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OUTLINE
• Motivation and Overview 
• Decoupling and quantifying theoretical error 
• Effective field theories & a toy model 

• Particle physics 
• Known unknowns and unknown unknowns 
• Technical naturalness? 

• Gravity and cosmology 
• Time-dependence and EFTs 

• Relevance to present puzzles 
• A brief cold shower 
• Inflation, Black holes, Dark matter and Dark energy
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DECOUPLING

• Decoupling: most details of small-distance physics are not needed when 
understanding long-distance physics (this is why science is possible)  

• It turns out that QFT very generally shares this property: how to see it 
explicitly? Can it be exploited to simplify calculations? 
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ACCURACY OF CALCULATIONS
• Some predictions work too well 

• eg superconductivity relies on 
electrons pairing into Cooper pairs: 
• neglect Coulomb interaction 
• keep interactions via lattice ions 
• predictions work at 10% level
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RENORMALIZATION
• Renormalization: Why does it 

make sense to subtract 
infinities and then compare 
with experiment to 10 decimal 
places?

aμ = 1159652188.4(4.3) 10−12 (exp)

aμ = 1159652140(27.1) 10−12 (th)

e3 ∫
d4p

(2π)4

1
(p + q + m)2(p + q)2

∼ e ( e
4π )

2

[∫
d4p
p4

+ q∫
d4p
p5

+ ⋯]

ℒint = ieAμψγμψ
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RENORMALIZATION

• Renormalizable: don’t need 
new parameters beyond “e” 
and “m” for other observables

e4 ∫
d4p

(2π)4

1
(p + q + m)4 ∼ ( e2

4π )
2

q4 ∫
d4p
p8

+ ⋯

∼ ( e2

4π )
2

q4

m4
+ ⋯

ℒint = ieAμψγμψ
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RENORMALIZATION

• Renormalizable: higher orders 
do not make things worse

e6 ∫ ( d4p
(2π)4 )

2
1

(p + q + m)6(p + q)2
∼ e2 ( e

4π )
4

q4 ∫
d4p
p8

+ ⋯

∼ e2 ( e
4π )

4 q4

m4
+ ⋯

ℒint = ieAμψγμψ
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RENORMALIZATION
• Do nonrenormalizable theories 

(eg GR) make sense? If not 
why is comparison with 
observations meaningful?

·P = − 2.408(10) 10−12 (exp)
·P = − 2.40243(5) 10−12 (th)
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RENORMALIZATION
• Nonrenormalizable theories 

have couplings with dimension 
inverse power of mass

ℒGR = (∂h)2 +
1

Mp
h(∂h)2 +

1
M2

p
h2(∂h)2 + ⋯

𝒜tree ≃
q2

M2
p ( = 8πiG

s3

tu )

gμν = ημν +
hμν

Mp

De Witt
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RENORMALIZATION
• Higher orders diverge worse 

and worse 
• New types of divergences ℒ = (∂h)2 +

1
Mp

h(∂h)2 +
1

M2
p

h2(∂h)2 + ⋯

𝒜loop ≃
q2

M4
p ∫

d4p
(2π)4

(p + q)6

(p + q)8

≃ ( q
4πM2

p )
2

[∫
d4p
p2

+ q2 ∫
d4p
p4

+ ⋯]



Nordic Winter School 2019

TOY MODEL
• Effective field theories (EFTs) are 

the formalism for addressing 
these questions. 
• Designed to exploit 

hierarchies of scale m/M as 
efficiently as possible. 

• Toy model: concrete example 
that illustrates the construction 
•           is semiclassical limit

ℒ = − (∂ϕ)*(∂ϕ) − V(ϕ*ϕ)

V(ϕ*ϕ) =
λ
4

(ϕ*ϕ − v2)2

ϕ = v +
1

2 ( ̂ϕR + i ̂ϕI)
λ ≪ 1

m2
R = λv2 m2

I = 0
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TOY MODEL
• Can calculate eg tree level 

scattering of massless particles ℒ = − (∂ϕ)*(∂ϕ) − V(ϕ*ϕ)

