Subodh Patil NBIA winter school Jan 3 2019

Introduction to Cosmology and Structure Formation

Cosmology is the study of the origin and evolution of the universe.

In the span of three generations, it has gone from motivated speculation to becoming a fully fledged `precision science'.

	Description	Symbol	Value
Indepen- dent para- meters	Physical baryon density parameter ^[a]	$\Omega_{\rm b} h^2$	0.022 30 ±0.000 14
	Physical dark matter density parameter ^[a]	$\Omega_{\rm c} h^2$	0.1188 ±0.0010
	Age of the universe	<i>t</i> ₀	13.799 ± 0.021 × 10 ⁹ years
	Scalar spectral index	ns	0.9667 ±0.0040
	Curvature fluctuation amplitude, $k_0 = 0.002 \text{ Mpc}^{-1}$	Δ_R^2	2.441 ^{+0.088} _{-0.092} × 10 ^{-9[19]}
	Reionization optical depth	T	0.066 ±0.012

	Description	Symbol	Value
Indepen- dent para- meters	Physical baryon density parameter ^[a]	$\Omega_{\rm b} h^2$	0.022 30 ±0.000 14
	Physical dark matter density parameter ^[a]	$\Omega_{\rm c} h^2$	0.1188 ±0.0010
	Age of the universe	t ₀	$13.799 \pm 0.021 \times 10^9$ years
	Scalar spectral index	ns	0.9667 ±0.0040
	Curvature fluctuation amplitude, $k_0 = 0.002 \text{ Mpc}^{-1}$	Δ_R^2	2.441 ^{+0.088} _{-0.092} × 10 ^{-9[19]}
	Reionization optical depth	T	0.066 ±0.012

What made this possible?

Observations!

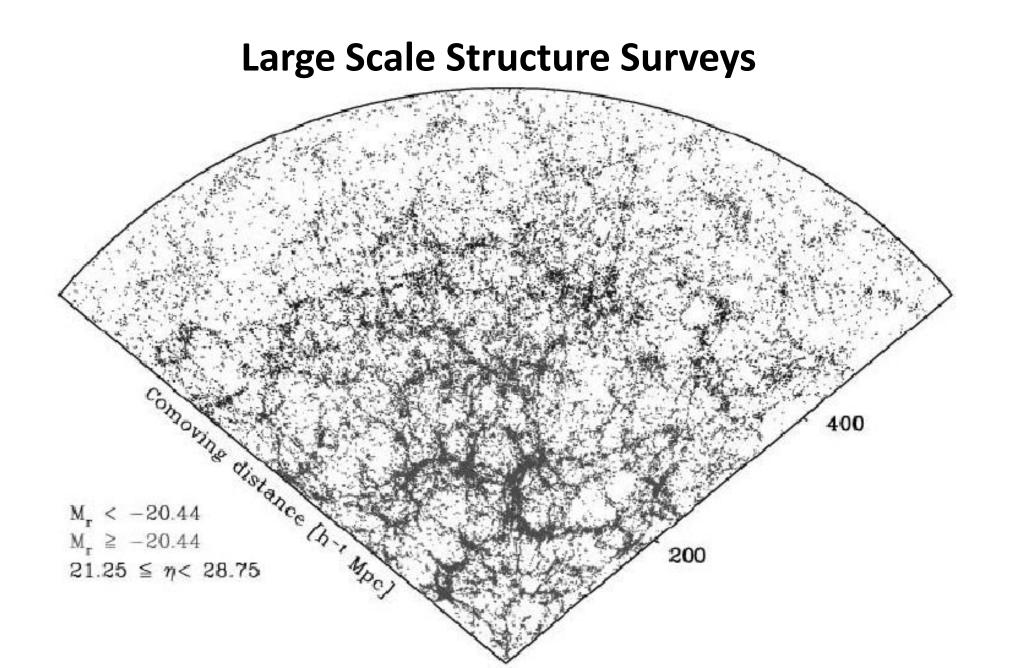
- To provide these a consistent theoretical framework, we required—
- A theory of spacetime and its interactions with matter (GR, deviations?)
- A theory of matter (Fields, particles, defects, etc.)

Observations!

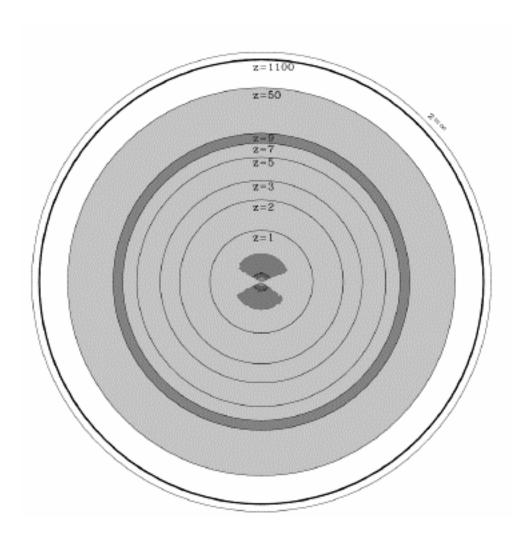
- Symmetries: homogeneity, isotropy, thermal equilibrium (a statement of symmetry in state space: equipartition.)
- Luck. e.g. current model suggest at $t \sim 10^{12}$ y, $\lambda_{\rm CMB} > H_0^{-1}$ i.e. no electromagnetic evidence of the big bang (!)

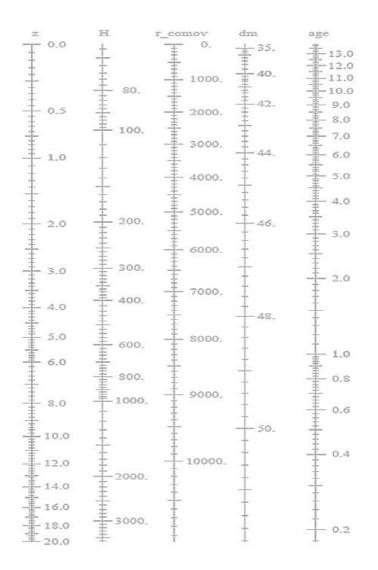
What are these observations?

The Cosmic Microwave Background

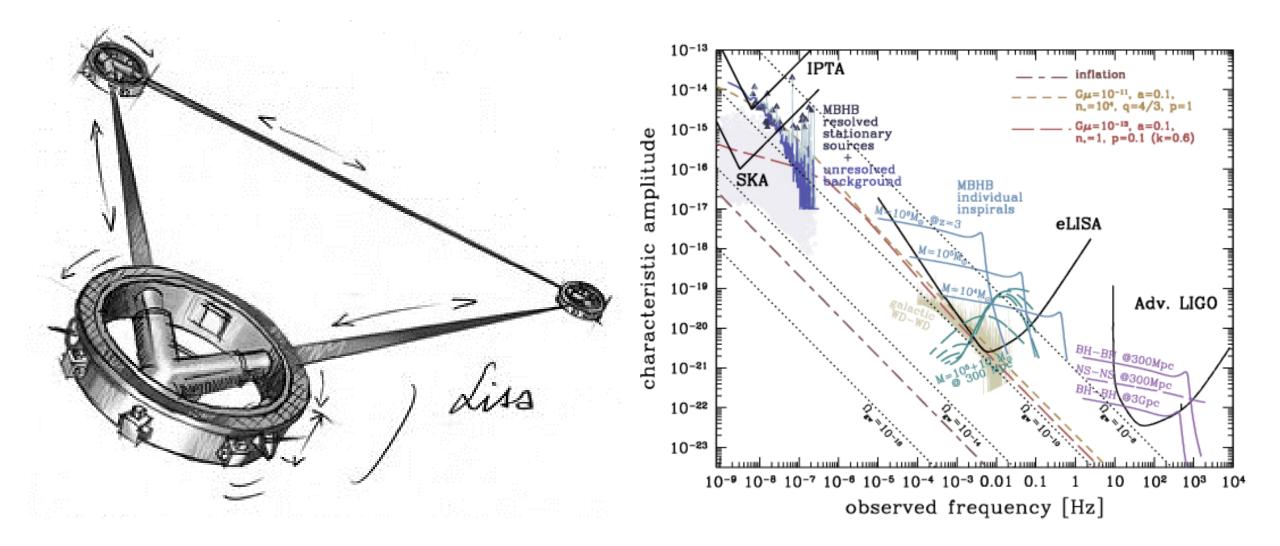


(The future: for things that don't shine at us - 21 cm Tomography?)

