Neutrino Gyroscopes!

Using neutrinos to probe rotation in core-collapse supernovae

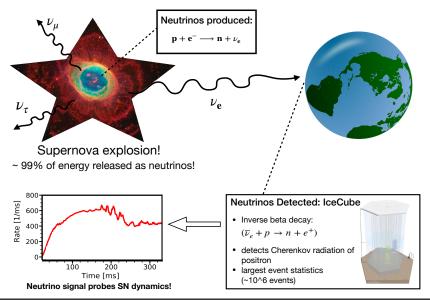
Laurie Walk

NBIA and DARK Niels Bohr Institute, University of Copenhagen

Nordic Winter School on Particle Physics and Cosmology 2019

January 3, 2019

Outline


- Neutrinos from Supernovae
- The Supernova Explosion Mechanism
- Stating Supernovae in 3D
- Oetectable Neutrino Features
- Conclusions

Based on:

Identifying rotation in SASI-dominated core-collapse supernovae with a neutrino gyroscope

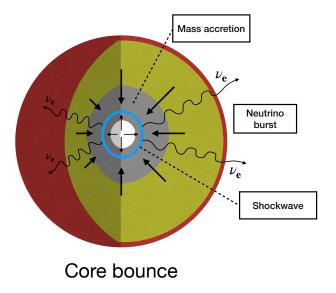
Walk, Tamborra, Janka, and Summa Phys. Rev. D 98, 123001 Published 5 December 2018

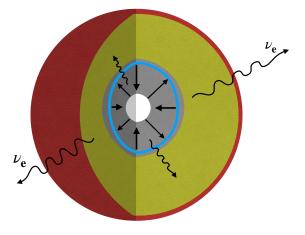
Neutrinos from Supernovae

Neutrinos from Supernovae

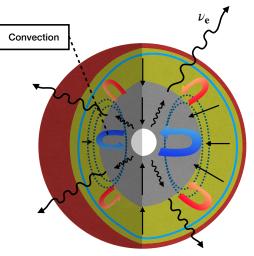
Neutrinos are essential because:

- \longrightarrow abundantly produced deep inside the core
- \longrightarrow essential role in supernova explosion mechanism
- \longrightarrow affect nucleosynthesis
- $\longrightarrow\,$ probe hydrodynamics of supernova
- \longrightarrow probe progenitor rotation

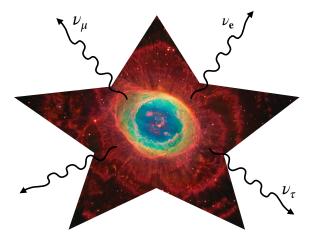

Aim of this work:


Indentifying the angular momentum of core-collapse supernovae through rotational imprints in the detectable neutrino signal.

Neutrinos produced:


$$p + e^- \rightarrow n + \nu_e$$

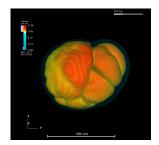
Onset of core collapse



Shockwave stalls

Shockwave revival

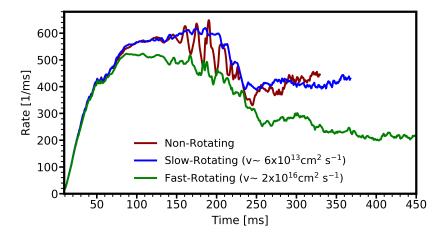
→ shockwave bounces as it acquires energy


Supernova explosion!

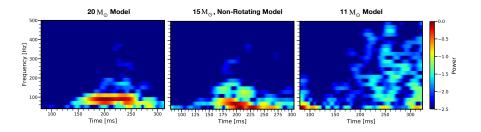
~ 99% of energy released as neutrinos!

3D Simulations

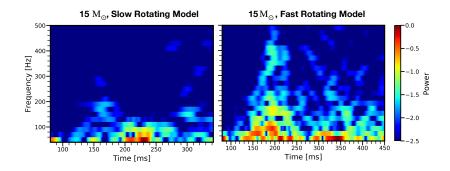
Study supernovae at the hands of:


- \longrightarrow 3D hydrodynamical simulations
- \longrightarrow three self-consistent 15 M_{\odot} progenitors :
 - Non-rotating
 - Slow-rotating (spin period of 6000 s)
 - Sector Fast-rotating (spin period of 20 s)

Animation by:


Alexander Summa, Hans-Thomas Janka, Tobias Melson, Andreas Marek

Detectable Features - Event Rate in Strong SASI Direction (15 M_{\odot} , 10 kpc)


- \longrightarrow SASI modulation dominant in non-rotating model
- \longrightarrow Modulations weakened by rotation
- \longrightarrow Fast-rotating model exhibits small-scale fluctuations

Detectable Features -Spectrograms Non-Rotating Models

- \longrightarrow Strong SASI represented as well-defined peak in correspondence of the SASI frequency
- \longrightarrow Convection represented by peaks uniformly distributed at various frequencies

Detectable Features -Spectrograms Rotating Models

- \longrightarrow Rotation weakens the SASI peak
- \longrightarrow Creates broader stacks with a hot, low frequency region and a spread in higher frequencies
- \longrightarrow Suggests an interplay between SASI and convection brought on by rotation

Conclusions

We propose a strategy for detecting progenitor rotation using neutrinos as gyroscopes!

- → Rotation destroys signatures of large-scale global deformations of the shockwave, and induces small scale fluctuations in the neutrino signal.
- → Rotation may be constrained by relative order of SASI frequency to other frequency peaks in the spectrogram of the event rates, given the SN occurs at a favorable observer direction.

