
The seismology of Love
the impact of tides on neutron star binary signals

Nils Andersson

GW170817



Neutron stars are:
i) “hands-off” laboratories, that 
ii) involve a lot of physics…
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Figure 7. Left panel: The research for the physics of strong interactions spans a wide parameters space, r

experiments at terrestrial accelerators, such as at LHC and RHIC, to observations of NS. In particular the low temperature vs
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[Watts et al]



The macroscopic diagnostic 
of microscopic many-body 
interactions is a pressure-
density-temperature relation: 
the equation of state.

First principle calculations for 
many-body QCD systems are 
problematic at high densities 
(sign problem).

This pressure variation accounts for the nearly
50% variation in predictions of neutron star
radii (27).

A potential constraint on the EOS derives
from the rotation of neutron stars. An abso-
lute upper limit to the neutron star spin fre-
quency is the mass-shedding limit, at which
the velocity of the stellar surface equals that
of an orbiting particle suspended just above
the surface. For a rigid Newtonian sphere,
this frequency is the Keplerian rate

vK ! (2")# 1!GM/R3 !

1833$M/MJ)1/2(10 km/R)3/2 Hz (3)

However, both deformation and GR effects
are important. A similar expression, but
with a coefficient of 1224 Hz and in which
M and R refer to the
mass and radius of
the maximum-mass,
nonrotating configu-
ration, describes the
maximum rotation
rate possible for an
EOS (26, 28, 29).
We have found that
Eq. 3, but with a co-
efficient of 1045
Hz, approximately
describes the maxi-
mum rotation rate
for a star of mass M
(not close to the
maximum mass) and
nonrotating radius R
independently of the
EOS. The highest
observed spin rate,
641 Hz from pul-
sar PSR B1937% 21
(30), implies a radi-
us limit of 15.5 km
for 1.4 MJ.

Internal Structure
and Composition
A neutron star has
five major regions:
the inner and outer
cores, the crust, the envelope, and the atmo-
sphere (Fig. 3). The atmosphere and envelope
contain a negligible amount of mass, but the
atmosphere plays an important role in shap-
ing the emergent photon spectrum, and the
envelope crucially influences the transport and
release of thermal energy from the star’s sur-
face. The crust, extending about 1 to 2 km
below the surface, primarily contains nuclei.
The dominant nuclei in the crust vary with
density, and range from 56Fe for matter with
densities less than about 106 g cm# 3 to nuclei
with A & 200 but x & (0.1 to 0.2) near the
core-crust interface at n ' n0/3. Such extremely

neutron-rich nuclei are not observed in the lab-
oratory, but rare-isotope accelerators (31) hope
to create some of them.

Within the crust, at densities above the
neutron drip density 4 ( 1011 g cm# 3 where
the neutron chemical potential (the energy
required to remove a neutron from the filled
sea of degenerate fermions) is zero, neutrons
leak out of nuclei. At the highest densities in
the crust, more of the matter resides in the
neutron fluid than in nuclei. At the core-crust
interface, nuclei are so closely packed that
they are almost touching. At somewhat lower
densities, the nuclear lattice can turn inside-
out and form a lattice of voids, which is
eventually squeezed out at densities near n0

(32). If so, beginning at about 0.1 n0, there
could be a continuous change of the dimen-
sionality of matter from three-dimensional

(3D) nuclei (meatballs), to 2D cylindrical
nuclei (spaghetti), to 1D slabs of nuclei inter-
laid with planar voids (lasagna), to 2D cylin-
drical voids (ziti), to 3D voids (ravioli, or
Swiss cheese in Fig. 3) before an eventual
transition to uniform nucleonic matter
(sauce). This series of transitions is known as
the nuclear pasta.

For temperatures less than & 0.1 MeV, the
neutron fluid in the crust probably forms a
1S0 superfluid (1, 2). Such a superfluid would
alter the specific heat and the neutrino emis-
sivities of the crust, thereby affecting how
neutron stars cool. The superfluid would also

form a reservoir of angular momentum that,
being loosely coupled to the crust, could
cause pulsar glitch phenomena (33).