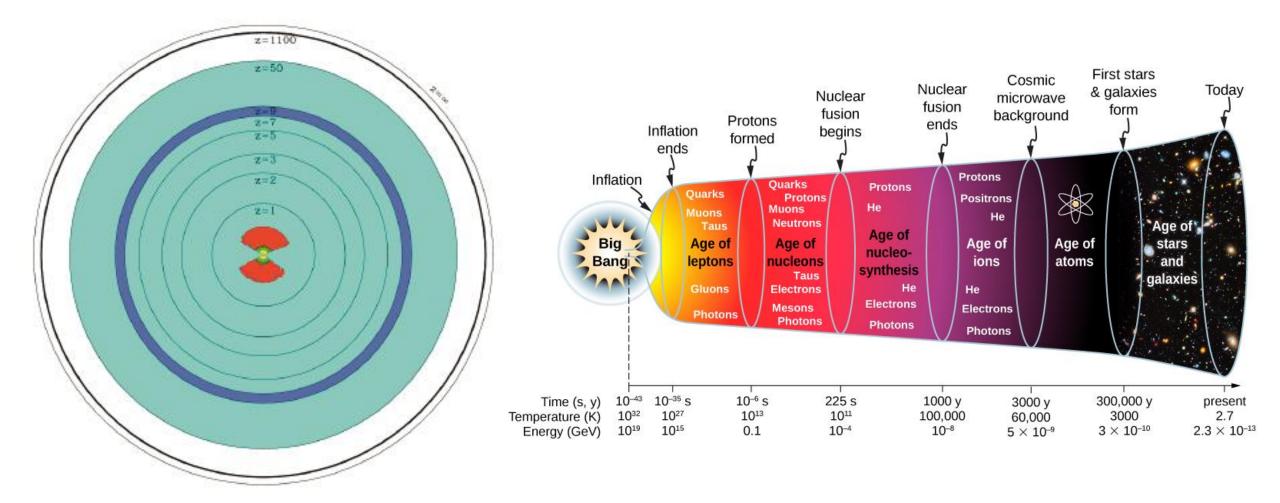




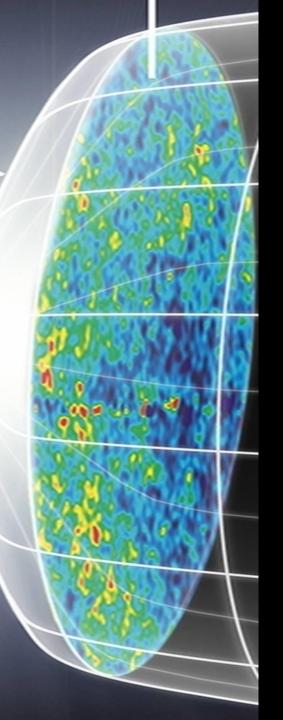
(The future cont: Gravitational Waves... cf. Tanja Hinderer's lectures)

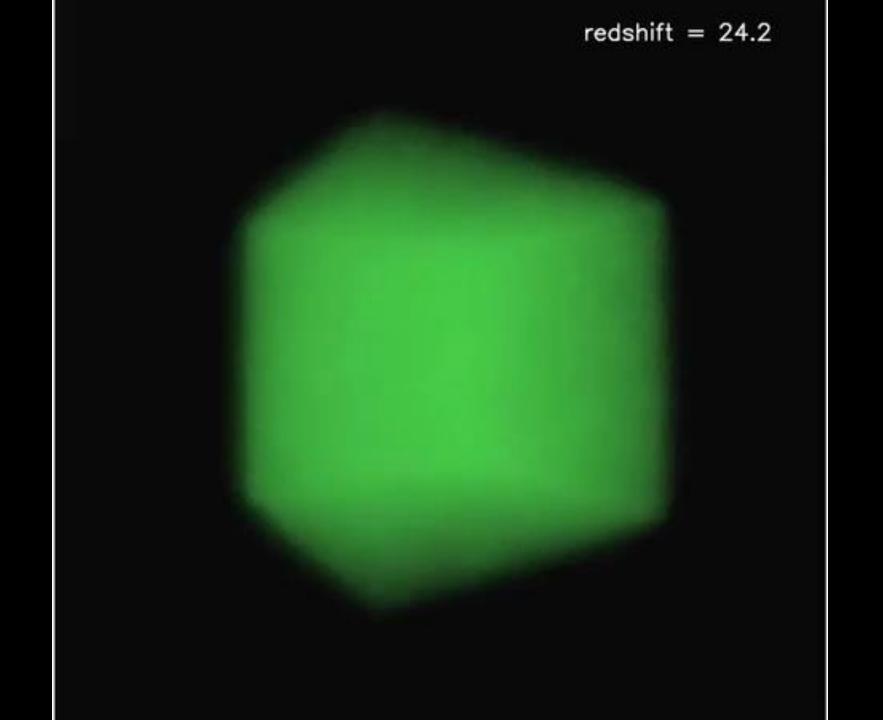


All observed structure is the result of gravitational collapse of initial `seed' perturbations...



Quantum Fluctuations





The background – General Relativity + perfect fluids

$$G^{\mu}_{\nu} = 8\pi G_N T^{\mu}_{\nu}$$
spacetime curvature matter

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g}R + \int d^4x \sqrt{-g}\mathcal{L}_M$$

metric tensor
$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$

metric tensor
$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$

(Minkowski space: $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + dx^2 + dy^2 + dz^2$)

$$S = -m \int ds = -m \int \sqrt{-g_{\mu\nu} dx^{\mu} dx^{\nu}}$$

metric tensor
$$ds^2 = g_{\mu
u}(x)dx^{\mu}dx^{
u}$$

(Minkowski space: $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + dx^2 + dy^2 + dz^2$)

$$S = -m \int ds = -m \int d\lambda \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda}$$

`affine parameter'

metric tensor
$$ds^2 = g_{\mu
u}(x) dx^\mu dx^
u$$

(Minkowski space: $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + dx^2 + dy^2 + dz^2$)

$$S = -m \int ds = -m \int d\tau \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}$$

`affine parameter'

Minkowski:
$$p_{\mu} = \frac{\delta \mathcal{L}}{\delta \dot{x}^{\mu}} = \frac{m}{\sqrt{1 - \dot{\vec{x}}^2}} \frac{dx_{\mu}}{dt}$$
 e.o.m: $\frac{dp_{\mu}}{d\tau} = 0$

metric tensor
$$ds^2 = g_{\mu
u}(x)dx^{\mu}dx^{
u}$$

(Minkowski space: $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + dx^2 + dy^2 + dz^2$)

$$S = -m \int ds = -m \int d\tau \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}$$

e.o.m on a curved background:

$$\frac{dx^{\mu}}{d\tau} := u^{\mu}; \quad \frac{du^{\mu}}{d\tau} + \Gamma^{\mu}_{\nu\lambda} u^{\nu} u^{\lambda} = 0$$
$$\Gamma^{\mu}_{\nu\lambda} := \frac{g^{\mu\kappa}}{2} \left(\frac{dg_{\kappa\nu}}{dx^{\lambda}} + \frac{dg_{\kappa\lambda}}{dx^{\nu}} - \frac{dg_{\nu\lambda}}{dx^{\kappa}} \right)$$

e.o.m on a curved background:

$$\frac{dx^{\mu}}{d\tau} := u^{\mu}; \quad \frac{du^{\mu}}{d\tau} + \Gamma^{\mu}_{\nu\lambda} u^{\nu} u^{\lambda} = 0$$
$$\Gamma^{\mu}_{\nu\lambda} := \frac{g^{\mu\kappa}}{2} \left(\frac{dg_{\kappa\nu}}{dx^{\lambda}} + \frac{dg_{\kappa\lambda}}{dx^{\nu}} - \frac{dg_{\nu\lambda}}{dx^{\kappa}} \right)$$

which is equivalent to $u^{\mu}\nabla_{\mu}u^{\nu} = 0$, where we have defined the *covariant derivative*:

$$\nabla_{\mu}u^{\nu} := \partial_{\mu}u^{\nu} + \Gamma^{\nu}_{\mu\lambda}u^{\lambda}$$