V(ϕ*ϕ) =
λ
4

(ϕ*ϕ − v2)2

𝒜 = −
3iλ
2

+
i(λv)2

2m2
R

[ 1
1 + 2p ⋅ q/m2

R

+
1

1 − 2q ⋅ q′�/m2
R

+
1

1 − 2p ⋅ q′�/m2
R

] + 𝒪 ( λ
4π )

2

ϕ*ϕ − v2 = 2 vϕR +
1
2

(ϕ2
R + ϕ2

I )
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TOY MODEL
• Low-energy limit: E << mR

𝒜 = −
3iλ
2

+
i(λv)2

2m2
R

[ 1
1 + 2p ⋅ q/m2

R

+
1

1 − 2q ⋅ q′�/m2
R

+
1

1 − 2p ⋅ q′�/m2
R

]
≃ 2iλ [ (p ⋅ q)2 + (p ⋅ q′�)2 + (q ⋅ q′�)2

m4
R ] + 𝒪 [λ ( q

mR
)

6

] + 𝒪 ( λ
4π )

2

• Amplitude suppressed by (E/mR)4 in low-energy limit. What if E/mR smaller 
than coupling? Is dominant low-energy contribution at one loop?
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TOY MODEL
• This low-energy amplitude

ℒ = −
1
2

∂μφ̂ ∂μφ̂ +
λ

4m4
R

(∂μφ̂ ∂μφ̂)(∂νφ̂ ∂νφ̂)

is what would have been obtained at lowest order from the following 
lagrangian 

𝒜 ≃ 2iλ [ (p ⋅ q)2 + (p ⋅ q′�)2 + (q ⋅ q′�)2

m4
R ] + 𝒪 (m−6

R )
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TOY MODEL
• Turns out 2 to 2 amplitude is proportional to (E/mR)4 at each loop. N to 

N’ scattering is proportional to (E/mR)N+N’. Easy way to see why? 

• All other interactions are suppressed by more powers of E/mR. 
(Suppression of low-energy scattering better than a tree level result.)

ℒ = −
1
2

∂μφ̂ ∂μφ̂ + Geff (∂μφ̂ ∂μφ̂)(∂νφ̂ ∂νφ̂)

• Obvious once recognized at low energies all massless scattering (also 
N to N’) is governed by `effective lagrangian’

Geff =
λ

4m4
R

[1 + 𝒪(λ)]
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TOY MODEL
Two steps to see why:  

• Expand in powers of E/M as early as possible.  
• Do so by integrating out heavy particle to obtain effective 

lagrangian (applicable to all low-energy observables), rather than 
observable by observable. 

• Make symmetries manifest in this effective lagrangian
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SYMMETRIES
• Toy model has U(1) symmetry

ℒ = − (∂ϕ)*(∂ϕ) − V(ϕ*ϕ)

V(ϕ*ϕ) =
λ
4

(ϕ*ϕ − v2)2

ϕ = v +
1

2 ( ̂ϕR + i ̂ϕI)
m2

R = λv2 m2
I = 0

ϕ → eiθϕ

How to realize symmetry 
using only light field?



Nordic Winter School 2019

SYMMETRIES
• Redefine variables

ϕ = (v + χ) eiξ/v

ϕ → eiθϕ

Symmetry as realized on 
low-energy field is not linear

ξ → ξ + θv χ → χimplies

• Symmetry transformation

• Toy model lagrangian becomes

ℒ = (∂χ)2 + (1 +
χ
v )

2

(∂ξ)2 − V(χ)
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EFFECTIVE FIELD THEORIES
• To integrate out heavy particle: split fields into high- and low-energy 

parts (won’t be unique way to do this)
̂ϕ ↔ {Ĥ, L̂} where E(L) < Λ and E(H) > Λ

⟨L̂(x1)⋯L̂(xn)⟩ = ∫ 𝒟L̂𝒟Ĥ L̂(x1)⋯L̂(xn) exp (iS[L̂, Ĥ])
• Low-energy observables can be computed from

• Want to efficiently identify effects of heavy physics in powers of 1/M.
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EFFECTIVE FIELD THEORIES
• Want:

⟨L̂(x1)⋯L̂(xn)⟩ = ∫ 𝒟L̂ L̂(x1)⋯L̂(xn) exp (iSW[L̂])
• Then

exp (iSW[L̂]) = ∫ 𝒟Ĥ exp (iS[L̂, Ĥ])

• Any     dependence of SW cancels in < L(x1)…L(xn) >.Λ

⟨L̂(x1)⋯L̂(xn)⟩ = ∫ 𝒟L̂𝒟Ĥ L̂(x1)⋯L̂(xn) exp (iS[L̂, Ĥ])
• Define Wilson action:
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EFFECTIVE FIELD THEORIES
• The Wilson action defined by:

G(x − y) = ∫
d4p

(2π)4

1
p2 + M2

= [ 1
M2

+
□
M4

+ ⋯] δ4(x − y)

behaves “as if” it is the classical action for the low-energy theory.

exp (SW[L̂]) = ∫ 𝒟Ĥ exp (iS[L̂, Ĥ])

• SW defined this way would be nonlocal, BUT becomes local once 
expanded in powers of 1/M (consequence of uncertainty principle):
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EFFECTIVE FIELD THEORIES

G =
g2

M2

• Expanding propagator in 1/M gives local result: 
 

g

g
G

• New coupling is generically nonrenormalizable, but underlying theory 
could be renormalizable so must be predictive 
• Predictivity comes from compulsory low-energy approximation 
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EFFECTIVE FIELD THEORIES
• Not quite so simple as contracting a line once loops 

included (eg integrating out muons in QED) 
 

+ +
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EFFECTIVE FIELD THEORIES
• Circling back: renormalization. Recall definition of SW depends on cutoff

⟨L̂(x1)⋯L̂(xn)⟩ = ∫
Λ

𝒟L̂ L̂(x1)⋯L̂(xn) exp (iSW[L̂, Λ])
• But cutoff also enters into its use:

exp (iSW[L̂, Λ]) = ∫Λ
𝒟Ĥ exp (iS[L̂, Ĥ])

• Any     dependence of SW cancels in < L(x1)…L(xn) >: nothing depends 
on the cutoff!

Λ
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TOY MODEL RECAP
• Scattering of massless states is 

suppressed at each order in 
the loop expansion by powers 
of E/mR 

• This can be understood by 
building an EFT for the light 
(Goldstone) particle alone. 

• Low energy field nonlinearly 
realizes symmetry

ℒ = − (∂ϕ)*(∂ϕ) − V(ϕ*ϕ)

V(ϕ*ϕ) =
λ
4

(ϕ*ϕ − v2)2

ϕ = (v + χ) eiξ/v

ϕ → eiθϕ ξ → ξ + θv χ → χimplies
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TOY MODEL EFT
• Wilson action for the Toy Model must be invariant under shift 

symmetry, so built from only derivatives of the light field 
 SW[ξ + θ] = SW[ξ] ⇒ SW = SW[∂ξ]

ℒW = −
1
2

∂μξ ∂μξ + Geff (∂μξ ∂μξ)(∂νξ ∂νξ) + ⋯

• Could get G by integrating out heavy field, but 
better simply to “match”:  choose it to reproduce a 
result of the full theory (eg a scattering amplitude). 

Geff =
λ

4m4
R
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TOY MODEL EFT

□ ϕ =
λ
2

(ϕ*ϕ − v2)ϕ

• Consider the time-dependent solution:
ϕ = ϱ0 eiωt where ϱ0 = v2 +

2ω2

λ

with energy ε = ·ϕ* ·ϕ +
λ
4

(ϕ*ϕ − v2)2 = ω2 (v2 +
3ω2

λ )

Energy gain 
because field 
climbs the 
potential to 
balance 
centrifugal 
force

• To drive home how SW describes all low energy physics (and that EFT need 
not be restricted to expansions about vacuum configuration) consider time-
dependent solution to full theory’s field equation 
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TOY MODEL EFT

• This gives the field equation

with solution ξ

2v
= ωt

ℒW = −
1
2

∂μξ ∂μξ + Geff (∂μξ ∂μξ)(∂νξ ∂νξ) + ⋯

∂μ {∂μξ [1 − 4Geff (∂ξ)2 + ⋯]} = 0

• How does the EFT know about the radial field climbing the potential 
given there is no radial field in the EFT? 
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TOY MODEL EFT

which with the matched value for G becomes:

ε = ℋ = Π ·ξ − ℒ =
1
2

·ξ2 + 3Geff
·ξ4

ε = v2ω2 +
3ω4

λ

• Compute the energy of this solution within the EFT: 
 

Geff =
λ

4m4
R

in agreement with the full theory
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REDUNDANT INTERACTIONS
• What about other terms with same dimension (or less) and so 

same (or lower) power of 1/mR in its coefficient? 
 

e.g. ℒ = G1 (∂μξ) □ ∂μξ or G2 ∂μ∂νξ ∂μ∂νξ

δξ = G1 □ ξ

• These differ only by a total derivative (so are not independent) 
• The first can be removed to this order in 1/M with field redefinition 
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REDUNDANT INTERACTIONS
• Field redefinitions can be used to remove any term in the effective 

action that vanishes when evaluated at the solution to the lowest 
order field equations - for the Toy Model: 

 
□ ξ = 0

if S[ξ] = S0[ξ] + ϵS1[ξ] + ⋯ then when δξ = ϵ F[ξ]

δS[ξ] = ϵ∫ d4x
δS0

δξ(x)
F(ξ) + ⋯

which can be used to remove any term in S1 that vanishes using the 
e.o.m. of S0. 
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DIMENSIONAL REGULARIZATION
• Dimensional regularization does not introduce a new scale 

(apart from logs) 
 

∫
dDp

(2π)D [ p2A

(p2 + q2)B ] =
1

(4π)D/2 [ Γ(A + D/2)Γ(B − A − D/2)
Γ(B)Γ(D/2) ](q2)A−B+D/2

• Divergences arise as poles as D goes to 4 
• Convenient because it preserves symmetries (eg gauge 

invariance) broken by cutoffs, and simplifies dimensional reasoning 
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EFTS IN DIM REG
• Dimensionally regularize both the full theory and EFT 

 

• Renormalize in any convenient way (eg minimal subtraction) 
• Match the couplings in the EFT by demanding they give same 

observables as for the full theory 
• Any error introduced by keeping very high energy modes of 

light field is absorbed into the effective couplings.

ℒfull(χ, ξ) ℒEFT(ξ)
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POWER COUNTING
• The real power with EFTs comes beyond leading order in E/M.  

• Need an algorithm to systematically identify which interactions and 
which Feynman graphs must be included to any specific order.  

• When all the low-energy scales are similar in size this algorithm 
amounts to dimensional analysis of Feynman graphs 
• much simplest to do this using dimensional regularization.
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POWER COUNTING

• Consider (amputated) 
Feynman graph with  
• E external lines,  
• I internal lines  
• Vn vertices involving dn 

derivatives and fn fields 

• All such diagrams satisfy: 2I + E = ∑
n

fnVnL = 1 + I − ∑
n

Vn

ℒ = f 4 ∑
n

cn 𝒪n ( ∂
M

,
ξ
v )• Consider lagrangian of form 
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POWER COUNTING

• Vertices bring 

• Number of independent integrals I − ∑
n

Vn + 1 = L

Line Factor = [ M2v2

f4 ∫
d4p

(2π)4

1
p2 ]

I

• Internal lines bring: 

Vertex Factor = ∏
n [ f 4

vfn ( p
M )

dn

(2π)4 δ4(p)]
Vn
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POWER COUNTING

• Net power off 1/v:

−I + ∑ Vn = 1 − L

Line Factor = [ M2v2

f4 ∫
d4p

(2π)4

1
p2 ]

I

• Net power of f4: 

Vertex Factor = ∏
n [ f 4

vfn ( p
M )

dn

(2π)4 δ4(p)]
Vn

• In dimensional reg: p 
becomes q so net 
power of q, M is

−2I + ∑ fnVn = E

M4L ( q
M )

N N = 4L − 2I + ∑ dnVn

= 2 + 2L + ∑ (dn − 2)Vn
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POWER COUNTING