The core constitutes up to 99% of the mass
of the star (Fig. 3). The outer core consists of a
soup of nucleons, electrons, and muons. The
neutrons could form a 3P2 superfluid and the
protons a 1S0 superconductor within the outer
core. In the inner core, exotic particles such as
strangeness-bearing hyperons and/or Bose con-
densates (pions or kaons) may become abun-
dant. It is possible that a transition to a mixed
phase of hadronic and deconfined quark matter
develops (34), even if strange quark matter is
not the ultimate ground state of matter. Delin-
eating the phase structure of dense cold quark
matter (35) has yielded novel states of matter,
including color-superconducting phases with
(36) and without condensed mesons (35).

Neutron Star
Cooling
The interior of a proto–
neutron star loses ener-
gy at a rapid rate
by neutrino emission.
Within 10 to 100 years,
the thermal evolution
time of the crust, heat
transported by electron
conduction into the in-
terior, where it is radi-
ated away by neutrinos,
creates an isothermal
structure [stage (V) in
Fig. 1]. The star contin-
uously emits photons,
dominantly in x-rays,
with an effective tem-
perature Teff that tracks
the interior temperature
but that is smaller by a
factor of & 100. The
energy loss from pho-
tons is swamped by
neutrino emission from
the interior until the star
becomes about 3 ( 105

years old (stage VI).
The overall time

that a neutron star will
remain visible to terrestrial observers is not yet
known, but there are two possibilities: the stan-
dard and enhanced cooling scenarios. The dom-
inant neutrino cooling reactions are of a general
type, known as Urca processes (37), in which
thermally excited particles alternately undergo
beta and inverse-beta decays. Each reaction
produces a neutrino or antineutrino, and
thermal energy is thus continuously lost.

The most efficient Urca process is the
direct Urca process involving nucleons:

n 3 p % e ! " v̄e, p 3 n % e% % ve

(4)

Fig. 2. Mass-radius diagram for neutron stars. Black (green) curves are for normal matter (SQM)
equations of state [for definitions of the labels, see (27)]. Regions excluded by general relativity
(GR), causality, and rotation constraints are indicated. Contours of radiation radii R) are given by
the orange curves. The dashed line labeled *I/I! 0.014 is a radius limit estimated from Vela pulsar
glitches (27 ).
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[Lattimer & Prakash]
Basically, three approaches:

- non-relativistic quantum calculations (e.g. APR)

- “phenomenology” (e.g. Skyrme interaction matched to measured 
nuclear masses)

- relativistic mean-field theory (typically used for hyperons/quarks)

Need experiments and observations to test theory and drive progress. 



[Adapted from Antoniadis et al]

Masses deduced from binary dynamics tend to lie in a relatively narrow range, 
about 1.1-1.6M⊙. These systems do not constrain nuclear physics (much). 

The current record holder is J0348-0432 with (a WD companion and) a mass just 
over 2M⊙. (Note also the recent evidence for J0740+6620 being 2.17M⊙.)



State-of-the-art chiral effective field theory calculations (Schwenk, Tews and 
others) provide “reliable” low-density constraints, which can be extrapolated 
to higher densities (=more massive stars).
Suggests a 1.4M⊙neutron star should have radius in the range 10-14 km.



The radius is “difficult” to infer from radio data (although… the moment of 
inertia for the Double Pulsar), but may use accreting systems emitting in x-rays. 
Strategy: Construct “empirical” equation of state (from a Bayesian analysis) 
based on combining data for a set of systems (work by Steiner et al).
Again, constrains the radius to (conservatively) the range 10-14 km.



NICER has been taking data since 13 June 2017. 
The main aim is to measure pulse profiles associated with non-uniform 
thermal surface emission of rotation-powered pulsars.
Comparison to theory models leads to estimate of the star’s mass and radius. 

Preliminary results for PSR J0030+0451 favours two emitting polar caps 
(=tricky systematics) and a radius in the range 12-15 km. 
Expect stronger constraints ”soon” (e.g. systems with known mass).
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Longer term, we need a high-resolution x-
ray timing mission (with a large collection 
area).
The Chinese-European eXTP and the US 
led STROBE-X missions are designed to 
explore the state of matter under extreme 
conditions.
Significant upgrades from previous 
instruments (e.g. RXTE) and should 
(finally!) provide mass-radius constraints at 
the few % level.  