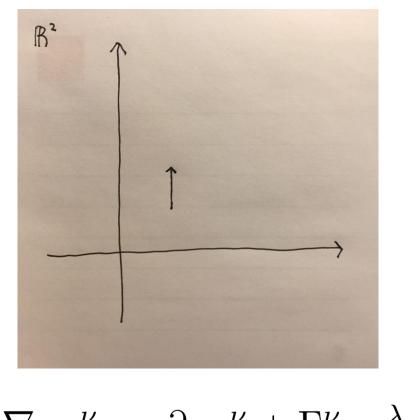
e.o.m on a curved background:

$$\frac{dx^{\mu}}{d\tau} := u^{\mu}; \quad \frac{du^{\mu}}{d\tau} + \Gamma^{\mu}_{\nu\lambda} u^{\nu} u^{\lambda} = 0$$
$$\Gamma^{\mu}_{\nu\lambda} := \frac{g^{\mu\kappa}}{2} \left(\frac{dg_{\kappa\nu}}{dx^{\lambda}} + \frac{dg_{\kappa\lambda}}{dx^{\nu}} - \frac{dg_{\nu\lambda}}{dx^{\kappa}} \right)$$

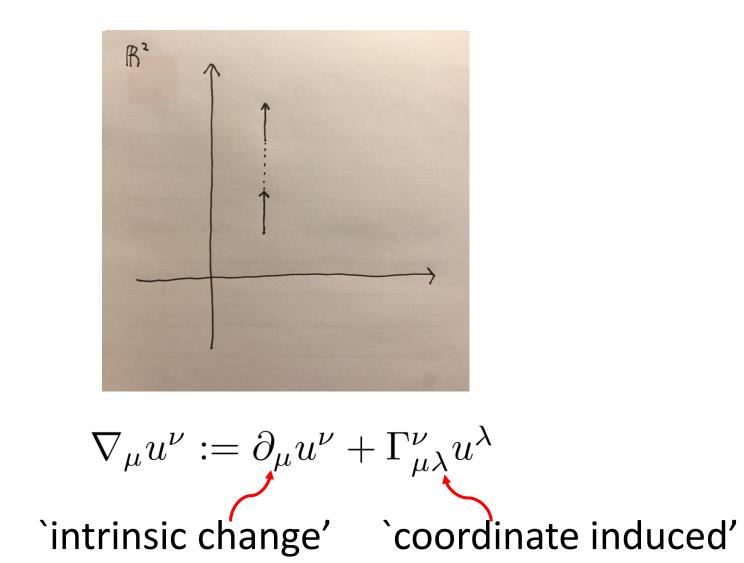
which is equivalent to $u^{\mu}\nabla_{\mu}u^{\nu} = 0$, where we have defined the *covariant derivative*:

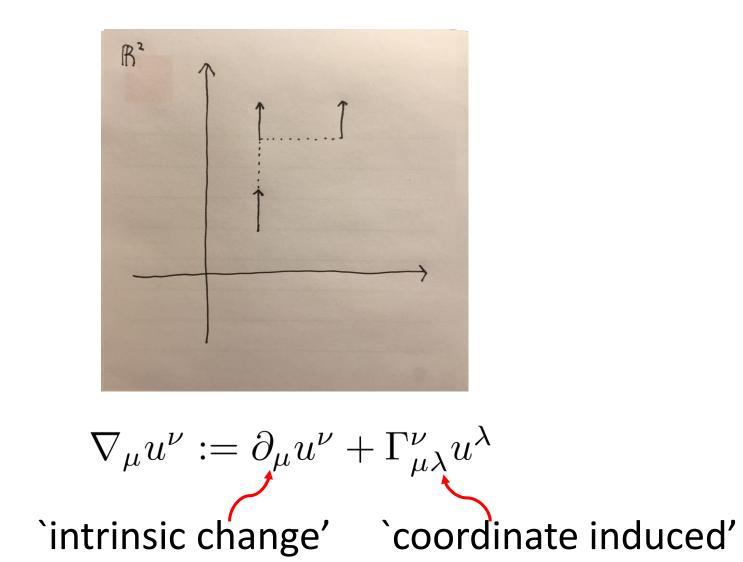
$$\nabla_{\mu}u^{\nu} := \partial_{\mu}u^{\nu} + \Gamma^{\nu}_{\mu\lambda}u^{\lambda}$$

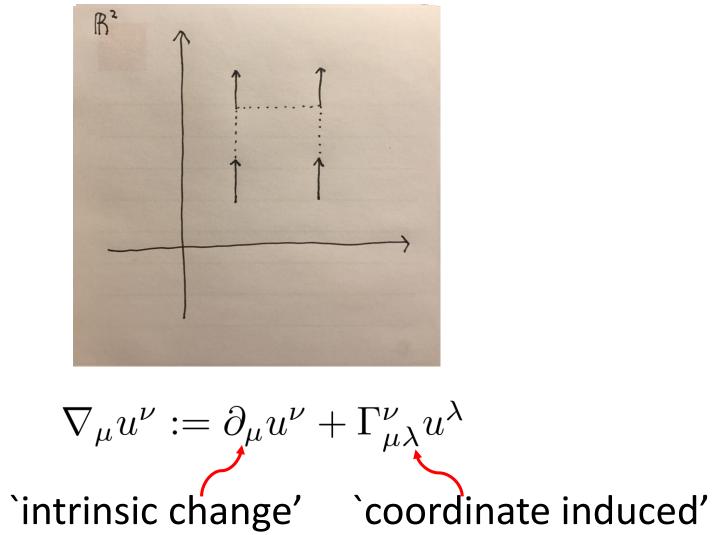
`intrinsic change' `coordinate induced'

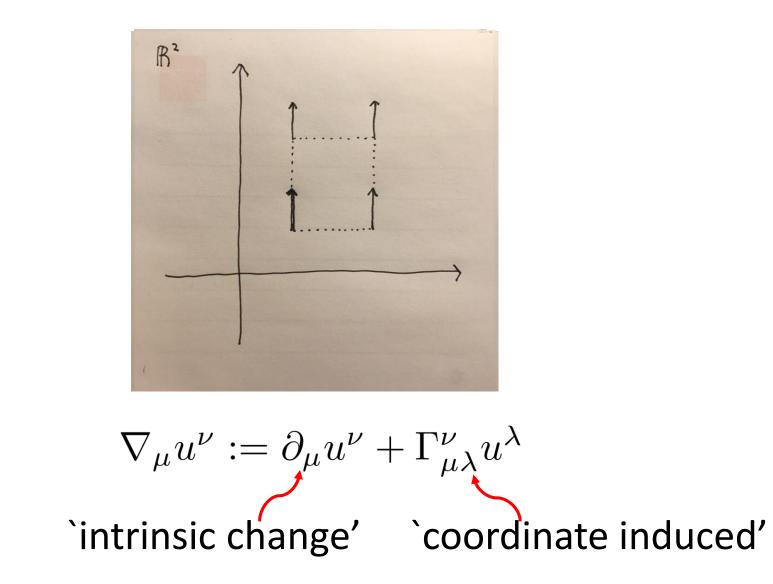


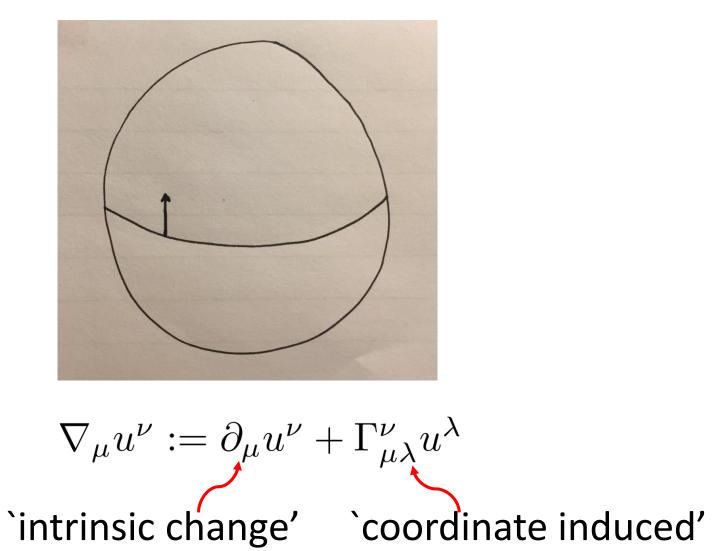
 $\nabla_{\mu}u^{\nu}:=\partial_{\mu}u^{\nu}+\Gamma^{\nu}_{\mu\lambda}u^{\lambda}$ `intrinsic change' `coordinate induced'