• For Toy Model

• Combining terms 

𝒜E(q) ∼
q2 f 4

M2 ( 1
v )

E

( Mq
4πf 2 )

2L

∏
n [cn ( q

M )
dn−2

]
Vn

f 2 = Mv M = mR

𝒜E(q) ∼ q2v2 ( 1
v )

E

( q
4πv )

2L

∏
n [cn ( q

mR
)

dn−2

]
Vn
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POWER COUNTING

• Notice always positive powers of q since dn is 2 or larger (actually 4 or 
larger in the toy model)  

• Interactions with no derivatives (ie scalar potential) are potentially 
dangerous at low energies 

𝒜E(q) ∼ q2v2 ( 1
v )

E

( q
4πv )

2L

∏
n [cn ( q

mR
)

dn−2

]
Vn
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POWER COUNTING FOR GRAVITY
• Aside: a similar expression can be derived for gravity: 

𝒜E(q) ∼ q2M2
p ( 1

Mp )
E

( q
4πMp )

2L

∏
dn≥4 ( q

Mp )
2

( q
m )

dn−4
Vn

• Coefficient of curvature cubed term is set by mass of particle 
integrated out, and smallest m wins in the denominator 

ℒ = −
M2

p

2
R + c1RμνλρRμνλρ +

c2

m2
RμνλρRλραβRαβ

μν + ⋯
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POWER COUNTING FOR GRAVITY

• Dominant contribution: L=0 and V_n = 0 for dn > 2 (ie classical GR) 

𝒜E(q) ∼ q2M2
p ( 1

Mp )
E

( q
4πMp )

2L

∏
dn≥4 ( q

Mp )
2

( q
m )

dn−4
Vn

• Next-to-leading contributions: L = 1 and V_n =0 for dn >2 (ie 1-loop GR);         
or L = 0 and V_n = 1 for d_n = 4 term (tree level with one insertion of R2 term) 

ℒ = −
M2

p

2
R + c1RμνλρRμνλρ +

c2

m2
RμνλρRλραβRαβ

μν + ⋯

• Size of quantum corrections:  ( q
4πMp )

2
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UNITARITY BOUNDS

• Could gauge the U(1) symmetry to get a gauge boson with mass:

• For toy model power counting: 

𝒜E(q) ∼ q2v2 ( 1
v )

E

( q
4πv )

2L

∏
n [cn ( q

mR
)

dn−2

]
Vn

• Massive gauge boson is in the low energy theory if 

M2
A = 2g2v2

g2 ≪ λ
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UNITARITY BOUNDS

• Theory breaks down when 

• For toy model power counting: 

𝒜E(q) ∼ q2v2 ( 1
v )

E

( q
4πv )

2L

∏
n [cn ( q

mR
)

dn−2

]
Vn

• Often quoted as a “unitarity bound”: when low-energy cross section 
exceeds unitarity limit

q ∼ 4πv ∼
4πMA

g
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ZERO DERIVATIVE INTERACTIONS

• What about mass term for light particle

• For toy model power counting: 

𝒜E(q) ∼ q2v2 ( 1
v )

E

( q
4πv )

2L

∏
n [cn ( q

mR
)

dn−2

]
Vn

• Mass insertions have dn = 0 and come with factors 

V = m2ϕ2 ⇒ cn = m2v2/f 4 = m2/m2
R

(m2/m2
R )(m2

R /q2) = m2/q2
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ZERO DERIVATIVE INTERACTIONS

• For q ~ m the kinematics becomes non-relativistic and so path 
integral becomes dominated by Schrodinger action, which scales t 
and x differently

• For relativistic particles q >> m so perturbing in m/q is OK.  

