First Direct Image of a Black Hole

Paul Ho, EAO/ASIAA

BLACK HOLE SHADOW: APRIL 10, 2019

Why is This Result Important? because it's not theory !

- Black Hole: "INVISIBLE" or "UNSEEABLE"
- Black Hole: where "GRAVITY" is strongest
- Black Hole: no escape not even light
- Black Hole: no information from inside
- Small Black Hole: "end state" of big stars (>5-10 times sun)
 leftover after "supernova" explosion
- Big Black Hole: Billions times the sun's mass in the nucleus of galaxies
- Black Hole Properties: high temperature? high density? depends on mass of Black Hole
- Black Hole Physics: tests General Relativity
- This Experiment is an "Optics" + "Information" Problem

Some Very Simple Physics

- Light: Energy ~ v ~ 1/λ Energy ~ Temperature
- Speed of Light constant: $c = 3 \times 10^{10} cm/s$
- Apparent Size ~ 1 / Distance
- Doppler Motion: Like Train Whistle: $\Delta v = (\Delta \text{Velocity / c}) v_0$
- Total Energy Conserved
- Angular Momentum (MVR) Conserved : $V \sim 1 / R$
- Special Relativity; General Relativity

(wikipedia: F.K. Hwang)

Signature of Doppler Motions

Gravity affects Geometry of Space

- Mass will distort space-time until even light cannot escape
- Einstein predicted the existence of black holes - though even he was not comfortable with the conclusions from his equations

Gravity/Geometry instead of Material/Dielectric to bend Light

Shadow comes from General Relativity Shadow Diameter ~ 5.2 R_{sch}

No Escape From Black Hole ?

 $V_{escape} < c$

 $E = \gamma mc^2$

- $V_{escape} = (2GM/r)^{1/2}$
- $r = 2GM / (V_{escape})^2$
- Schwarzchild Radius: $R_{sch} = 2GM / c^2$

 $ds^{2} = (1 - 2GM/c^{2}r) c^{2}dt^{2} - dr^{2}/(1 - 2GM/c^{2}r) - r^{2}d\theta^{2} - r^{2}\sin^{2}\theta d\phi^{2}$

- Special Relativity tells us Energy becomes Infinite as velocity approaches the speed of light therefore no escape!
- General Relativity tells us even Light must follow the distorted geometry from Gravity therefore "bent" light rays!

What is Physics like inside Black Hole?

- Physics depends on density and temperature
- Black Hole defined by $M / R = c^2 / 2G \sim 6.7 \times 10^{27} \text{ g/cm}$
- Density ~ M / R^3 not M / R
- earth size black hole ~ 6 x 10^{27} g ~ 1 cm ; 10^{27} times water density
- sun size black hole ~ 2 x 10^{33} g ~ 300 km; 10^{11} times water density
- M87 black hole ~ 1×10^{43} g ~ 130 AU; 10^{-3} water density

Really Big Black Holes may be "Ordinary"

Recent BLACK HOLE Research — Hear it, Feel it, (Not) See it

- Detection of Gravitational Waves (tens of cases)
- Progenitors of Gravitational Waves (one +)
- Orbital Motions at the Event Horizon (one)
- Imaging of the Event Horizon (two)
- GR Effects
- common technique: Interferometry (optics and missing information problem)

Paul Ho, ASIAA/EAO

LIGO 'HEARD' GW

The LIGO experiment (another interferometer) was designed to be sensitive to the very ripples in space caused by gravitational disturbances

Like two black holes colliding...

GW Detectors: LIGO, VIRGO, KAGRA

Signatures of Gravitational Waves

More Examples

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

Where is GW091415: LMC?

