
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At linear order in the spin parameter:

i.e.

Correction coefficients to the scalar wave equation:



We really want to solve the coupled                system

where each matrix element is perturbed:

If the background spectra are nondegenerate, coupling will induce quadratic corrections.
Allow to depend on . We need
• quadratic corrections in     , besides the linear diagonal terms
• coupling-induced corrections

(Einstein summation)

Coupled perturbations

[McManus+, 1906.05155]



Correction coefficients



Degenerate spectra (e.g. even/odd gravitational perturbations) need special care. Why?

Diagonalize:

Corrections are linear in a

Use degenerate perturbation theory:

The degenerate case



Spectra are nondegenerate
The perturbed potentials read:

Corrected frequencies:

7
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FIG. 3. Fundamental axial ` = 2 QNM frequencies of Schwarzschild BHs in dCS gravity as function of �̄ for the tensor-led (left) and scalar-led
(right) modes. Solid lines refer to Eqs. (33) and (34); bullets were computed through a direct integration method. The inset shows the relative
di�erence between the two calculations for the real (solid black lines) and imaginary (dashed red lines) part of the modes.

One might have hoped that the corrections to the QNM
spectra from the coupling of the two degenerate fields would
allow for an expansion analogous to Eq. (4). Indeed, in the
absence of coupling, the argument of the square root in Eq. (28)
becomes a square, and we do recover a linear sum over single-
field expectation values. However, in general, the presence of
couplings makes this relation nonlinear. Therefore we provide
the values of the quantities �V (k)

�+ �V
(s)

+� for k, s = 0, ...10 and
` = 2 . . . 10 online [60]. In Table III we also list a small
sample of values of �V (k)

�+ �V
(k)

+� for ` = 2. In order to find
linear corrections to the QNM frequencies, these quantities
must be plugged into Eqs. (28) and (29). Note that �V (k)

++ and
�V (k)

�� are just the coe�cients d(k) for uncoupled (axial or polar)
gravitational perturbations.

VI. EXAMPLES

For illustration, we now apply the formalism to compute
QNM spectra for some classes of modified theories of grav-
ity that are known to lead to coupled perturbation equations.
Specifically, we consider two models where the coupling is
between scalar and tensor modes (dCS gravity [44] and Horn-
deski gravity [34]) and a model where the coupling is between
axial and polar gravitational perturbations (the EFT inspired
model [46] not considered in detail in Paper I), so that the
background QNM spectra are degenerate.

A. Dynamical Chern-Simons gravity

In dCS gravity, an e�ective low-energy theory with an ad-
ditional scalar degree of freedom [41], nonspinning BHs are
described by the Schwarzschild metric. The polar sector of

gravitational perturbations is the same as in GR, whereas axial
gravitational perturbations and scalar perturbations lead to a
coupled system of the form (1) [42, 71] with the following
potentials, in the notation of Eqs. (3), (6) and (8):

V11 = V� , (30)

V12 = V21 =
1

r
2
H

12
p
�r2

H

s
⇡
(` + 2)!
(` � 2)!

⇣
rH

r

⌘5
, (31)

V22 = Vs=0 +
1

r
2
H

144⇡`(` + 1)
�r4

H

⇣
rH

r

⌘8
. (32)

The parameter � appearing in the dCS action has dimensions
[L]

�4 and it sets the strength of the coupling, playing a role
similar to the Brans-Dicke parameter!BD. It is useful to intro-
duce a small dimensionless coupling parameter �̄ ⌘ ��1/2

r
�2
H

such that the equations decouple in the GR limit �̄ ! 0.
We first study how the parameter �̄ modifies the tensor-led

mode. Using Eq. (4) and reading o� the relevant coe�cients
from the potentials (30)–(32) we find

! = !0 + e
1221
(55)

 
12�̄

s
⇡
(` + 2)!
(` � 2)!

!2

. (33)

Proceeding similarly for the scalar-led mode, we find

! = !0 + 2d(8)144⇡`(` + 1)�̄2 + e(88)
⇥
144⇡`(` + 1)�̄2⇤2

+ e
1221
(55)

 
12�̄

s
⇡
(` + 2)!
(` � 2)!

!2

. (34)

These expressions illustrate the importance of specifying the
form of the coupling: since the o�-diagonal terms V12 and V21

Example 1: scalar/odd gravitational in dynamical Chern-Simons

[Cardoso-Gualtieri, 0907.5008; Molina+, 1004.4007]

Tensor-led Scalar-led



Example 2: scalar-led perturbations in Horndeski

[Tattersall+, 1711.01992]

The scalar-led perturbation is related to background
coupling functions in the Horndeski Lagrangian:

Corrected frequencies read (can set ):



The quartic-in-curvature EFT leads to a degenerate
perturbed eigenvalue problem:

where off-diagonal perturbations are given in
[Cardoso+, 1808.08962]

Direct integration vs. degenerate parametrization: 
good agreement, but quadratic corrections
could be useful
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FIG. 5. Perturbations of the fundamental QNM frequencies with ` =
2 for axial and polar gravitational perturbations, coupled according
to the EFT model of [46]. The bullet points correspond to frequency
values obtained through a direct integration method. The insets show
a zoom for small ✏ where the behaviour of ! deviate from the linear
trend, and therefore from the linear approximation given by Eq. (28).