Gravitational-wave astronomy provides different opportunities. 
Deviations from point-mass dynamics become important during the late stages 
of binary inspiral .
The (main) effect is encoded in the tidal deformability (via the Love numbers).  

[Adapted from Read]



NuSYM14, 7-9 July 2014, University of LiverpoolWalter Del Pozzo

Measurability of tidal deformability 

• Preliminary studies (based on 
Fisher information matrix) indicate 
that adLIGO/Virgo might be able 
to measure the softest EOS (e.g. 
Hinderer et al, arxiv:0911.3535) 

• Fisher matrix studies find the 
minimum uncertainty attainable in 
measuring a parameter 

• Cramer-Rao lower bound

Hinderer et al, arxiv:0911.3535
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Basically, the tidal interaction affects the number of gravitational-wave 
cycles

3

Given the Newtonian orbital energy

Eorb = EN = �GM1M2

2a
= �M

2
(GM⌦)2/3 (6)

it follows that the orbit evolves in such a way that

⌦̇

⌦
= �3

2

ȧ

a
=

3

2

Ėorb

Eorb
⇡ 3

2

Ėgw

EN
=

96

5c5
(GM⌦)5/3⌦ ⌘ 1

tD
(7)

defines the inspiral timescale tD. That is, we have

tD ⇡ 140

✓
M

1.2 M�

◆�5/3✓ f

30 Hz

◆�8/3

s (8)

The two neutron stars will merge about 2 minutes after the system enters our assumed frequency range. The result
also manifests the well-known fact that the leading order gravitational-wave signal only encodes the chirp mass.
However, one would expect to be able to extract the individual masses (and possibly the spins) from higher order
post-Newtonian corrections [25]. This is important as the stellar parameters enter the discussion of the tidal response.
These e↵ects are, of course, subtle and a key question concerns to what extent unmodelled features may limit the
precision of the parameter extraction. It is important to keep in mind that, while one may expect to obtain fairly
good estimates for the individual masses, it will be more di�cult to infer the individual spin rates (the spin-spin and
spin-orbit coupling e↵ects are likely to be weak).

As long as it is safe to ignore other aspects, the binary signal would be associated with a total number of cycles;

Ngw =

Z tb

ta

fdt =

Z fb

fa

f

ḟ
df =

Z fb

fa

tDdf =
c5

32⇡ (GM⇡fa)5/3

"
1 �

✓
fa

fb

◆5/3
#

(9)

For our example frequency range the total number of cycles would be Ngw ⇡ 2500.
Let us now consider the possibility that the tidal dynamics leads to some additional change of orbital energy, say

at a rate Ėtide. This will lead to a change in the number of wave cycles in the observed frequency range. Specifically,
with

Ėorb = Ėgw + Ėtide (10)

we have

N =
2

3

Z fb

fa

Eorb

Ėorb

df ⇡
Z fb

fa

tD

 
1 � Ėtide

Ėgw

!
df = Ngw + �N (11)

where the last step should be a good approximation if Ėtide ⌧ Ėgw. We see that the additional torque leads to a
contribution;

�N = �
Z fb

fa

tD

 
Ėtide

Ėgw

!
df (12)

This allows us to estimate the relevance of any mechanism that is active through the observed frequency range. Note
that, even though one might intuitively expect an increase in the rate of inspiral, e.g. a decrease in the number of
cycles, there may be situations where the opposite happens and an additional mechanism pumps energy into the orbit.
In this case the number of cycles would obviously increase. We discuss a particular example of this later.

Moreover, we have not accounted for any changes to the orbital energy associated with the tidal e↵ect. If we do
this, say, by letting

Eorb = EN + Er (13)

then we arrive at

N =
2

3

Z fb

fa

Eorb

Ėorb

df ⇡
Z fb

fa

tD

 
1 +

Er

EN
� Ėtide

Ėgw

!
df (14)

Template mismatch by (say) 
half a cycle leads to a 
significant loss of signal to 
noise.

Difficult to alter GW phasing 
(e.g. 1046 erg at 100 Hz leads 
to shift of  10-3 radians), but 
the star’s deformability, 
encoded in the so-called Love 
number, may lead to a 
distinguishable secular effect.