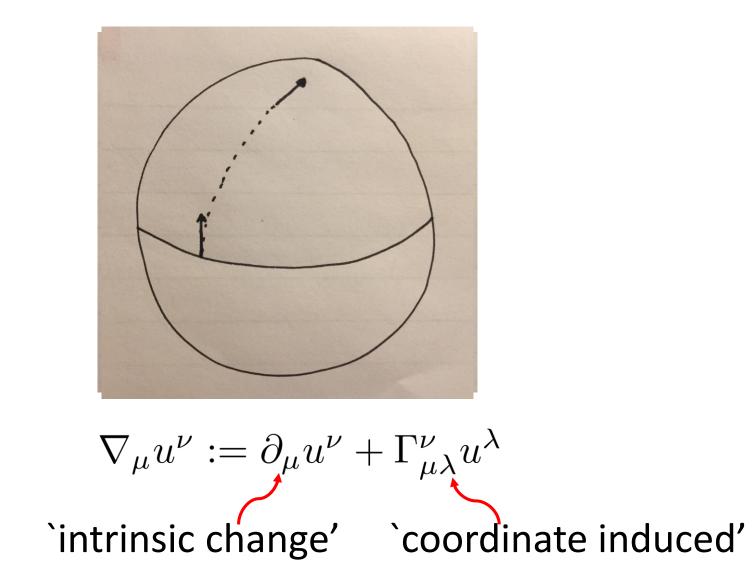


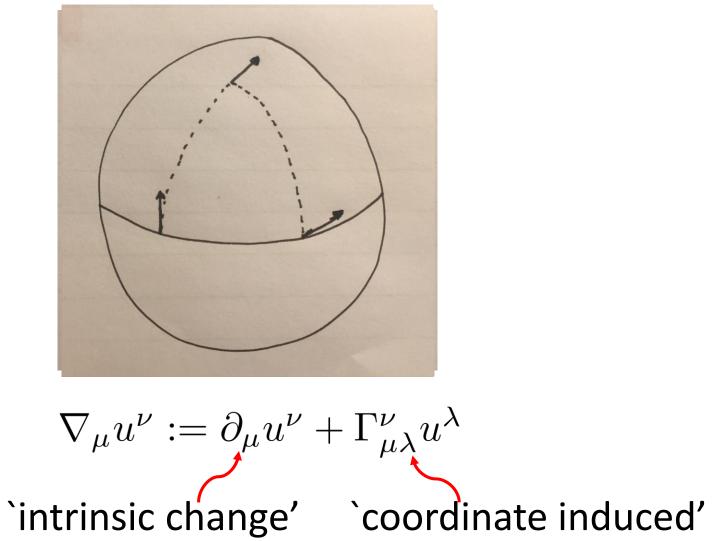


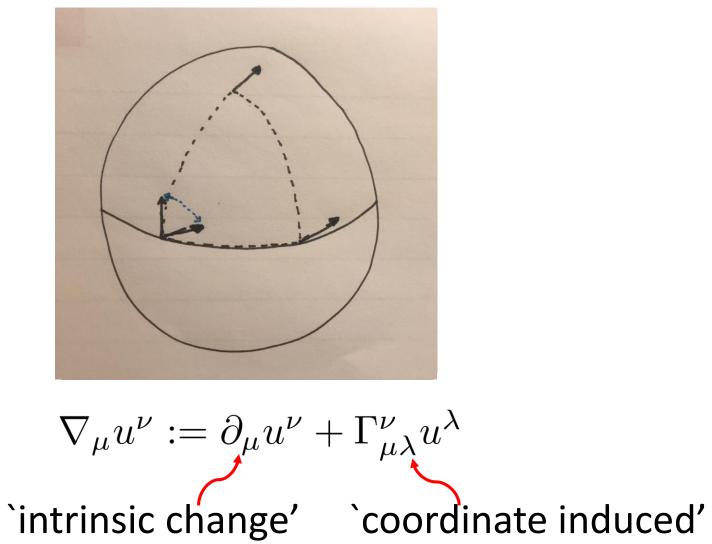


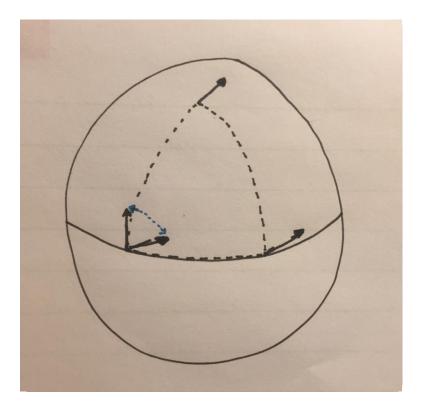




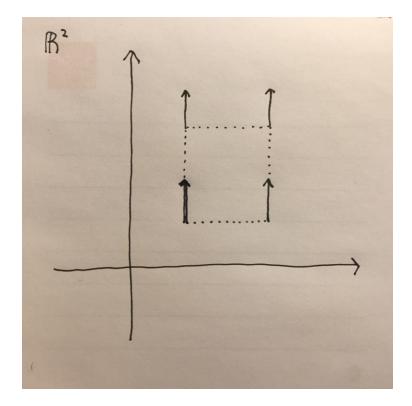






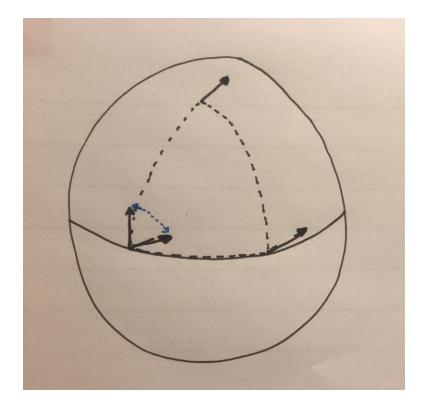


A vector `parallel transported' around a closed loop will come back to itself on a flat space. Not so on a `curved' space...



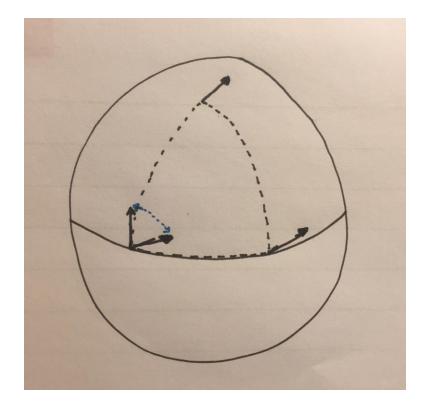
$$\nabla_{\mu}u^{\nu} := \partial_{\mu}u^{\nu} + \Gamma^{\nu}_{\mu\lambda}u^{\lambda}$$

$$\left(\nabla_{\lambda}\nabla_{\mu} - \nabla_{\mu}\nabla_{\lambda}\right)u^{\nu} = 0$$



$$\nabla_{\mu}u^{\nu} := \partial_{\mu}u^{\nu} + \Gamma^{\nu}_{\mu\lambda}u^{\lambda}$$

$$\left(\nabla_{\lambda}\nabla_{\mu} - \nabla_{\mu}\nabla_{\lambda}\right)u^{\nu} = ?$$



$$\nabla_{\mu}u^{\nu} := \partial_{\mu}u^{\nu} + \Gamma^{\nu}_{\mu\lambda}u^{\lambda}$$