Fitting the two branches of QNM frequencies to a seventh-
order polynomial in ✏ gives a linear coe�cient (�0.1479 �

0.2729i)rH for the solid black branch, and (0.1480 +
0.2719i)rH for the dashed red branch. The linear corrections
are nonzero, as they should, because the uncoupled axial and
polar spectra are degenerate.

VII. CONCLUSIONS AND A COMPUTATIONAL RECIPE

We have extended the formalism of Paper I to compute QNM
frequencies of coupled fields as long as the perturbations they
induce are small deviations from the perturbation equations
for the Schwarzschild geometry in GR. Our main result is a
convenient, ready-to-use recipe to compute QNM frequencies
at quadratic order in the perturbations. We crucially allow
for the possibility of coupling between the master equations.
First-order (friction-like) terms in the field derivatives can be
accommodated through field redefinitions (cf. Appendix A).

We have found the expansion of the QNM frequencies for
uncoupled wave equations to quadratic order. Perhaps our
most interesting findings concern the QNM spectra of coupled
fields. When the coupling occurs between fields with nonde-
generate spectra at zero order in the perturbations, linear-order
corrections to the QNM frequencies vanish. However, when
the coupling occurs between fields with degenerate spectra, the

QNM frequency corrections are linear in the perturbations.
Our results significantly simplify the task of computing

QNM frequencies in any modified theory of gravity, or any
theory allowing for additional fields. The general recipe for
this calculation can be summarized as follows:

1) Derive the master equations for the perturbation vari-
ables in the given theory;

2) Eliminate first-order (friction-like) terms in the field
derivatives through field redefinitions, as described in
Appendix A;

3) Identify the relevant coe�cients ↵(k)
i j

in the perturbed
potentials �Vi j [Eq. (3)] appearing in the general coupled
system of Eq. (1); if these coe�cients are frequency-
dependent, compute their frequency derivative ↵0(s)pq .

4a) If any two unperturbed spectra are nondegenerate, com-
pute corrections to the QNM frequencies by simple mul-
tiplications and additions using Eq. (4) and the tabulated
values of d

i j

(k)
and e

i jpq

(ks)
, which are available online [60].

4b) If any two unperturbed spectra are degenerate, com-
pute corrections to the QNM frequencies using Eq. (28)
and the tabulated values of �V (k)

±± and �V (k)

±⌥ defined in
Eqs. (D7) and (D8), which are also available online [60].

In Sec. VI we illustrate this procedure for three classes of
modified theories of gravity leading to coupled perturbation
equations: two models coupling the scalar and tensor modes
(dCS gravity [44] and Horndeski gravity [34]) and an EFT
model coupling the axial and polar gravitational perturba-
tions [46], where the background QNM spectra are degenerate.

While our expansion is theory-agnostic, we make assump-
tions about the e�ect of the modified gravity theory: the back-
ground should be perturbatively close to the Schwarzschild
metric, and the corrections to the “ordinary” potentials in the
GR master equations should be amenable to a power-series
expansion in inverse powers of the radial variable.

This results by construction in small corrections to the GR
QNM spectra (4). In general, as discussed in Paper I, new
nonperturbative frequencies (e.g., quasibound states emerging
from zero frequency for massive scalars) may appear in the
spectrum, and these are not captured by our formalism.

The assumption that the background is only perturbatively
di�erent from the Schwarzschild solution is slightly less re-
strictive than one might think. For example, in Paper I we
showed that slowly rotating Kerr BHs can be accommodated
within the formalism. Recent work on higher-derivative cor-
rections to the Kerr geometry [75] and on QNM frequencies
of rotating solutions for small coupling [53, 54] may allow
us to make progress on the calculation of QNMs in modified
gravity for rotating BH remnants, such as those observed by
the LIGO/Virgo collaboration [76] (see [77, 78] for a related
attempt at parametrizing deviations from the Kerr QNM spec-
trum).
Acknowledgments. We thank Macarena Lagos, Oliver Tat-
tersall and Aaron Zimmerman for useful discussions. E.B.



Black hole scalarization: a summary
• EsGB: subclass of Horndeski theory that evades no-hair theorems

• Scalarized solution exist, are radially stable (as long as backreaction is included), 
can differ sensibly from GR

• Stable scalarized solutions are well motivated in EFT

• Scalarized solution become close to GR for spins of interest to LIGO remnant,
at least for exponential couplings [Cunha+ 1904.09997]

• BHBs produce dipolar radiation [Yagi+ 1510.02152; Julié+, in preparation]

• Binaries have been simulated in the weak-coupling limit [Witek+ 1810.05177]

• Open issues with well posedness in the strong-coupling limit 
[Papallo-Reall, Ripley-Pretorius, Bernard+…]



Parametrized ringdown: a summary
Modifications to the gravity sector and/or beyond Standard Model physics:
• small modifications to the potentials
• coupling between the (matrix-valued) wave equations

We parametrized modifications by power laws, then computed perturbed QNMs for:
• linear corrections to diagonal terms [Cardoso+, 1901.01265]
• quadratic corrections + coupling [McManus+, 1906.05155]

The formalism is very general! 
Examples:
• EFT, Reissner-Nordström, Klein-Gordon in Kerr for slow rotation
• scalar/odd gravitational dCS, scalar-led Horndeski, odd/even gravitational EFT

Needed generalizations:
• higher-order corrections (in particular, in degenerate coupled case)
• rotation – LIGO/Virgo remnants have spins 0.7 or so!