TIME DELAYS

Detection at : LIGO at Livingston followed by 7 x 10⁻³ sec LIGO at Hanford

positioning will improve with VIRGO and KAGRA

Subaru Hyper Suprime Cam Project Target Dark Matter and Dark Energy

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) • STScl-PRC00-08

1.5 degree FOV, 10 x FOV (Surpime Camera)
40 M USD Budget (Taiwan 5M), 5 year timescale
ASIAA: Filter Exchanger, CCD and Lens Testing
Weak Lensing Tomography; z>6

- ASIAA delivered 2011
- HSC on Subaru 02.12
- HSC commission 08.12
- HSC survey papers 2018

raw image of M31

HSC Integrated on Subaru

Widest 3D dark matter map ever

Miyazaki et al. 2018

Growth of the structure clearly visible for the first time.

Only Subaru can create this, for now.

Subaru optical-infrared follow-up of the binary neutron star merger GW170817

2017.08.24-25

2017.08.18-19

HSC: z-band, IRSF: H, Ks-bands

Subaru HSC & MOIRCS succeeded to get the optical – near-infrared light from a binary neutron star merger event GW170817.

Ustumi et al. 2017

We surveyed ~70% of the 90% credible area of the localization skymap of GW170817 with HSC. → The OT at NGC4993 is the most promising candidate for the optical counterpart of GW170817

Tominaga et al. 2017

Kilonova models and the OT of GW170817

The optical – NIR light curves and SED variation are well reproduced by the kilonova models \rightarrow The site of the cosmic *r*-process was observationally identified!

Future GW Research

- Expanded Sensitivity and New Instruments (Einstein Telescope, Cosmic Explorer, LISA)
- Many more detections, plus SMBHBs?
- Inspiral phase and post merger phase
- Theoretical Tests for GR effects

GRAVITY can be "FELT"

- The movement of stars accelerated to a fraction of the speed of light around an invisible object - showed SgrA* is likely a supermassive black hole at the center of our galaxy
- Keck telescopes and GRAVITY (VLT) have tracked them over 20 years (Andrea Ghez, Reinhard Genzel)

Working Principle of "Gravity"

- Guide Star for Adaptive Optics (atmospheric seeing)
- Fringe Tracking Star for Phase (interferometer baselines)
- VLTI for Interferometry (high angular resolution)
- 6 baselines; 3 x 10⁻³ " resolution; ~40 x 10⁻⁶ " astrometry

Stars in Orbit around SgrA* 26 years of observations of S2

GRAVITY collaboration+18a, A&A 615, L10

Orbit of S2 relative to SgrA*

Motion of S2 shows GR Redshift

Hot SPOT in ORBIT at ISCO

Detection of orbital motions near SgrA*s ISCO

July 22nd, 2018

Broderick & Loeb 2006, Hamaus et al. 2009 *GRAVITY collaboration 2018b, A&A 618, L10*

Future Research of ISCO

- Next Generation ISCO experiments
- extremely large telescope projects such as TMT, ELT, GMT, can provide better precision
- more accurate measurements of orbits
- fainter targets for orbital tests
- gas infall events detectable

Ionized Gas Gloud G2 near SgrA*

G2 orbit in Red approaching SgrA*

Gillenssen et al. 2012

Ionized Gas Gloud G2 near SgrA* Position-Velocity Diagrams


```
Br-y and He-I 2µm lines
```

Gillessen et al. 2019: SINFONI

Gas Inflow to SgrA*

- G2 does not hit SgrA*
- G2 traverses some ISM which provides drag
- G2 is not a singular event, has another clump following
- Where does G2 come from?
- We pull back to look at the surrounding ISM

GRAVITY can be "SEEN" ? Take a Picture of Black Hole ?