[Hinderer et al]
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l + 2rU 0
l � l(l + 1)Ul = 4⇡Gr2⇢l , (21.11)

where we have used the fact that �l solves the corresponding homogeneous equation.
It is worth noting that the problem seems to be overdetermined. We appear to have

too many equations for the number of variables. However, taking a radial derivative
of (21.10), we get

p0
l = �⇢0Ul � ⇢U 0

l =
⇢0

⇢
pl � ⇢U 0

l . (21.12)

Using this in (21.9) we have

⇢0

⇢
pl � p0

⇢
⇢l = 0 �! ⇢0pl = p0⇢l , (21.13)

which is consistent with (21.5). This reduces the number of equations, so the problem
is well posed, after all.

Now we have

r2U
0

l + 2rU 0
l +


4⇡G⇢r2

c2
s

� l(l + 1)

�
Ul = 0 . (21.14)

This equation is solved by integrating from the centre to the surface of the star. At
the surface we match to the exterior potential. In general, this provides the multipole
moments of the body, Il, according to (as we have m = 0)

�l = � 4⇡G

2l + 1

Il

rl+1
. (21.15)

We also know that

�l =
4⇡

2l + 1
dlr

l , (21.16)

where d2 can be read o↵ from (21.2).
At the surface of the star we match Ul and its derivative to the exterior solution.

This matching allows us to extract the Love number, kl, which is defined by the relation

GIl = �2klR
2l+1dl . (21.17)

Taking a simple n = 1 polytrope as an example, we find that k2 ⇡ 0.26 (?). The
Love number measures how easy it is to deform the bulk of the matter in the star.
If most of the star’s mass is concentrated at the centre then the tidal deformation
will be smaller. For polytropes, matter with a larger polytropic index n is softer and
more compressible, so these polytropes are more centrally condensed. As a result,
k2 decreases as n increases. For example, for n = 2 we get k2 ⇡ 0.07. For realistic
equations of state and in general relativity (see later), the value of k2 tends to lie in
the range 0.05 � 0.15. The Love number also decreases with increasing compactness.
This explains the features in Figure 21.4.

In order to illustrate the impact of the tidal deformability on the gravitational-wave
signal, let us focus on the phasing. The idea is simple; once an additional mechanism
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[Abbott et al]

Demonstrated by the GW170817 signal.



“Best” constraints on the tidal deformability (assuming the same equation 
of state, slow spins and maximum mass indicated by pulsar data) suggests 
a radius in the range 

R=10.5-13.3 km 
(similar to the x-ray results…).



Question: 
At what level does the “gory” neutron-star physics enter?
Answer:
Need to go beyond the “static” tide.

— individual oscillation modes may become resonant as the binary spirals 
through the sensitivity band of advanced interferometers (g-modes 
depend on interior composition),

— the f-mode resonance is the strongest, but probably does not become 
resonant before merger (dynamical tide),

— nonlinear coupling between p- and g-modes may lead to an instability,
— the elastic crust will leave a faint imprint on the tidal signal (<1% effect?),
— the superfluid interior affects the mode spectrum and may play a role,
— oscillations of the post-merger remnant rely on the hot equation of state.
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Integrating by parts, we get

4⇡G
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0
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However, we know that the solution should satisfy (since the density now vanishes as

r ! R)
d

dr
��+

l + 1

r
�� = 0 at r = R (78)

so (77) leads to
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rl+2�⇢dr = �(2l + 1)Rl+1��(R) (79)

and we have

Qn =
2l + 1

4⇡G
Rl+1��n(R) = In (80)

We recognize In as the contribution each mode makes to the mass multipole moment.

B. The e↵ective tidal deformability

We now want to connect the mode expansion to the tidal deformability and the e↵ective

Love number. The purpose is to discuss what happens far away (above and below) from a

given resonance. In order to do this, we need a representation of the perturbed gravitational

potential associated with the mode expansion.

In order to obtain the desired result, we need to connect the mode expansion for the

displacement to the gravitational potential. It is then useful to consider the components of

the displacement vector

⇠i =
W (r)

r
r

ir + V (r)riYlm (81)

and similarly for the contribution from each mode
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from which it follows that the normalisation constant is given by
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n

⇤
dr (83)
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Dynamical tides are usually discussed in terms of the overlap integral 
between each mode (amplitude an) and the tidal potential.

The g-modes enter the problem for “frozen” composition (nuclear 
reactions slower than inspiral).