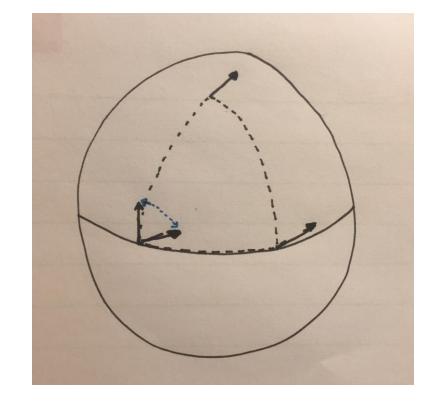
$$abla_{\lambda}
abla_{\mu} -
abla_{\mu}
abla_{\lambda}) u^{\nu} := R^{\nu}_{\rho\lambda\mu} u^{\rho}$$
Riemann curvature tensor

$$\nabla_{\mu}u^{\nu} := \partial_{\mu}u^{\nu} + \Gamma^{\nu}_{\mu\lambda}u^{\lambda}$$

$$(\nabla_{\lambda} \nabla_{\mu} - \nabla_{\mu} \nabla_{\lambda}) u^{\nu} := R^{\nu}_{\rho \lambda \mu} u^{\rho}$$

Riemann curvature tensor

$$\begin{aligned} R^{\nu}_{\rho\lambda\mu} &= \partial_{\lambda}\Gamma^{\nu}_{\rho\mu} - \partial_{\mu}\Gamma^{\nu}_{\rho\lambda} + \Gamma^{\nu}_{\kappa\lambda}\Gamma^{\kappa}_{\rho\mu} - \Gamma^{\nu}_{\kappa\mu}\Gamma^{\kappa}_{\rho\lambda} \\ \Gamma^{\mu}_{\nu\lambda} &:= \frac{g^{\mu\kappa}}{2} \left(\frac{dg_{\kappa\nu}}{dx^{\lambda}} + \frac{dg_{\kappa\lambda}}{dx^{\nu}} - \frac{dg_{\nu\lambda}}{dx^{\kappa}} \right) \end{aligned}$$



General Relativity – a conceptual crash course

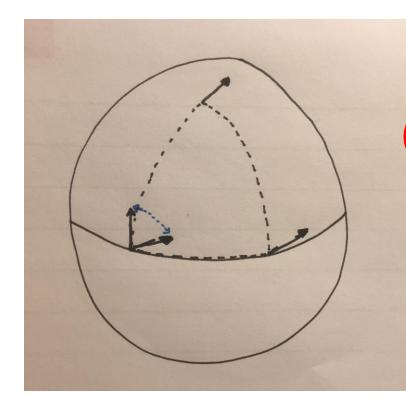
$$\begin{bmatrix} \nabla_{\lambda}, \nabla_{\mu} \end{bmatrix} u^{\nu} := R^{\nu}_{\rho\lambda\mu} u^{\rho}$$
$$R^{\nu}_{\rho\lambda\mu} = \partial_{\lambda} \Gamma^{\nu}_{\rho\mu} - \partial_{\mu} \Gamma^{\nu}_{\rho\lambda} + \Gamma^{\nu}_{\kappa\lambda} \Gamma^{\kappa}_{\rho\mu} - \Gamma^{\nu}_{\kappa\mu} \Gamma^{\kappa}_{\rho\lambda}$$

cf. electromagnetism:

$$D_{\mu} := \partial_{\mu} - ieA_{\mu}$$

 $[D_{\mu}, D_{\nu}] = -ie \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}\right) = -ie F_{\mu\nu}$

General Relativity – a conceptual crash course



$$\begin{split} \left[\nabla_{\lambda}, \nabla_{\mu} \right] u^{\nu} &:= R^{\nu}_{\rho\lambda\mu} u^{\rho} \\ R^{\nu}_{\rho\lambda\mu} = \partial_{\lambda} \Gamma^{\nu}_{\rho\mu} - \partial_{\mu} \Gamma^{\nu}_{\rho\lambda} + \Gamma^{\nu}_{\kappa\lambda} \Gamma^{\kappa}_{\rho\mu} - \Gamma^{\nu}_{\kappa\mu} \Gamma^{\kappa}_{\rho\lambda} \\ Field \ strengths! \\ D_{\mu} &:= \partial_{\mu} - ieA_{\mu} \\ \left[D_{\mu}, D_{\nu} \right] &= -ie \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) = -ieF_{\mu\nu} \end{split}$$

General Relativity <u>is</u> a gauge theory (cf. John Donoghue's lectures)

Electromagnetism:
$$\mathcal{L}_{EM} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$\Gamma^{\mu}_{\nu\lambda} := \frac{g^{\mu\kappa}}{2} \left(\frac{dg_{\kappa\nu}}{dx^{\lambda}} + \frac{dg_{\kappa\lambda}}{dx^{\nu}} - \frac{dg_{\nu\lambda}}{dx^{\kappa}} \right)$$

$$R^{\nu}_{\rho\lambda\mu} = \partial_{\lambda}\Gamma^{\nu}_{\rho\mu} - \partial_{\mu}\Gamma^{\nu}_{\rho\lambda} + \Gamma^{\nu}_{\kappa\lambda}\Gamma^{\kappa}_{\rho\mu} - \Gamma^{\nu}_{\kappa\mu}\Gamma^{\kappa}_{\rho\lambda}$$

Gravity: $\mathcal{L}_{GR} \stackrel{?}{=} [M]^2 g^{\rho\mu} R^{\nu}_{\rho\nu\mu}$

General Relativity is a gauge theory (cf. John Donoghue's lectures)

Electromagnetism:
$$\mathcal{L}_{\rm EM} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$\Gamma^{\mu}_{\nu\lambda} := \frac{g^{\mu\kappa}}{2} \left(\frac{dg_{\kappa\nu}}{dx^{\lambda}} + \frac{dg_{\kappa\lambda}}{dx^{\nu}} - \frac{dg_{\nu\lambda}}{dx^{\kappa}} \right)$$

$$R^{\nu}_{\rho\lambda\mu} = \partial_{\lambda}\Gamma^{\nu}_{\rho\mu} - \partial_{\mu}\Gamma^{\nu}_{\rho\lambda} + \Gamma^{\nu}_{\kappa\lambda}\Gamma^{\kappa}_{\rho\mu} - \Gamma^{\nu}_{\kappa\mu}\Gamma^{\kappa}_{\rho\lambda}$$

Gravity: $\mathcal{L}_{GR} = \frac{1}{16\pi G_N} g^{\rho\mu} R^{\nu}_{\rho\nu\mu} := \frac{1}{16\pi G_N} R$ Ricci scalar

Gravity is an <u>effective theory</u> (cf. John and Cliff Burgess' lectures)

Electromagnetism:

$$\mathcal{L}_{\rm EM} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{c_1}{M^4} \left(F_{\mu\nu} F^{\mu\nu} \right)^2 + \frac{c_2}{M^4} \left(\epsilon^{\mu\nu\lambda\beta} F_{\mu\nu} F^{\lambda\beta} \right)^2 + \dots$$

Gravity:
$$\mathcal{L}_{GR} = \frac{1}{16\pi G_N}R + c_1R^2 + c_2R^{\mu}_{\nu\lambda\beta}R^{\nu\lambda\beta}_{\mu} + \dots$$

$$8\pi G_N := \frac{1}{M_{\rm pl}^2}$$

Gravity is an <u>effective theory</u> (cf. John and Cliff Burgess' lectures)

Electromagnetism:

$$\mathcal{L}_{\rm EM} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{c_1}{M^4} \left(F_{\mu\nu} F^{\mu\nu} \right)^2 + \frac{c_2}{M^4} \left(\epsilon^{\mu\nu\lambda\beta} F_{\mu\nu} F^{\lambda\beta} \right)^2 + \dots$$

Gravity:
$$\mathcal{L}_{GR} = \underbrace{\frac{1}{16\pi G_N}R}_{16\pi G_N} + c_1 R^2 + c_2 R^{\mu}_{\nu\lambda\beta} R^{\nu\lambda\beta}_{\mu} + \dots$$

 $8\pi G_N := \frac{1}{M_{pl}^2}$

(Apologies for the hit and run treatment – an excellent, no-nonsense introduction to GR can be found in *Spacetime and Geometry* by Sean Carroll. A more thorough mathematical intro can be found in *General Relativity* by R. M. Wald)

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g}R + \int d^4x \sqrt{-g}\mathcal{L}_M$$

$$R^{\lambda}_{\mu\lambda\nu} - \frac{1}{2}g_{\mu\nu}R := G_{\mu\nu} = 8\pi G_N T^{\mu}_{\nu}$$

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$

want to solve for the geometry given a particular matter content.

