Lecture 4: future facilities at CERN

S.Xella

Future @ CERN

HL-LHC

LHC / HL-LHC Plan

HL-LHC

2012 ATLAS event, with 25 reconstructed vertices (µ=25)

At the HL-LHC (upgrade phase 2) we expect μ =200 within a similar space => 10 more dots between each dot in figure above

HL-LHC

Simulated HL-LHC event, with 200 reconstructed vertices (µ=200)

At the HL-LHC (upgrade phase 2) we expect μ =200 within a similar space => 10 more dots between each dot in figure above

ATLAS upgrades HL-LHC

Performance remains similar to Run-2

Higgs physics

ATL-PHYS-PUB-2014-016

Dashed areas indicate Δµ/µ

limit λ/λ_{SM}

Decay Channel	Branching Ratio	Total Yield (3000 fb ⁻¹)
$b\overline{b} + b\overline{b}$	33%	40,000
$b\overline{b} + W^+W^-$	25%	31,000
 $b\overline{b} + \tau^+\tau^-$	7.3%	8,900
$ZZ + b\overline{b}$	3.1%	3,800
$W^+W^-+\tau^+\tau^-$	2.7%	3,300
$ZZ + W^+W^-$	1.1%	1,300
$\gamma\gamma + b\overline{b}$	0.26%	320
$\gamma\gamma + \gamma\gamma$	0.0010%	1.2

-3.5 to 11	ATL-PHYS-PUB-2016-024
-4 to 12	ATL-PHYS-PUB-2015-046
-1 to 7	ATL-PHYS-PUB-2017-001

hopefully combining all channels we can measure lambda

Vector-boson scattering

Sensitive test of the vector boson vertices in Standard Model

- clean observation of W±W±, ZZ and WZ scattering above backgrounds
- Sensitive to dimension-8 operators at scales of ~1 TeV (eg arXiv:1802.02366)

significance of EWK W±W±jj production ~11 σ ⇒cross section precision $\Delta\sigma/\sigma = 5.9\%$

ZZ production

W[±]W[±] jj production: η_{jet}

Future @ CERN

FCC

https://fcc.web.cern.ch/

FCC-ee will happen first

Table 1: Target luminosities, events/year, and years needed to complete the W, Z, H and top programs at FCC-ee. $[\mathscr{L} = 10^{35} \text{ cm}^{-2} \text{ s}^{-1} \text{ corresponds to } \mathscr{L}_{int} = 1 \text{ ab}^{-1}/\text{yr} \text{ for } 1 \text{ yr} = 10^7 \text{ s}].$

FCC-ee

parameter	Z	W	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
arc cell optics	60/60	90/90	90/90	90/90
momentum compaction [10-5]	1.48	0.73	0.73	0.73
horizontal emittance [nm]	0.27	0.28	0.63	1.45
vertical emittance [pm]	1.0	1.0	1.3	2.7
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	2
length of interaction area [mm]	0.42	0.5	0.9	1.99
tunes, half-ring (x, y, s)	(0.569, 0.61, 0.0125)	(0.577, 0.61, 0.0115)	(0.565, 0.60, 0.0180)	(0.553, 0.59, 0.0350)
longitudinal damping time [ms]	414	77	23	6.6
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.10	0.44	2.0	10.93
RF acceptance [%]	1.9	1.9	2.3	4.9
energy acceptance [%]	1.3	1.3	1.5	2.5
energy spread (SR / BS) [%]	0.038 / 0.132	0.066 / 0.153	0.099 / 0.151	0.15 / 0.20
bunch length (SR / BS) [mm]	3.5 / 12.1	3.3 / 7.65	3.15 / 4.9	2.5 / 3.3
Piwinski angle (SR / BS)	8.2 / 28.5	6.6 / 15.3	3.4 / 5.3	1.39 / 1.60
bunch intensity [1011]	1.7	1.5	1.5	2.8
no. of bunches / beam	16640	2000	393	39
beam current [mA]	1390	147	29	5.4
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	230	32	8	1.5
beam-beam parameter (x / y)	0.004 / 0.133	0.0065 / 0.118	0.016 / 0.108	0.094 / 0.150
luminosity lifetime [min]	70	50	42	44
time between injections [sec]	122	44	31	32
allowable asymmetry [%]	±5	±3	±3	±3
required lifetime by BS [min]	29	16	11	10
actual lifetime by BS ("weak") [min]	> 200	20	20	25

FCC-ee physics

arXiv:1601.06640

Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
$m_{\rm Z}~({\rm MeV})$	Z lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corrs.
Γ_z (MeV)	Z lineshape	2495.2 ± 2.3	0.008	< 0.1	QED corrs.
R_{ℓ}	Z peak	20.767 ± 0.025	0.0001	< 0.001	QED corrs.
$R_{\rm b}$	Z peak	0.21629 ± 0.00066	0.000003	< 0.00006	$g \rightarrow b\bar{b}$
$A^{\mu\mu}_{FB}$	Z peak	0.0171 ± 0.0010	0.000004	< 0.00001	$E_{\rm beam}$ meas.
N_{ν}	Z peak	2.984 ± 0.008	0.00004	0.004	Lumi meas.
N_{ν}	$e^+e^- \rightarrow \gamma Z(inv.)$	2.92 ± 0.05	0.0008	< 0.001	-
$\alpha_s(m_z)$	$R_{\ell}, \sigma_{had}, \Gamma_{Z}$	0.1196 ± 0.0030	0.00001	0.00015	New physics
$1/\alpha_{\rm QED}(m_{\rm Z})$	$A^{\mu\mu}_{FB}$ around Z peak	128.952 ± 0.014	0.004	0.002	EW corr.
$m_{\rm W}~({\rm MeV})$	WW threshold scan	80385 ± 15	0.3	< 1	QED corr.
$\alpha_{\rm s}(m_{\rm W})$	B_{had}^W	$B_{had}^W = 67.41 \pm 0.27$	0.00018	0.00015	CKM matrix
m_t (MeV)	threshold scan	173200 ± 900	10	10	QCD
$F_{1V,2V,1A}^{\gamma t,Z t}$	$d\sigma^{t\bar{t}}/dx d\cos(\theta)$	4%-20% (LHC-14 TeV)	(0.1-2.2)%	(0.01-100)%	-

Table 2: Examples of achievable precisions in representative Z, W and top measurements.