[Andersson & Pnigouras]

We use the orthogonality to rewrite (47) as an equation for the mode amplitudes:
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1

A2
n

h⇠n, ⇢r�i (69)

Finally, making use of the perturbed continuity equation

�⇢n = �ri(⇢⇠
i
n) (70)

and integrating by parts, we have (assuming that the density vanishes at the surface of the

star)
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i
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Z
��⇢⇤nd

3x (71)

In general, e.g. when the star is spinning, it may be practical to express the stellar

perturbations with respect to a di↵erent set of spherical harmonics [20], but we will not

worry about this here.

Making use of the given expression for the tidal potential (11) we have an equation for

the driven modes (for each l, as the di↵erent values of m are still degenerate)

� !2an + !2
nan = vlQn (72)

where we have introduced the “overlap integral”

Qn = �

Z
�⇢⇤nr

l+2dr (73)
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Example: For typical equation of state, we have

May use data to “constrain” the overlap integral. Absence of resonant 
feature in a given frequency interval provides an upper limit.   
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FIG. 2: Constraints on Q↵ if a limit |�N|  0.5 were to be inferred from inspiral data. The thin black lines represent equal
mass 1.4M� binaries with neutron star radius 10 km (upper curve) and 14 km (lower curve). The grey region represents the
expected radius range from x-ray observations [30]. As an indication, the thick horisontal (red) line represents the largest values
of Qn for the g-modes of a non-rotating star from [16]. This should be taken as indicative of what is expected from theory
(with the caveats discussed in the main text). Finally, the shaded vertical region relates to an example where the observational
constraint is obtained for a distinct frequency band (here taken to be 100-150 Hz). This figure illustrates that the resonant
modes of a non-rotating star may be di�cult to detect, but there could be a relevant e↵ect below 50 Hz or so, if the neutron
star radius were to be surprisingly large (the dashed curve shows the result for a radius of 17 km). One should also keep in
mind that rotation may lead to slightly larger values of Q↵, in which case the chance of detection would improve.

addition, a measurement of the neutron star radius to within 5% is a key science aim of the NICER mission which is
currently flying on the International Space Station [31].

With a narrower region of uncertainty for the stellar compactness, one may be able to use observed deviations from
a pure radiation reaction inspiral to constrain the value of Q↵ for any resonant mode in a given frequency range.
We illustrate this idea in Figure 2. Imagine that one sets an upper limit on the deviation from a post-Newtonian
radiation reaction inspiral of order �N  0.5 in a given frequency range, say f = 100 � 150 Hz. Then, we know from
(28) (assuming canonical neutron star parameters) that
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This constraint is shown in Figure 2. We see that the chances of observing the imprint of a tidal resonance is better
at frequencies below a few tens of Hz. Moreover, given the dependence on the stellar compactness, the e↵ect would
be more prominent if the neutron star radius is large. In fact, given a reliable theoretical calculation for Q↵ one can
turn this argument into a constraint on the stellar radius.

In order to understand the wider implications of this kind of constraint for neutron star physics, we need to consider
the nature of specific oscillation modes. For non-rotating stars, the most likely set of modes to exhibit tidal resonance
are the gravity g-modes. In a mature (cold) neutron star, these modes are associated with internal composition
stratification [32]. If the motion of a moving fluid element is faster than the nuclear reactions that would equilibrate
the fluid to its new surroundings, then the chemical di↵erences lead to a buoyancy that provides the restoring force
for these modes. In the simplest models, the g-modes are associated with the varying proton fraction. This typically
leads to mode frequencies below a few 100 Hz and a dense spectrum of high overtone modes at lower frequencies (see
[27] for the current state of the art). The lowest order (highest frequency) mode couples the strongest to the tide,
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Alternatively, use the “fact” that the modes are complete to expand the tidal 
response as a mode-sum:

[Andersson & Pnigouras]

We now see that the tidal problem leads to a fluid displacement of form
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Going back to the Euler equation, the ✓-component leads to
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Moreover, at the surface we have �p = 0 so
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Making use of the mode expansion, this becomes
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In the low-frequency limit (with ! much smaller than the lowest frequency mode4), we

have
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where we have used the dimensionless frequency from before.