- M87 black hole ~ $1 \times 10^{43} \text{ g} \sim 130 \text{ AU}$
- But M87 is very far! 53 Million Light Years
 5 x 10²⁰ km from us
- Schwarzschild Radius ~ 10 micro arcsecond Sun or Moon ~ 30 arc minutes

M87 black hole ~ 5×10^{-9} size of moon

Directly Resolving the Black Hole "because Seeing is Believing"

- Target Supermassive Black Hole
- Nearest Examples (SgrA*, M87)

(Shadow: ~5R_{sch} ~40 x 10⁻⁶")

• Very Long Baseline Interferometry at Submm Wavelength

<u>Precision</u> $\sim 10^{-10}$
Problem is Size

- The problem is nearby black holes are too small, and supermassive black holes are too far. Existing telescopes cannot resolve them.
- Two cases that look biggest to us would be at the center of our galaxy... and one in M87 1000 times further away, but also 1000 times bigger.
- The expected shadow around the black hole is just 50 μas
- We Need a telescope the size of the earth:

 $\theta_{array} = \lambda/D = 1.3$ mm/11000 km ~ 20 µas

DIFFRACTION PROBLEM

JCMT is an EAO Initiative

- Atacama Large Millimeter Array (ALMA), Chile
- ALMA Pathfinder Experiment (APEX), Chile
- James Clerk Maxwell Telescope (JCMT), Hawaii
- Large Millimeter Telescope (LMT), Mexico
- IRAM 30-meter Telescope, Spain
- South Pole Telescope (SPT), South Pole
- Submillimeter Array (SMA), Hawaii
- Submillimeter Telescope (SMT), Arizona

Event Horizon Telescope in 2017

East Asian Observatory

- History of Development: Established 2014
- Model: Asian Counterpart to ESO
- EAO Members: NAOC, NAOJ, KASI, ASIAA
- Goals and Aspirations: Looking to the Future
- Current Status: Operating JCMT, Access SMA, Access UKIRT
- Current Plans: Access more Facilities (Subaru), Construct Next Generation Instruments
- Future Plans: Expand EAO Members

 (Observer: Vietnam, Thailand, Malaysia, Indonesia)
 other Southeast Asian regions and India ?
 Observer Status: Access EAO Facilities
 Thailand will soon become Partner in EAO

Very Long Baseline Interferometer

- Simulate a Very Large Telescope (Intercontinental Distance)
- Link Telescopes by synchronizing Wave Front
- Precision at 1/20 wavelength (40µm), over ~10,000 km
 - distance between telescopes
 - arrival of wavefront at each telescope
 - compensate for differential atmospheric effects
 - compensate for differential electronics effects
 - compensate for individual telescope response
 - correct for sparsely sampled telescope surface
- VLBI is one of Nobel Prizes in Radio Astronomy (Ryle and Hewish 1974) — <u>IMAGE RECONSTRUCTION</u>

Center of the Galaxy (radio)

VLBI (2014): Imaging SgrA*

M87 (M 87 - NGC 4486)

Type: Galaxy

Magnitude: 8.60

100µas

RA/DE (J2000): 12h30m48.0s/+12°24'00.0" RA/DE (of date): 12h30m54s/+12°23'22" Hour angle/DE: 19h19m8s/+12°23'22" (geometric) Hour angle/DE: 19h19m14s/+12°24'58" (apparent) Az/Alt: +96°41'29"/+22°16'38" (geometric) Az/Alt: +96°41'29"/+22°18'47" (apparent) Size: +0°07'12"

e inpressioni

Image Credit: Bill Saxton NRAO/AUI/NSF

Walker et al (2008)

VLBA 43 GHz

Case of M87

60" Elliptical Galaxy M87 Hubble IASA, ESA, and the Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope ACS • STScI-PRC-08-30b

-5 RA Offset (mas)

10mas

Case of M87: HST and VLBA data

HST Spectroscopy Yields Mass

Macchetto+ 1997

Gebhardt & Thomas 2009

Distance: 16 Mpc

Mass: 3.2 (6.4) $\times 10^9$ M_o

ν r_g = 2 (4) μas

VLBA Imaging Yields Jet Walker et al 2008

SMBH: Source of Jet Accretion Disk: Shadow

Shadow ~ 20 (40)µas

Collimation and Acceleration of M 87 Jet

Asada, K. et al. 2014, ApJL, 781, 2

Asada & Nakamura 2012, ApJ, 745, 28 Nakamura & Asada 2013, ApJ, 775, 118

α: power-law index of streamline (= 1.7)