Observable	$240~{\rm GeV}$	$240{+}350~{\rm GeV}$
$g_{\rm HZZ}$	0.16%	0.15%
$g_{\rm HWW}$	0.85%	0.19%
$g_{ m Hbb}$	0.88%	0.42%
$g_{ m Hcc}$	1.0%	0.71%
$g_{ m Hgg}$	1.1%	0.80%
$g_{\mathrm{H}\tau\tau}$	0.94%	0.54%
$g_{{ m H}\mu\mu}$	6.4%	6.2%
$g_{{ m H}\gamma\gamma}$	1.7%	1.5%
$\Gamma_{\rm tot}$	2.4%	1.2%
$\mathrm{BR}_{\mathrm{inv}}$	0.25%	0.2%
BR_{exo}	0.48%	0.45%

- measure g_{Hee}
 in the ee->H operation
 mode
- + measure g_{Hu,d,s}

via H-> $\rho,\omega,\phi + \gamma$

arXiv:1510.04561

Standard Model effective field theory (SM EFT) dim-6 operators

right-handed N in neutrino MSM

FCC-hh

	LHC (Design)	HL-LHC	HE-LHC	FCC-hh	
Main parameters and geometrical aspects					
c.m. Energy [TeV]	14		33	100	
Circumference C [km]	20	5.7	26.7	100 (83)	
Dipole field [T]	8.	33	20	16 (20)	
Arc filling factor	0.79		0.79	0.79	
Straight sections	4	8	8	12	
Average straight section length [m]	5	28	528	1400	
Number of IPs				2 + 2	
Injection energy [TeV]	0.	45	> 1.0	3.3	
Physics performance and beam parameters					
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	5.0	5.0	5.0	
Optimum run time [h]	15.2	10.2	5.8	12.1 (10.7)	
Optimum average integrated lumi / day [fb ⁻¹]	0.47	2.8	1.4	2.2 (2.1)	
Assumed turnaround time [h]				5	
Overall operation cycle [h]				17.4 (16.3)	
Peak no. of inelastic events / crossing at - 25 ns spacing - 5 ns spacing	27	135 (lev.)	147	171 34	
Total / inelastic cross section $\sigma_{_{proton}}$ [mbarn]	111 / 85		129 / 93	153 / 108	
Luminous region RMS length [cm]				5.7 (5.3)	
Beam lifetime due to burn off [h]	45	15.4	5.7	19.1 (15.9)	
Beam parameters	Beam parameters				
Number of bunches n at - 25 ns - 5 ns	2808		2808	10600 (8900) 53000 (44500)	
Bunch population N[10 ¹¹] - 25 ns - 5 ns	1.15	2.2	1	1.0 0.2	
Nominal transverse normalized emittance [µm] - 25 ns - 5 ns	3.75	2.5	1.38	2.2 0.44	

Physics at the FCC-hh, a 100 TeV pp collider, CERN-2017-003-M

FCC-physics

	N ₁₀₀	N_{100}/N_8	N_{100}/N_{14} (HL-LHC)
$gg \to H$	16×10^9	4×10^4	110
VBF	$1.6 imes 10^9$	5×10^4	120
WH	$3.2 imes 10^8$	2×10^4	65
ZH	$2.2 imes 10^8$	$3 imes 10^4$	85
$t\bar{t}H$	7.6×10^8	$3 imes 10^5$	420

process	precision on σ_{SM}	68% CL interval on Higgs self-couplings	
$HH \to b \bar b \gamma \gamma$	3%	$\lambda_3 \in [0.97, 1.03]$	30 ah-1
$HH \to b\bar{b}b\bar{b}$	5%	$\lambda_3 \in [0.9, 1.5]$	50 dD-1
$HH \to b\bar{b}4\ell$	O(25%)	$\lambda_3 \in [0.6, 1.4]$	
$HH \to b\bar{b}\ell^+\ell^-$	O(15%)	$\lambda_3 \in [0.8, 1.2]$	
$HH \to b\bar{b}\ell^+\ell^-\gamma$	-	-	
$HHH \rightarrow b\bar{b}b\bar{b}\gamma\gamma$	O(100%)	$\lambda_4 \in [-4, +16]$	

can access also H⁴ vertex

Physics at the FCC-hh, a 100 TeV pp collider, CERN-2017-003-M

arXiv: 1810.11263

FCC-physics

Other possible projects @CERN

- SHiP
- Mathusla

Figure 5.19: Sensitivity regions in the parameter space of the ν MSM, for three scenarios where U_e^2 , U_{μ}^2 and U_{τ}^2 dominate respectively (models I, II and III of Ref. [187]).

Mathusla

not approved yet

MATHUSLA (Massive Timing Hodoscope for Ultra Stable Neutral Particles)

•

•

- planned to be a surface detector placed 100 metres above either ATLAS or CMS.
- It would be an enormous ($200 \times 200 \times 20$ m) box, mostly empty except for the very sensitive equipment used to detect LLPs produced in LHC collisions.

Potential

.. and more (extend SUSY coverage, etc...)