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g}R + \int d^4x \sqrt{-g}\mathcal{L}_M$$

$$R^{\lambda}_{\mu\lambda\nu} - \frac{1}{2}g_{\mu\nu}R := G_{\mu\nu} = 8\pi G_N T^{\mu}_{\nu}$$

$$T^{\mu}_{\nu} \equiv \left\langle T^{\mu}_{\nu} \right\rangle$$

What is the state $|\Psi angle$ that defines this expectation value?

On the equivalence between the Boltzmann equation and classical field theory at large occupation numbers

A.H. Mueller^a, D.T. Son^b

^a Department of Physics, Columbia University, New York, NY 10027, USA ^b Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA

Received 17 December 2002; received in revised form 1 December 2003; accepted 10 December 2003

Editor: J.-P. Blaizot

Phys.Lett. B582 (2004) 279-287

The dynamics of any field theory at large enough occupation number (e.g. in $\lambda \phi^4$ theory, with $\lambda N_k \ll 1$ reduces to kinetic theory. For, $k \ll (\rho/m)^{1/3}$ this is hydrodynamics^{*}.

*(Non)-equilibrium hydro/ kinetic theory \leftrightarrow (non)-equilibrium QFT at large occupation.

The history of the Universe in a line:

$$G_{\mu\nu} = 8\pi G_N \langle T^{\mu}_{\nu} \rangle$$

$$\begin{split} \widehat{\rho}_{\Psi} : |\phi\rangle\langle\phi| \to \sum_{i} e^{-\beta E_{i}} |E_{i}\rangle\langle E_{i}| \to \sum_{a} c_{a} |n_{a}\rangle\langle n_{a}|; \quad (n_{i} \gg 1) \\ \text{e.g. } c_{a} \sim e^{-\beta_{a} E_{a}} \text{ at freeze-out} \end{split}$$

Inflation (p)re-heating to a thermalized universe perfect fluid (radiation matter domination)

The background – ISO(3) invariance (homogeneity, Isotropy)

$$G_{\mu\nu} = 8\pi G_N \langle T^{\mu}_{\nu} \rangle$$

$$T^{\mu}_{\nu} = (\rho + P)u^{\mu}u_{\nu} + Pg_{\mu\nu}$$

 u^{μ} is the four velocity vector of a fluid element, can adapt our coordinate system such that there is no momentum flux across spatial slices (i.e. u^{μ} defines the time direction).

$$T^{\mu}_{\nu} = \text{diag}(-\rho, p, p, p)$$
$$ds^{2} = -dt^{2} + a^{2}(t) \left(dx^{2} + dy^{2} + dz^{2}\right)$$

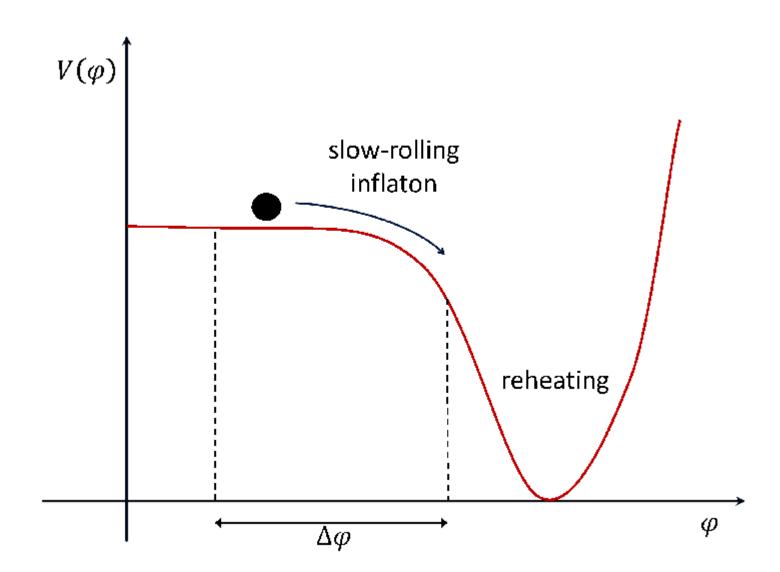
The background – inflation

$$\begin{aligned} G_{\mu\nu} &= 8\pi G_N \langle T^{\mu}_{\nu} \rangle & T^{\mu}_{\nu} = \text{diag}(-\rho, p, p, p) \\ ds^2 &= -dt^2 + a^2(t) \left(dx^2 + dy^2 + dz^2 \right) \\ \rho &= \frac{\dot{\phi}^2}{2} + V(\phi), \ p &= \frac{\dot{\phi}^2}{2} - V(\phi) \\ \rho &\approx -p \quad \text{if} \quad \frac{\dot{\phi}^2}{2} \ll V(\phi) \\ \frac{3\dot{a}^2}{a^2} &= \frac{1}{M_{\text{pl}}^2} \left(\frac{\dot{\phi}^2}{2} + V(\phi) \right) \approx \frac{V(\phi)}{M_{\text{pl}}^2} \end{aligned}$$

The background – inflation

$$\begin{split} \rho &= \frac{\dot{\phi}^2}{2} + V(\phi), \ p = \frac{\dot{\phi}^2}{2} - V(\phi) \\ \rho &\approx -p \quad \text{if} \quad \frac{\dot{\phi}^2}{2} \ll V(\phi) \\ \frac{3\dot{a}^2}{a^2} &:= 3H^2 = \frac{1}{M_{\text{pl}}^2} \left(\frac{\dot{\phi}^2}{2} + V(\phi)\right) \approx \frac{V(\phi)}{M_{\text{pl}}^2} \\ a(t) \propto e^{Ht} \quad \text{if} \quad \epsilon := \frac{\dot{\phi}^2}{2H^2 M_{\text{pl}}^2}, \eta := \frac{\dot{\epsilon}}{H\epsilon} \ll 1 \end{split}$$

The background – inflation



The background – radiation, matter domination

$$p=w\rho$$
 , $\nabla_{\mu}T^{\mu}_{0}\rightarrow\dot{\rho}+3H(\rho+p)=0$
$$\rho\propto\frac{1}{a^{3(1+w)}}$$

 $a(t) \propto t^{1/2}$ if w = 1/3 (radiation domination) $a(t) \propto t^{2/3}$ if w = 0 (matter domination)

$$G_{\mu\nu} = 8\pi G_N T^{\mu}_{\nu}$$

Inflation, thermalization, radiation domination, matter domination, dark energy domination...