• Leads to different form of low energy theory (eg NRQED or NRQCD or 
HQET) and it is the relevant interaction that signals the instability 
towards this transition at low energies.
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RELEVANT INTERACTIONS
• Normally a relevant interaction signals a transition to a 

new scaling regime

xμ → x̃μ = sxμ

So mass term becomes more important as s tends to 
zero: although can perturb in the mass for relativistic 
problems, once q ~ m nonrelativistic scaling takes over

ϕ → ϕ̃ = ϕ/s

S = ∫ d4x[(∂ϕ)2 + m2ϕ2] = ∫ d4x̃ [(∂̃ϕ̃)2 +
m2

s2
ϕ̃2]



EFTS IN PARTICLE PHYSICS
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RAYLEIGH SCATTERING
• As a first practical example of EFT methods consider photons scattering from 

a neutral body much smaller than wavelength.
a ≪ λ

• Lowest dimension interaction between photon and neutral field is

ℒ = cΨ*Ψ ∇ ⋅ E +
g
2

Ψ*Ψ E2 + ⋯

where first term is redundant and g has dimensions (length)3 and is called the object’s 
polarizability. Amplitude and cross section for photon scattering from neutral body then is

𝒜 = igkk′�ϵ ⋅ ϵ′�
dσ
dΩ

=
g2k4

32π2
(1 + cos2 θ) σ =

g2k4

6π
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QED (BELOW ELECTRON MASS)
• Another illustrative example of EFTs at work is QED

• Most general possible low-energy interactions of these kinds of fields

ℒ = −
1
4

FμνFμν − ψ(γμDμ + m)ψ − eAμJμ

• Integrate out the electron

ℒeff = − eAμJμ −
1
4

Z FμνFμν +
b1

m4 [(FμνFμν)2 +
7
4

(FμνF̃μν)2] + ⋯
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QED (BELOW ELECTRON MASS)

• Compute Z using vacuum polarization graph

• Integrate out the electron

ℒeff = − eAμJμ −
1
4

Z FμνFμν +
b1

m4 [(FμνFμν)2 +
7
4

(FμνF̃μν)2] + ⋯

Z = 1 −
α
3π

1
ϵ

− γk + ln ( m2

μ2 ) (D = 4 − 2ϵ)

b1 =
α2

90

• Compute b1 using box graph
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QED (BELOW ELECTRON MASS)
• The four-photon term provides the simplest way to compute low-energy 

photon-photon scattering cross section

• There are also redundant operators

Fμν □ Fμν ∝ eFμν∂μJν ≃ − e2JμJμ

dσ
dΩ

≃
139
4π2 ( α2

90 )
2

( E6
cm

m8 ) (3 + cos2 θ)2

∂μFμν∂λFλν ∝ e2JνJν

• In this case redundant interactions generate current-current 
interactions, whose presence can be ignored only at places where 
there are no currents
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QED (BELOW ELECTRON MASS)
• The Maxwell term is also interesting, must rescale

ℒeff = − ephysA′�μJμ −
1
4

F′�μνFμν′� + ⋯

Aμ = Z−1/2A′�μ

• Upshot: low-energy influence of electron is suppressed by m only after 
appropriate redefinition of e. (Precise statement of decoupling.)

α• Corrections to macroscopic classical E+M given by powers of E/m 
rather than     .  This is at root of why Rutherford scattering is same 
in classical and quantum calculation. 

e = Z1/2ephys = ephys 1 −
α
6π

1
ϵ

− γk + ln ( m2

μ2 )
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QED (ABOVE ELECTRON MASS)
• For E bigger than m, the renormalization Z gives information about 

large logs

• In modified minimal subtraction remove just first two terms

Aμ = Z−1/2
MS A′ �μ

• Corresponding charge is not itself physical

Z = 1 −
α
3π

1
ϵ

− γk + ln ( m2

μ2 )

ZMS = 1 −
α
3π ( 1

ϵ
− γk)

αMS = ( ZMS

Z ) αphys = αphys 1 +
α
3π

ln ( m2

μ2 )
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QED (ABOVE ELECTRON MASS)
• Since physical charge cannot depend on mu, must have

• Because MSbar is mass-independent its RG evolution is easy to solve

with 

μ2 ∂αMS

∂μ2
= −

α2
MS

3π

1
αMS(μ)

=
1

αMS(μ0)
−

1
3π

ln ( μ2

μ2
0 ) αMS(μ = m) = αphys

This is RG improved in that it holds even when both terms on RHS are similar size
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QED (ABOVE ELECTRON MASS)
• Why do we care? Consider E >> m limit of scattering

