Dark Matter, Nuclear Physics, Gravitation ... and Murder:

the r-process as a probe of primordial black hole capture-induced neutron star implosion

Simons Program: Current Themes in High Energy Physics and Cosmology – Physics and Astrophysics in the Era of Gravitational Wave Detection

> Niels Bohr Institute Copenhagen, Denmark August 19-23, 2019

LA-UR-19-27596

George M. Fuller

Department of Physics University of California, San Diego

Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS)

Dark Matter – new ideas motivated by many developments

The non-relativistic closure fraction may have many components.

A putative dark sector may have its own rich physics, with little or no connection with standard model physics, other than gravitation. e.g., M. Buckley, A. DiFranzo, PRL **120**, 051102 (2018); S.D. McDermott, H.-B. Yu, K. Zurek, PRD **85**, 02359 (2012)

Gravitational wave and multi-messenger astrophysics may provide a window into the dark sector

because of their extreme density, **Neutron Stars** can serve as "catch basins" for various dark matter candidates, with sometimes dramatic consequences. Some examples . . .

"Dark Matter-Induced Collapse of Neutron Stars: A Possible Link Between Fast Radio Bursts and the Missing Pulsar Problem",

Jim Fuller & C. D. Ott , MNRAS Lett. 450, L71 (2015)

"On the r-process enrichment of dwarf spheroidal galaxies", J. Bramante & T. Linden, Astrophys. J. **826**, 57 (2016)

"Searching for Dark Matter with Neutron Star Mergers and Quiet Kilonovae", J. Bramante, T. Linden, Yu-Dai Tsai, Phys. Rev. D 97, 055016 (2018)

partners in crime . . .

Alex Kusenko (UCLA; IPMU) Volodymyr Takhistov (UCLA) David Radice (Princeton; IAS. --- Penn State)

"Primordial Black Holes and r-Process Nucleosynthesis", GMF, A. Kusenko, V. Takhistov, *Phys. Rev. Lett.*, **119**, 061101 (2017)

"Positrons and 511 keV radiation as tracers of recent binary neutron star mergers", GMF, A. Kusenko, D. Radice, V. Takhistov, *Phys. Rev. Lett.*, **122**, 121101 (2019)

"Transmuted gravity wave signals from primordial black holes", V. Takhistov, *Phys. Lett. B*, **782**, 77 (2018)

Primordial Black Holes -- *a dark matter component?*

Radiation-dominated early universe -

-any horizon volume is poised on the verge of instability and collapse

Zeldovich & Novikov 67; Hawking 71; Carr, Hawking 74

-fluctuations can evolve to trapped surface formation

- -Inflation (Carr; Garci-Bellido; Linde et al.; Kawasaki et al; . . .) may produce non-scale invariant fluctuations with extra power on some scales – can collapse to holes when they re-enter the horizon
- -Vacuum phase transitions
- baryon isocurvature fluctuations (Dolgov; Silk)

-Scalar field fragmentation, e.g., Cotner & A. Kusenko PRL 119, 031103 (2017)

Small primordial black holes captured by neutron stars consume them from the inside.

If this happens in a *millisecond period pulsar* (MSP):cold neutron matter could be (centrifugally) ejected, decompress and make a very neutron-rich *r*-process (similar to the "tidal tails" in BNS merger scenarios); orphaned kilonova; FRB; positrons

MSP with a BH inside

spinning near mass shedding limit:

Bondi accretion onto PBH maintained by *rigid rotation*: viscosity sufficient even without magnetic fields [Kouvaris, Tinyakov]; more so if magnetic field flux tubes are considered

Capture Physics: F. Capela, M. Pshirkov, P. Tinyakov PRD 87, 123524 (2013)

Capture rate per neutron star: $F = (\Omega_{\rm PBH}/\Omega_{\rm DM}) \cdot F_0$, where $F_0 \approx 1.5 \times 10^{-11} \,\mathrm{yr}^{-1}$ for the Milky Way; $F_0 \approx 6.0 \times 10^{-10} \,\mathrm{yr}^{-1}$ for Ultra Faint Dwarfs (UFDs).

Pulsar lifetimes against PBH capture-induced destruction $\langle t_{\rm NS} \rangle = 1/F + t_{\rm loss} + t_{\rm con}$ $t_{\rm loss} \sim 10^4 \,{\rm yr} \left(M_{\rm PBH} / 10^{-11} \,{\rm M_{\odot}} \right)^{-3/2}$ BH settling time $t_{\rm con} \sim 1 \,{\rm day} \left(10^{-11} \,{\rm M_{\odot}} / M_{\rm PBH} \right)$ NS consumption time

very little heating and *scant neutrino emission*will accompany the consumption process
(so long as material is *not* quark gluon plasma
-- quark nova? -- Keranen et al arXiv:0406448)

PBH-NS implosion produced r-process scenario consistent for MW and UFDs

• Abundance calculation:

• Equal abundance (i.e. rate for MW r-process abundance consistent with 1 event in UFD)

$$F_0^{\rm UFD} = \left(\frac{t_g N_p^{\rm GC} \langle M_{\rm ej} \rangle}{t_{\rm UFD} N_p^{\rm UFD} M_{\rm tot}^{r,\rm MW}}\right) F_0^{\rm MW}$$

$$t_g = 10^{10} \text{yrs}$$
$$t_{\text{UFD}} = 5 \times 10^8 \text{yrs}$$
$$N_p^{\text{GC}} = 1.5 \times 10^7$$
$$N_p^{\text{UFD}} = 250$$
$$\langle M_{\text{ej}} \rangle = 0.1 M_{\odot}$$
$$M_{\text{tot}}^{\text{r,MW}} = 10^4 M_{\odot}$$

NS destruction will be most significant where the dark matter and MSP densities both high Destruction rate $\propto \rho_{\rm DM} \cdot \rho_{\rm NS}$

In the age of the Galaxy expect $\mathcal{O}(1-10)\%$ of NS destroyed

This is consistent with the observed under-abundance of pulsars in the Galactic Center (GC) [Dexter, O'Leary, 14]

If this happens in a binary system, Will GW detectors find these holes in a binary in-spiral signal?

Total ejected mass M_{ej} from an MSP with initial rotation period P shown for different density runs, polytropes with indices 3 and 1.5 as labeled. Not clear how much mass is actually ejected ... need full GR calculation

> pulsar population-period relation shown as dashed blue line J. M. Cordes & D. F. Chernoff Astrophys. J. **482**, 971 (1997)

Full GR simulation. preliminary result from David Radice (Princeton)

this simulation employed an initial black hole mass $= 0.03\,\mathrm{M}_\odot$

the classic r-Process Burbidge, Burbidge, Fowler, Hoyle 1957 (rapid neutron capture process of nucleosynthesis)

Ζ

Ν

r-process

e. g. Uranium-238 Z=92, N=146 \rightarrow need lots of neutrons

$$A(Z,N) + n \leftrightarrow A + 1(Z,N+1) + \gamma$$

 $A(Z,N) \to A(Z+1,N-1) + e^- + \bar{\nu}_e$

r- and s-process synthesis paths

need lots of neutrons !!

require neutron-to-"seed nucleus" ratio > 100

But neutrons are unstable. We can get them three ways:

"manufacture" them directly via $\bar{\nu}_e + p \rightarrow n + e^+$ and/or $e^- + p \rightarrow n + \nu_e$

"mine" them from nuclei where they are stabilized (by the strong interaction)

"mine" them from neutron stars where they are stabilized by high electron Fermi energy in a deep gravitational potential well

PBH-NS implosion

This model could account for *all* the $10^4 \,\mathrm{M_{\odot}}$ of r-Process in the Milky Way if > 2% of the Dark Matter is composed of PBHs in the indicated mass range

GMF, A. Kusenko, V. Takhistov, PRL, 119, 061101 (2017)

Ultra Faint Dwarf (UFD) galaxies have lots of dark matter, and they may have a fair number of NS (baryonic feedback?)

However, in a spectroscopic survey of the stars in 11 UFDs only one showed an appreciable r-Process excess, **Reticulum II** "R-process Enrichment from a Single Event in an Ancient Dwarf Galaxy" A.P. Ji, A. Frebel, A. Chiti, J. D. Simon, Nature **531**, 610 (2016)

The r-process is a *rare event*, consistent with BNS mergers

... or with PBH-NS implosion

in stellar core collapse and neutron star mergers most of the gravitational binding energy released (~ 10% rest mass) goes into *neutrinos of all kinds*

Neutrino Poison

$$\nu_e + n \to p + e^-$$

hot nuclear matter radiates nearly $v_e + p \Rightarrow n + e^+$ equal fluxes of ν_e 's and $\bar{\nu}_e$'s $\nu_e + n \Rightarrow p + e^-$ Can drive n/p to ~1 BAD!

Neutrino flavor transformation, $\nu_{\mu\tau} \leftrightarrows \nu_e$, can make this worse because mu and tau neutrinos may be more energetic But result is nuclear EOS/neutrino spectrum dependent! (J. Tian, A. Patwardhan, GMF 2017)

• **PROTON**

• NEUTRON

Compact Object Neutrino & Nuclear Physics

to understand these environments: we need the nuclear-neutrino physics

standard core core collapse SN

compact object merger

Single Core Collapse to *Hot* Neutron Star

Modest Initial Neutron Excess – evolving toward . . . ??

Merging Cold Neutron Stars

Very Neutron-rich initially – heating and evolving toward lower n-richness in ejecta ? ?