Now recall that

Qn =
2l + 1

4⇡G
Rl+1��n(R) (91)

and use
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to get
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4 This is a somewhat subtle issue, but the discussion of the g-mode spectrum in [38] ensures that the limiting

procedure makes sense.
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This gives us (first time!) an idea of the role of internal composition variations. 
The effect may be at the (few) % level and could (just about…) be within 
reach of 3G detectors, like the Einstein Telescope or Cosmic Explorer.



Since the f-mode contribution dominates, we have a simple expression for 
the dynamical tide:

This relation would be “exact” for incompressible (Newtonian) stars.
Using “universal relation” between (the relativistic) f-mode and the Love 
number we have a simple 2-parameter expression*:

We now have an explicit analytic formula for the e↵ective Love number in terms of the

result in the static limit, kl, the frequency ! and the (to some extent) free parameter ✏.

Moreover, even though the result was based on a Newtonian analysis, it makes use of fully

relativistic relations for the static Love number and the mode frequency.

In order to make a connection with the gravitational-wave signal, we need to relate ! to

the gravitational-wave frequency. This step is, inevitably, phenomenological (at this point).

Intuitively, it would make sense (based on the usual logic that the gravitational waves are

emitted at twice the orbital frequency) to try the replacement ! ! 2⌦. We can test this

idea against the results for the dynamical tide from [20, 21], which are similar in spirit as

they introduced the notion of an e↵ective tidal deformability. However, the main focus of

[20, 21] was to extend the e↵ective-one-body framework to account for the dynamical tide.

In addition to this, [21] provides an approximate analytical formula based on a two-timescale

analysis. This result has been tested against numerical relativity simulations (most recently

in [22]) and it appears to perform well in these comparisons [23]. Hence, it provides a natural

benchmark against which to test our closed-form expression.

In order to carry out this comparison, we focus on the example used in [21]; an equal

mass neutron star binary with M? = 1.350M� and R =13.5 km, leading to C = 0.148 and

⇤2 = 1111. This comparison, illustrated in figure 1, shows that (7) predicts a faster than

expected rise towards the mode resonance.

It turns out that the replacement ! ! ⌦ fares slightly better, suggesting that we may be

able to make progress by introducing a second free parameter, �, such that we have
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(8)

Tuning the two parameters, � and ✏, we can obtain an accurate representation of the results

from [21] throughout the relevant frequency range (up to close to merger, see below). This

is also illustrated in figure 1. Given the simplicity of (8), this is promising and it would

be interesting to explore to what extent the parameters of the model depend on the stellar

parameters (and the matter equation of state). Progress in this direction could be made by

testing (8) against numerical merger simulations (along the lines discussed below).

However, it turns out that we can reduce the freedom of the model by removing one of the

two parameters. We do this by accounting for the redshift of the mode frequency. In order

to do this, we note that, the results used in (4) incorporate the gravitational redshift (for a

5

II. A SIMPLE PHENOMENOLOGICAL MODEL

We take as our starting point the discussion in [11], where the tidal response of a star is

expressed in terms of the star’s normal modes of oscillation. The original analysis aimed to

provide an idea of the systematic “error” associated with the assumption that a deformed

neutron star is described by a barotropic (essentially chemical equilibrium) matter model

rather than a model in which the matter composition is frozen as the system spirals through

the sensitivity band of a gravitational-wave detector (as the timescale associated with nuclear

reactions is much longer than that of the inspiral). The results demonstrate that, for a

simple polytropic model in Newtonian gravity, the dynamical contribution to the tide is

dominated by the excitation of the fundamental mode (the f-mode) of the star. This result

was established a long time ago [12, 13] in work aimed at quantifying the role of mode

resonances on the gravitational-wave signal, but the discussion in [11] adds a twist to the

story. The results demonstrate that the sum over modes converges to the usual Love number

in the static limit. Again, this result could have been anticipated. As long as the modes

form a complete set, they can be used as a basis to describe any dynamical response of the

star.

Let us now make pragmatic use of the results from [11] and build a simple model for the

e↵ective tidal deformability. The basic idea is to include only the f-mode contribution to

the mode sum and accept the contribution from other modes as a systematic error. Based

on the stratified Newtonian models considered in [11] we expect this systematic error to be

below the 5% level. This level of uncertainty is much smaller than our ignorance of (say)

the neutron star equation of state, so the relation we write down should be precise enough

for a “practical” construction of gravitational-wave templates.