• Cannot Taylor expand F due to log(m/E) singularities, but these are not 
present when using MSbar couplings. Identify log(E/m) by setting mu=E in

σ(E, me, αphys) =
1

E2
F ( me

E
, αphys, f, θk)

Eγ = fE with 1 > f ≫ m /E

where there is a sum over soft photons up to energies 

σ(E, me, αphys) =
1

E2 [F0 ( E
μ

, αMS(μ), f, θk) + 𝒪(m /E)]
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QED (INCLUDING MUONS)
• Next consider QED at energies above the muon mass

• Most general possible low-energy interactions of these kinds of fields

ℒ = −
1
4

FμνFμν − ψ(γμDμ + m)ψ − χ(γμDμ + M)χ

• Integrate out the muon gives

ℒeff = −
1
4

Z FμνFμν − Ze ψ(γμDμ + Zmm)ψ +
b1

M4 [(FμνFμν)2 +
7
4

(FμνF̃μν)2] + ⋯
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QED (INCLUDING MUONS)
• Integrating out muon gives Fmn4 term with coefficient M-4. Integrating 

out the electron gives m-4. At lower energies smallest mass wins.

Barring selection rules should expect smallest mass to dominate in 
denominators, but largest mass wins in numerators. From that point 
of view the large size of the Planck mass makes sense

ℒ ⊃ −
1
2

(m2 + M2 + M2
p)R + ⋯

ℒeff ⊃ b1 ( 1
M4

+
1

m4 ) [(FμνFμν)2 +
7
4

(FμνF̃μν)2] + ⋯

while the cosmological constant is a puzzle…
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QED (INCLUDING MUONS)
• In minimal subtraction both muons and electrons contribute to the 

running of the EM coupling

and so

αMS = ( ZMS

Z ) αphys = αphys 1 +
α
3π

ln ( m2

μ2 ) +
α
3π

ln ( m2

M2 )
μ2 ∂αMS

∂μ2
= −

2α2
MS

3π

1
αMS(μ)

=
1

αMS(μ0)
−

2
3π

ln ( μ2

μ2
0 ) with αMS(μ = mM) = αphys
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QED (INCLUDING MUONS)
• Minimal subtraction makes it seem as if muons play a role in running 

also at energies below the muon mass.

better is to make its decoupling manifest: decoupling subtraction.

αMS = ( ZMS

Z ) αphys = αphys 1 +
α
3π

ln ( m2

μ2 ) +
α
3π

ln ( m2

M2 )

• Can have decoupling and the convenience of MSbar running by 
using MSbar for EFT with electrons and muons above muon mass; 
MSbar for EFT with electrons only between m and M.  
• Match the coupling constant across the thresholds as particle is 

integrated out.
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QED (INCLUDING MUONS)
• Decoupling subtraction:

μ2 ∂αMS

∂μ2
= −

α2
MS

3π

1
αMS(μ)

=
1

αphys
−

1
3π

ln ( M2

m2 ) −
2

3π
ln ( μ2

m2 )

αMS(μ = m) = αphys

μ2 ∂αMS

∂μ2
= −

2α2
MS

3π

1
αMS(μ)

=
1

αphys
−

1
3π

ln ( μ2

μ2
0 )

If m < mu < M:

If mu > M
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WEAK INTERACTIONS
• The weak interactions were a starting point for understanding EFTs. 

Integrating out the W boson leads to the Fermi lagrangian

GF

2
=

g2

8M2
WℒF = 2GF ψγμγLψ ψγμγLψ

• Do not also expect weak interactions to get corrections proportional 
to smaller masses as lighter fields are integrated out. 
• Selection rules (parity, flavour transformations, etc) always require 

at least one W propagator, so effective interactions need not 
always be dominated by the lightest particle integrated out.