Perturbations – from quantum fields to galaxies

$$\delta G_{\mu\nu} = 8\pi G_N \delta T^{\mu}_{\nu}$$

perturbations:
$$g_{\mu\nu} = g^{(0)}_{\mu\nu} + \delta g_{\mu\nu}$$

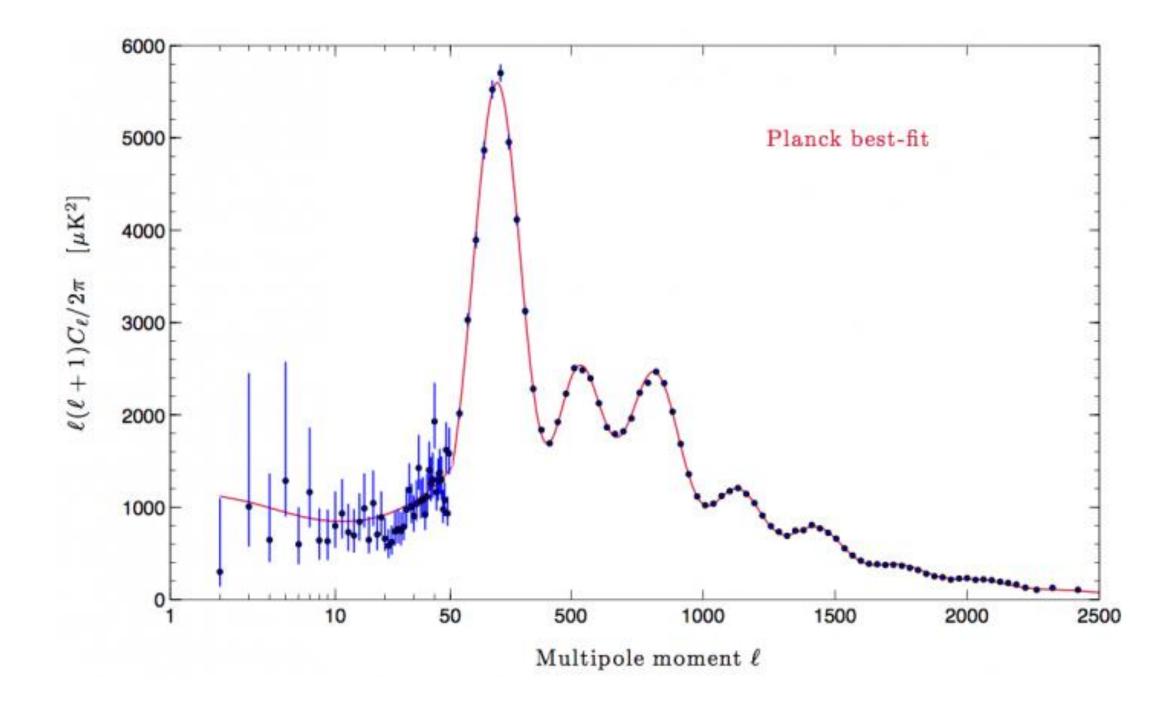
To date, our *cleanest* probe of fluctuations in the early universe has been the CMB

• Black body spectrum of 2.7 K with $\frac{\Delta I_{\nu}}{I_{\nu}} \leq 10^{-5}$

• Angular anisotropies $\frac{\Delta T}{T} \sim 10^{-5}$

What is the information content of the CMB?

- Temperature (T) and polarization (E,B) in each direction $\leftrightarrow 10^6$ `pixels' in the sky.
- Spectrum of incident photons in a given direction (new information only w/ deviations from blackbody).



What is the information content of the CMB?

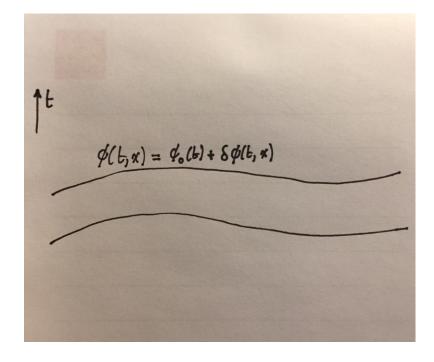
- For T, radio sources and (SZ) clusters start to dominate at $\ell \sim 2500$
- For E, foregrounds subdominant until $\ell\sim 5000$
- Damping tail to be measured more precisely (SPTPol, ACTPol, CMB S4...)
- Forecast $\sum_{\nu} m_{\nu} \sim 0.05 \text{ eV}$
- Cosmological measurement of a BSM parameter? $\mathcal{L} \supset \frac{H^{\dagger}H}{\Lambda} \bar{\psi} \psi; \quad \Lambda \sim 10^{16} \text{GeV}$

$$\langle \frac{\delta T}{T}(\vec{n}_1) \frac{\delta T}{T}(\vec{n}_2) \rangle \rightarrow \langle \mathcal{R}(\vec{k}_1) \mathcal{R}(\vec{k}_2) \rangle$$

 $10^9 \rightarrow 10^6$ modes... information is highly compressed!

$$\mathcal{L}_{\text{tot}} = \frac{M_{\text{pl}}^2}{2}R + \dots + \mathcal{L}(\phi, \nabla\phi, \nabla^2\phi, \dots)$$

 ϕ_0



$$\phi(x,t) = \phi_0(t) + \delta\phi(t,x)$$

$$t \rightarrow t + \pi$$

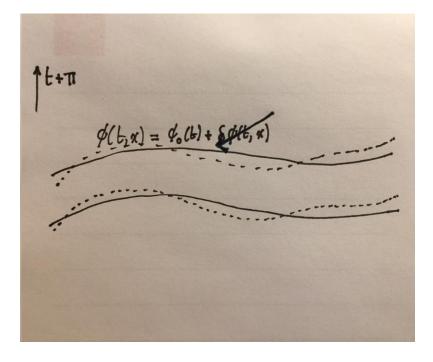
$$+ \delta\phi(t,x) \rightarrow \phi_0 + \delta\phi(t,x) - \dot{\phi}_0\pi \equiv \phi_0(t)$$

$$ds^2 = -N^2 dt^2 + h_{ij}(dx^i + N^i dt)(dx^j + N^j dt)$$

$$h_{ij} = a^2(t)e^{2\mathcal{R}}\delta_{ij}$$

$$\mathcal{L}_{\text{tot}} = \frac{M_{\text{pl}}^2}{2}R + \dots + \mathcal{L}(\phi, \nabla\phi, \nabla^2\phi, \dots)$$

 ϕ_0



$$\phi(x,t) = \phi_0(t) + \delta\phi(t,x)$$

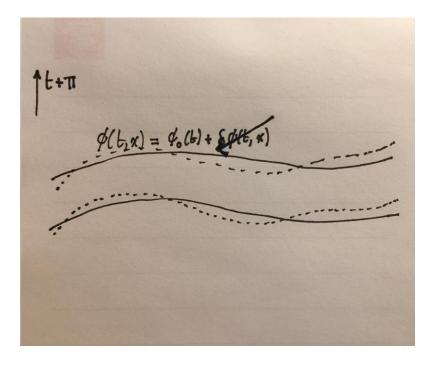
$$t \rightarrow t + \pi$$

$$+ \delta\phi(t,x) \rightarrow \phi_0 + \delta\phi(t,x) - \dot{\phi}_0\pi \equiv \phi_0(t)$$

$$ds^2 = -N^2 dt^2 + h_{ij} (dx^i + N^i dt) (dx^j + N^j dt)$$

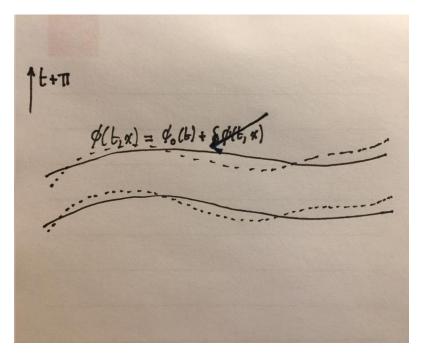
$$h_{ij} = a^2(t) e^{2\mathcal{R}} \delta_{ij}$$

Q) Where did the scalar perturbation go?



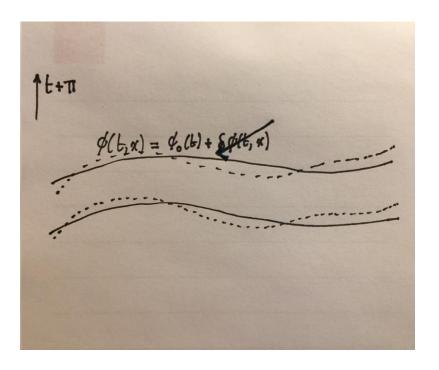
$$\begin{split} \phi(x,t) &= \phi_0(t) + \delta\phi(t,x) \\ t &\to t + \pi \\ \phi_0 + \delta\phi(t,x) \to \phi_0 + \delta\phi(t,x) - \dot{\phi}_0\pi \equiv \phi_0(t) \\ ds^2 &= -N^2 dt^2 + h_{ij} (dx^i + N^i dt) (dx^j + N^j dt) \\ h_{ij} &= a^2(t) e^{2\mathcal{R}} \delta_{ij} \end{split}$$

A) It got `eaten' by the metric, which now propagates a longitudinal polarization...