Komissarov et al. 2009 MNRAS, 394, 1182

In non- relativistic

In relativistic regime,

 $V_z \propto Z^{2/\alpha}$

 $\Gamma \propto \mathbf{Z} \, (\alpha - 1)/\alpha$

Nakamura & Asada 2013, ApJ, 775, 118

Mass Accretion onto M87 BH

$$\dot{M} = 1.1 \times 10^{-8} \left[1 - (r_{\rm out}/r_{\rm in})^{-(3\beta-1)/2} \right]^{-2/3} \times \left(\frac{M_{\bullet}}{6.6 \times 10^9 M_{\odot}} \right)^{4/3} \left(\frac{2}{3\beta - 1} \right)^{-2/3} r_{\rm in}^{7/6} R M^{2/3}$$

 $\dot{M} = 9.2 \times 10^{-4} M_{\odot} \text{ yr}^{-1} = 7.4 \times 10^{-3} M_{Bondi}$

⇒ Mass accretion is significantly suppressed while material is accreted from Bondi radius to a few 10 r_s.

Submm VLBI Science Objectives

1. Direct proof of the existence of the SMBH

- 2. Imaging the shadow = measuring the Metric !!
 - Test for General Relativity in the strong field
 - Mass, Spin of the BH
- **3. Astrophysics related to the SMBH**
 - -Accretion process onto the SMBH
 - Formation process of the jets

0.1 arc second resolution

Appearance of the shadow of the SMBH

Size = Msss Shape = Spin + Geometry

In optically thin flow and spherical geometry line of the spherical sphe	Geometry / Spin	No rotating BH	Maximum rotating BH
In optically thick flow and geometrically thin disk	In optically thin flow and spherical geometry		
	In optically thick flow and geometrically thin disk		

Image simulation of M87

Model image with a 6 x 10⁹ Mo SMBH and optically thin accreting matter, derived by the Ray Tracing method.

Observed image simulation with the submm VLBI at 345 GHz.

Imaging Simulation of M87

Event Horizon Telescope

VLBI Experiment April 6, 2017

Event Horizon Telescope

Aperture Synthesis: Building up UV Coverage Visibility = Sampling · Source + Error Event Horizon Telescope

Removing "Errors"

Blazar OJ 287; Hawaii-Spain (SMA-IRAM) baseline 420-second integration

Ad-hoc phasing with ALMA corrects for atmospheric fluctuations and allows for strong detections in short time intervals on very long baselines.

Phase Referencing with ALMA

Removing "Defects"

Imaging of M87

2019 May 14th, NTU

UV-weighting, Clean, Phase Self-Calibrate, Amplitude Self-Calibrate

Calibration and Imaging

Variability?

- Large Scale:
 —— slight difference
- Small Scale:
 - —— STABLE
- Longest Baselines:
 Probe Horizon

EHT + ALMA proposal in 2016

Event Horizon Telescope

2019 May 8th, NCU

What does the Image Say?

It's Black, and Looks like a Hole

Physical Parameters?

- Photon Ring: ~42µas or ~400au, round
- Schwarzschild radius: $r_s = 2 \text{ GM} / c^2$
- Shadow Size ~5 times r_s (Event Horizon radius)
 - as expected by General Relativity
 - **——** deduced mass ~ 6.5 billion solar mass
- Ring Brightness: $n_e \sim 10^4 \text{ cm}^{-3}$, $B \sim 3G$, $M_{accr} \sim 10^{-3} M_{sun} \text{ yr}^{-1}$
- Ring Asymmetry: Brighter on Bottom Side
 consistent with rotation with doppler boosting
- Tipped Disk: Perpendicular to Relativistic Jet
- Spin of Black Hole: Pointed away from Earth