ℒsm ⊃ gWμψγμγLψ+c.c.
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WEAK INTERACTIONS
• The possibility of having lighter masses can lead to surprises, 

however. eg:

σ(νν → γγγ) ∼ ( α
4π )

3 G2
F E10

m8
e

σ(νν → γγ) ∼ G4
F E6
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WEAK INTERACTIONS
• Integrating out the W boson gives

C(2)
ab (μ) =

2 2 α GF

πM2
W

1 +
4
3

ln ( M2
W

μ2 ) δab

ℒeff
ν1,2γ = C(1)

ab Mab
μν Fμν + C(2)

ab Mab
μν FμλFλ

ν + ℒF

Mab
μν := iνaγμγL∂ννb − i∂ννaγμγLνb

• Symmetric derivative on neutrino leads to redundant operators 
• Chirality requires odd number of gamma matrices
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WEAK INTERACTIONS
• Evolving down to lower scales focus on graph involving only one 

factor of Mw-2

ℒeff
ν3γ =

e vab α
90π m4

e ( GF

2 )[5 (Nab
μν Fμν)(Fλρ Fλρ) − 14 (Nab

μν Fνλ Fλρ Fρμ)]

vab := vab ee(μ = me) = U*ea Ueb + δab (−
1
2

+ 2s2
w)

Nab
αβ = ∂α(νaγβγLνb) − (α ↔ β)

• Redundant for 1,2 photons since involves derivative of neutrino current
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UNKOWN UV THEORY
• Low-energy degrees of freedom can be qualitatively 

different from high-energy ones 
• e.g. pions, or atoms, or planets can be ‘elementary’ fields at 

low energies while their constituents are ‘elementary’ at high 
energies 

   N N

π

𝐿𝑒𝑓𝑓 =
1
𝐹

𝜕𝜇𝜋(𝑁𝛾𝜇𝑁)

if  E < 4π F ~ 1 GeV 
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TECHNICAL NATURALNESS
• The SM is most general renormalizable theory built from 

given particle content and gauge symmetry 
• smells like a low-energy EFT 

• But SM also contains relevant interactions (those that get larger 
at low energies) like

ℒSM ⊃ − ζ + w2H†H

Is this a problem?
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TECHNICAL NATURALNESS
• Imagine embedding the SM into some UV theory, for 

simplicity take it simply to be a singlet scalar, S, of mass M 
• Compute the Higgs mass both in the EFT (the SM) below M and in the 

UV theory above M 

ℒ = ℒSM −
1
2

(∂S)2 −
1
2

M2S2 −
1
2

g2S2H†H + ⋯

m2
H = 2w2

he(μ) + (SM loops) −
g2M2

8π2
ln ( M2

μ2 )
= 2w2

le(μ) + (SM loops)
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TECHNICAL NATURALNESS
• The effective constant wle is order the weak scale always, while 

whe is order M, everywhere except precisely at mu = M 

• The same holds for higher thresholds: must adjust initial UV 
coupling with high precision to arrive at low energies with the 
SM value. 

• This is not how hierarchies of scale usually work: normally if a 
parameter is small, its small size can be understood at any scale 
one chooses to ask: eg why are atoms larger than nuclei?
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TECHNICAL NATURALNESS
• “Technically natural” 

understanding of why a 
parameter is small: 
• why is it small in the 

UV theory? 
• why does it stay 

small as one 
integrates out scales 
between the UV and 
measurement scale?

 

M ~ mµ 

M ∼ me 

M ~ ΛQCD 

α̂m̂e ≪ ΛQCD

αme ≪ mp

δme ∼ α ln (
mμ

me )



Nordic Winter School 2019

TECHNICAL NATURALNESS
• The small size of the 

Higgs mass relative to 
Planck scale is not 
automatically 
technically natural: 
• add fermions 
• make Higgs 

composite 
• deny Mp is a scale

w ∼ M̂

w ∼ mH

w ∼ M

 

M ~ 1011 GeV 

Mw ~ 102 GeV 

Mp ~1018 GeV 
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TECHNICAL NATURALNESS
• Threat to the 

naturalness argument: 
cosmological 
constant is small, and 
the scales where it is 
unnatural are well 
understood. 

ζ ∼ M4
W

ζ ∼ (0.01eV )4

ζ ∼ m4
e

 

me ~ 106 eV 

mν ∼ 10-2 eV 

mw ~1011 eV 

mµ ~ 108 eV 

 

gµν 

e 

γ 

γ 

 

gµν 

e 