- recall, in F_0 capture rate the velocity dispersion dependence can go as v^3

r-Process arithmetic

r-Process mass fraction = $10^{-7} \Rightarrow 10^4 \,\mathrm{M_{\odot}}$ of *r*-process in the Galaxy age of Galaxy is $\sim 10^{10}$ years

core collapse supernova rate: $10^{-2} \,\mathrm{yr}^{-1} \,\mathrm{MWEG}^{-1} \Rightarrow 10^8 \,\mathrm{SN}$ $\Rightarrow \mathrm{need} \, 10^{-4} \,\mathrm{M}_{\odot} \mathrm{~of} \, r\mathrm{-process ~per} \,\mathrm{SN}$

NS-NS merger rate rate: $10^{-3} - 10^{-6} \text{ yr}^{-1} \text{ MWEG}^{-1} \Rightarrow 10^7 - 10^4 \text{ mergers}$ $\Rightarrow \text{ need } 10^{-3} \text{ M}_{\odot} \text{ to } 1 \text{ M}_{\odot} (!!) \text{ of } r\text{-}\text{process per merger}$ For NS-NS merger rate rate: $10^{-5} \text{ yr}^{-1} \text{ MWEG}^{-1} \Rightarrow 10^5 \text{ mergers}$ $\Rightarrow \text{ need } 0.1 \text{ M}_{\odot} (!!) \text{ of } r\text{-}\text{process per merger}$

The Problem: Deep gravitational potential wells (nucleon gravitational binding energies $\sim 10\%$ of rest mass $\sim 100 \,\mathrm{MeV}$); intense neutrino fluxes which can re-set n/p ratio:

$$\nu_e + n \rightleftharpoons p + e^-$$
$$\bar{\nu}_e + p \rightleftharpoons n + e^+$$

To preserve neutron excess must move baryons out of the potential well faster than the weak interaction can get a purchase on them!

Binary Neutron Star Mergers

B. Cote et al. "The Origin of the r-Process Elements in the Milky Way" arXiv:1710.05875

GW170817 kilonova –

if this event is representative of all binary neutron star (BNS) mergers then the bulk of the r-process material in the Galaxy could have been made in these events.

Certainly Lanthanides (A = 130 peak) were produced.

Not as clear for the actinides (e.g., uranium) average $Y_e \sim 0.27$, not large, not small either : some neutrino exposure?

-Tidal tails great (cold ultra neutron-rich, no appreciable neutrino exposure)

-Disk? likely neutrino exposure

-"*Wind*" could have considerable neutrino exposure *unless very rapid outflow*

did GW170817 produce the actinides?

Was at least some of the ejecta neutron-rich enough to give fission cycling? If so, late energy injection from fission could be important in the spectral signature of the kilonova. J. Barnes et al. Astrophys. J. **829** 110 (2016)

signature of actinide production?

A "bump" in the light curve at ~ 100 days from energy injection via spontaneous fission of 254 Cf Y. Zhu et al. arXiv:1806.0972

But see N. Vassh et al. arXiv:1810.08133, need high fission barriers (uncertain nuclear physics) to get n-capture flow out to ^{254}Cf

positron production in BNS mergers and possibly this PBH-NS implosion scenario

Origin of positrons unknown. Need to produce 10⁵⁰ positrons per year. $\Gamma(e^+e^- \rightarrow \gamma \gamma) \sim 10^{50} \text{yr}^{-1}$ Positrons must be produced with energies below 3 MeV to annihilate at rest. [Beacom,Yuksel '08]

"Positrons and 511 keV radiation as tracers of recent binary neutron star mergers", GMF, A. Kusenko, D. Radice, V. Takhistov, arXiv:1811.00133 [astro-ph.HE]

Cold, n-rich material ejected in BNS mergers & PBH-NS events is heated by β -decay and fission to T~0.1 MeV \rightarrow generates > 10⁵⁰ e⁺/yr for the rates needed to explain r-process nucleosynthesis.

"smoking gun" coincidence? In a survey using INTEGRAL, T. Siegert et al. Astron. Astrophys. 595, A25 (2016), the *only* dwarf galaxy to show a significant 511 keV flux was **Reticulum II** Concordance of r-process and gamma-ray observations points to a BNS merger origin of both.

Toward using GW and multi-messenger astrophysics to probe the Dark Sector

The PBH-NS implosion scenario could consistently account for r-Process nucleosynthesis in the MW and in UFDs (Reticulum II) if PBHs in the mass range $10^{-14} M_{\odot} < M_{\rm PBH} < 10^{-8} M_{\odot}$ comprise more than a few percent of the Dark Matter

signatures of this process:

• kilonova-like display **without** the classic GW in-spiral signal or a weak/unusual GW signal

- An unexpected population of low mass BHs
- Galactic and UFD positrons, FRBs, etc.

Remarkable concordance between **r-Process content** and **511 keV flux** in UFDs (Reticulum II) points to origin of r-Process and positrons in BNS mergers and/or NS implosion events