 $\phi(x,t) = \phi_0(t) + \delta\phi(t,x)$ $t \rightarrow t + \pi$ $\phi_0 + \delta\phi(t,x) \rightarrow \phi_0 + \delta\phi(t,x) - \dot{\phi}_0\pi \equiv \phi_0(t)$ $ds^2 = -N^2 dt^2 + h_{ij}(dx^i + N^i dt)(dx^j + N^j dt)$ $h_{ij} = a^2(t)e^{\Re}\delta_{ij}$

Since \mathcal{R} is a Goldstone, \mathcal{R} = const. will *always* be a solution for $k \ll 1$ to any order in perturbation theory since only derivative interactions. This is what imprints anisotropies on the CMB...



$$\phi(x,t) = \phi_0(t) + \delta\phi(t,x)$$

$$t \rightarrow t + \pi$$

$$\phi_0 + \delta\phi(t,x) \rightarrow \phi_0 + \delta\phi(t,x) - \dot{\phi}_0\pi \equiv \phi_0(t)$$

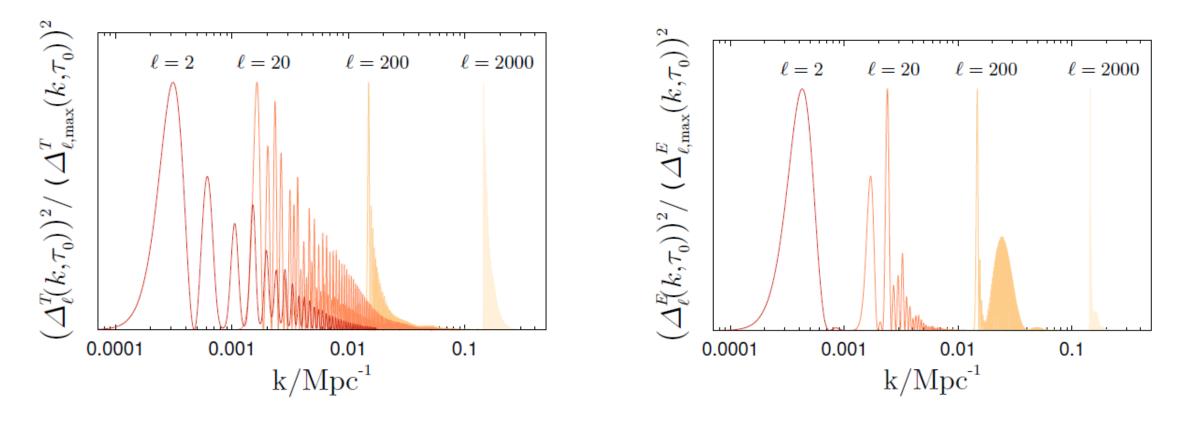
$$ds^2 = -N^2 dt^2 + h_{ij}(dx^i + N^i dt)(dx^j + N^j dt)$$

$$h_{ij} = a^2(t)e^{\Re}\delta_{ij}$$

$$2\pi^2 \delta^3 (\vec{k}_1 + \vec{k}_2) \mathcal{P}_{\mathcal{R}}(k_1) = k_1^3 \langle \mathcal{R}(\vec{k}_1) \mathcal{R}(\vec{k}_2) \rangle$$
$$\frac{\Delta \widehat{T}}{\widehat{T}}(\vec{n}) = \sum_{\ell m} a_{\ell m}^T Y_{\ell m}(\vec{n}) \qquad |\Psi\rangle = |0\rangle$$

 $\langle a^X_{\ell m} a^{Y*}_{\ell' m'} \rangle = C^{XY}_{\ell} \delta_{\ell\ell'} \delta_{mm'}$

$$C_{\ell}^{XY} = \frac{1}{2\pi^2} \int d\ln k \, \Delta_{\ell}^X(k,\tau_0) \Delta_{\ell}^Y(k,\tau_0) \mathcal{P}_{\mathcal{R}}(k)$$
$$\Delta_{\ell}^X(k,\tau_0) = \int_{\tau_{\text{ini}}}^{\tau_0} d\tau \, S^X(k,\tau) j_{\ell}(k(\tau-\tau_0))$$
$$\uparrow \qquad \uparrow$$
non-primordial cosmology geometry



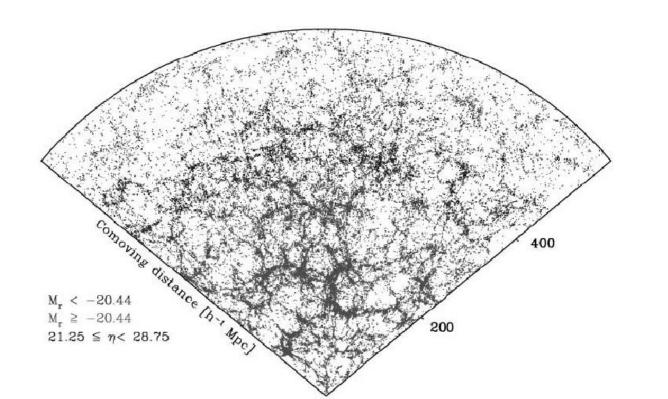
Are interesting things hiding in plain sight?

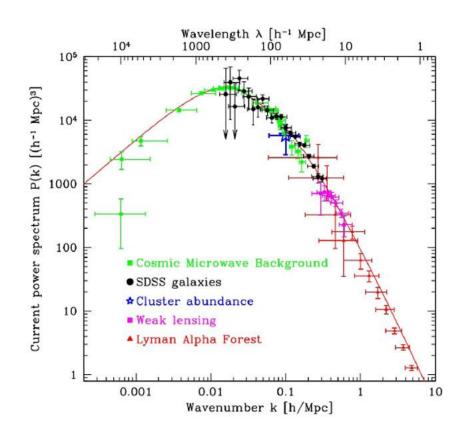
- All cosmological observations to date are consistent with adiabatic, Gaussian and nearly scale invariant initial conditions.
 - Evidence of a particular symmetry breaking pattern in the very early universe (with a close to vanishing order parameter $\epsilon = -\dot{H}/H^2$).
- Widely accepted as confirmation of the inflationary paradigm.

Large Scale Structure

$$\delta := \frac{\delta \rho}{\rho} \propto \nabla^2 \mathcal{R} \qquad \langle \delta(\vec{k}_1) \delta(\vec{k}_2) \rangle = (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2) P_m(k_1)$$

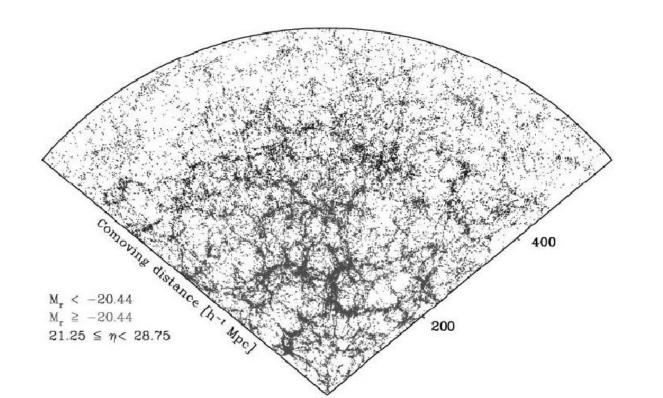
matter power spectrum

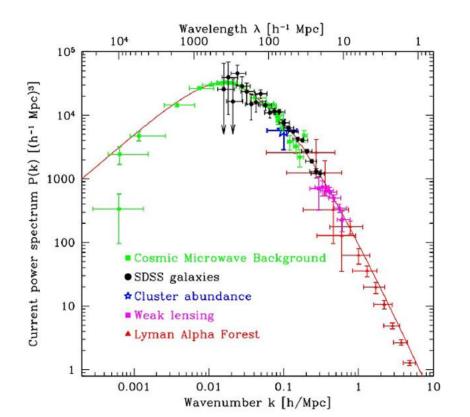




Large Scale Structure

$$\begin{split} \delta &:= \frac{\delta \rho}{\rho} \propto \nabla^2 \mathcal{R} \qquad \langle \delta(\vec{k}_1) \delta(\vec{k}_2) \rangle = (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2) P_m(k_1) \\ \delta_{\text{galaxies}} &= f(\delta) \text{, linear bias} \rightarrow \delta_g = b(z) \delta \end{split}$$





This concludes the lightning tour, if you want more reading/ detailed references, ask me!