Doppler Boosting of Approaching Part of Rotating Ring

Inner Rotation must lock to Black Hole Rotation

Simulation of Doppler Boosting

+1759.3 days 40 -4020 -20 y $[\mu as]$ $[\mu as]$ 0 -0 -S -20 --20 --40 --40 --40-2020 0 40 x $[\mu as]$

+1759.3 days

G. Wong, B. Prather, C. Gammie (Illinois)

Observation

Summary

- Current Research depends on Angular Resolution
- Gravity Wave Research probes Coalescence Process in building larger Black Holes
- Optical/IR Interferometry probes dynamics at Event Horizon and test GR effects
- Submm Very Long Baseline Interferometry probes structures of Event Horizon and physical processes and test GR effects
- Next Generation Instruments will have more resolution and more sensitivity (time domain, energy domain, dynamics domain)
- Asia will play a leading role in this Frontier in Optics!

Where are the Problems?

- Resolution still limited (only 2 targets: M87, SgrA*)
- Resolution can be improved by factor of 10
- How to look at "milliparsec" problem (merging black hole binaries at what scale?)
- How to measure rotation/spin
- How to do the astrophysics (jet launching, accretion disk)
- How to use the black hole to probe other phenomena
- what should we do next?

What is Next?

Higher frequency = better resolution

More sensitive instruments - Namakanui!

More stations - Greenland telescope

Polarization measurements

Milky Way black hole...

Merging SMBHs?

ASIA will have Increasing Impacts

The Event Horizon Telescope in 2018

The Largest Telescope Ever: Greenland Telescope leverages SMA and ALMA and JCMT

Greenland Telescope

Aim: LOW PMV Sensitivity: ALMA Surface Area

The Greenland Telescope Project

Starting The GLT Project

- Recover ALMA-Taiwan Investment
- Extend ALMA Capabilities
- Recover ALMA Proto-Type Antenna
- Leverage ALMA Collecting Area
- Attain Highest Angular Resolution

 shortest λ, longest BL
- VLBI Imaging instead of Fringe Fitting
- ALMA-Taiwan approved in 2008
- GLT Project began in 2009

Arrival in Greenland 07.16.16

Assembly of Antenna Mount 09.10.16

Fully Assembled Telescope 08.2017

TARGET: SUMMIT STATION GREENLAND

N 72.5, W 38.5, altitude: 3200 m

Future in EHT Science

• Move GLT to Summit in 2021-2022

- Need: Establish Base at Summit
- Need: Housing, Power
- Need: Transport to Summit
- Need: Construction at Summit
- Need: Winter-over Operations

Final Remarks

- BH Image made the "expectations" REAL
- Resonance with the Public: Seeing the "un-seeable"
- Resonance in Asia: We can work at the Forefront
- Importance: Measure BH Properties Directly
- Importance: Test General Relativity at Extreme Gravity
- Problem: Compete Internationally for Credit
- Problem: Generate Support within Asia
- Present: Asia is Partner on 4 of 9 EHT facilities
- Future: Asia to Lead at Highest Frequencies, Highest Resolution

Denmark in the EHT/GLT

Visits to Denmark: 10.2014, 11.2015, 02.2019, 04.2019

- Integration and Cooperation with existing and future Danish projects at Greenland Summit; Collaboration with Greenlanders
- Joint Development of 1st Arctic Observatory
- 1. Site development and support infrastructures: energy generation
- 2. Platform for future experiments and projects: arctic investigation station
- 3. Development of future observatories: planning and studies
- Partner on the GLT Project
- 1. Science on the GLT: VLBI, THz science, theory
- 2. Deployment and Commissioning of GLT: construction and testing
- 3. Engineering Aspects of GLT: hardware, construction
- 4. Staffing: faculty, postdocs, graduate students, interns
- 5. Operations: site support, administration, engineering
- 6. Politics: interface with Denmark and Greenland government agencies