In essence, we start from a parameterised version of the Newtonian result [11]

ke↵
l = �1

2
+

Af

!̃2
f � !̃2

⇥
1� !̃2Bf

⇤ ⇥
1� !̃2

fBf

⇤�1
(2)

where Af depends on the overlap integral between the f-mode and the tidal driving, while

Bf involves the ratio of the horizontal and radial mode eigenfunctions at the star’s surface.

The scaled (see below) f-mode frequency is !̃f while !̃ is the similarly scaled frequency

associated with the Fourier transform (see [11] for discussion) . In order for the relation (2)

3

One of the parameters represent the horizontal/radial ratio of the 
eigenfunction at the surface.
The other parameter can be used to account for redshift (and so on).
The “simplest” option (which turns out to work well…) is to simply “remove” 
the gravitational redshift from the mode frequency.

*In the perfect world one would like to “derive” this within relativistic perturbation theory, but…
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Very simple phenomenology, but agrees well with (only) previous attempt 
to model dynamical tide.
Note: Can remove divergence at resonance by Taylor expansion.
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Newtonian logic by expressing the results in terms of the dimensionless parameter

x = (⌦M)2/3 (18)

This is an obvious choice for the main contribution to the gravitational-wave signal, which

depends on the orbital motion (and involves higher order “corrections” to the quadrupole

formula). It is not so obvious that this parameter “makes sense” during the late stages

of inspiral, for which numerical simulations are viable (recall that it is rare that binary

neutron star simulations are carried out for more than the last 10-20 orbits and it is only

very recently that such simulations have been carried out with sub-radian precision in the

accumulated gravitational-wave phase [22, 26–28]). There is no reason whatsoever that the

matter e↵ects would be naturally expressed in terms of a parameter based on the orbital

dynamics. This point is illustrated by (16) which encodes the matter dynamics (for each

binary companion) in terms of the f-mode oscillation frequency. The dimensionless variable

!̄f = !fM? appears naturally in the model. It is not at all clear that it “makes sense” to

expand the result in powers of x. It is worth keeping this point in mind.

As a measure of the current level of uncertainty, it is useful to compare di↵erent suggested

models for the tidal deformability. This kind of comparison is straightforward, as several

proposed models are given in closed form. However, one has to be careful because the

associated assumptions may impact on the result. Basically, we need to compare apples

with apples. As will soon become clear, this turns out to be less straightforward.

A relevant comparison, with immediate implication for gravitational-wave astronomy,

involves the accumulated phase associated with the tide. Roughly speaking, one would

expect to be able to distinguish between models that di↵er by at least half a cycle (one

radian) in the inspiral signal. E↵ectively, for the quadrupole contribution to an equal mass

binary signal we need to integrate an expression of form [9, 25]

d�T

dx
= �65

25
k2
C5

x3/2f(x) (19)

for the tidal contribution to the phase, �T . The Newtonian prefactor is the same for all

models, but the factor f(x) di↵ers. Since the models we are considering can be described

analytically, it is easy to work out the required integrals. This yields the phase �T as a

function of x (say) which provides some idea of the di↵erence between tidal prescriptions.

Figure 3 provides such a comparison, for the same stellar model as in figure 2.
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Could also lead to an efficient evaluation of the gravitational-wave phasing 
(although… need a closer look at the interface with pN terms).



With increasingly sensitive instruments, observations are beginning to 
constrain neutron star theory…

In order to match the precision of the next generation of instruments we 
need “better models” (e.g. state and composition of matter). 

The dynamical tide provides an instructive example.

Additional effects may not be “leading order” (e.g. internal composition) but 
could nevertheless introduce systematics that need to be accounted for.

Need to understand the “error budget”: observations+physics.

Natural to consider the tidal response from the “seismology” point of view 
(not naturally expressed in terms of the pN expansion parameter).

The next steps are “hard”: 
- develop relativistic Lagrangian perturbation theory for tides to use realistic 

matter models,
- keep track of frozen composition (reactions) in numerical simulations (and 

get a better handle* on the “accuracy”).

*In absence of “convergence”, it is not clear how you “compare” simulations.

take home message


