

centre

(日本)(四本)(日本)(日本)

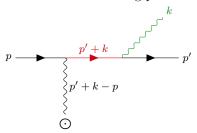
Seminar

Faddeev-Kulish states & Asymptotic Symmetries

David Gaharia

2019-01-04

Gaharia

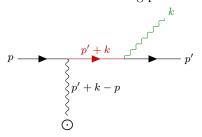

Introduction FK states LGT

Introduction The Infrared Problem

Soft Photons Introduction. The Infrared Problem

Faddeev-Kulish states & Asymptotic Symmetries Gaharia

Introduction FK states LGT Consider the emission of a soft photon due to some scattering process



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Soft Photons Introduction. The Infrared Problem

Consider the emission of a soft photon due to some scattering process

The amplitude will contain the factor

This diverges when $k \to 0$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

The Bloch-Nordsieck Theorem Introduction. The Infrared Problem

Faddeev-Kulish states & Asymptotic Symmetries

Gaharia

Introduction FK states LGT Summary

Bloch-Nordsieck theorem

If you sum up all the graphs containing any number of loops and any number of emitted soft photons the divergences cancel to **all** orders of perturbation theory.

Cancels on cross-section level

It is not clear why this works, since each individual term is infinite. No obvious symmetry involved.

Gaharia

Introduction

FK states LGT Summary

Faddeev-Kulish States

or Dressed Matter States

A Physical Starting Point Faddeev-Kulish States

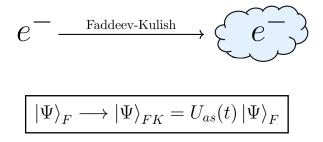
Faddeev-Kulish states & Asymptotic Symmetries

Gaharia

Introduction FK states LGT

The Fock states are the problem!

We assume that our fields vanish at infinity, this is in contradiction to special relativity. In reality we have a non-vanishing interaction at infinity.

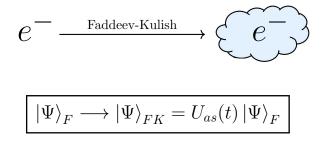

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

A Physical Starting Point Faddeev-Kulish States

The Fock states are the problem!

We assume that our fields vanish at infinity, this is in contradiction to special relativity. In reality we have a non-vanishing interaction at infinity.

A Physical Starting Point Faddeev-Kulish States


Faddeev-Kulish states & Asymptotic Symmetries

Gaharia

Introduction FK states LGT Summary

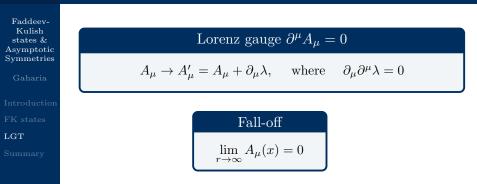
Divergence cancels at a S-matrix level.

The divergence appeared due to us working in the wrong states and neglecting interactions. Still no symmetry arguments.

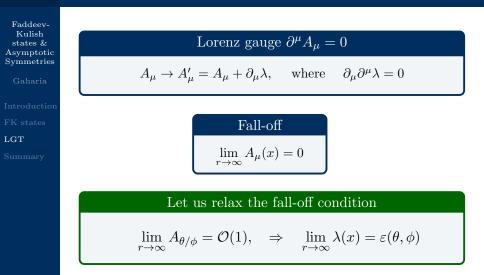
Gaharia

Introduction FK states

LGT


Summary

Large Gauge Transformations


Asymptotic Symmetries

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

What is an LGT? Large Gauge Transformations

What is an LGT? Large Gauge Transformations

Angular components are non-vanishing at infinity.

LGT Eigenstates Large Gauge Transformations

Faddeev-Kulish states & Asymptotic Symmetries

Introduction FK states LGT

Fock States

Fock states do not have a definite LGT charge, IR divergence occurred because we violated LGT charge conservation.

LGT Eigenstates Large Gauge Transformations

Faddeev-Kulish states & Asymptotic Symmetries

Introduction FK states LGT

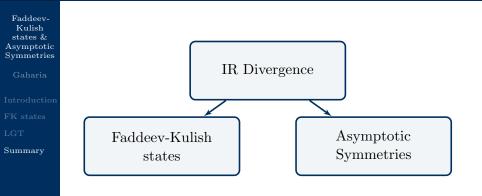
Summary

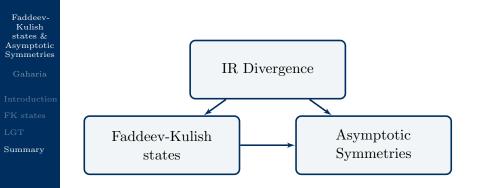
Fock States

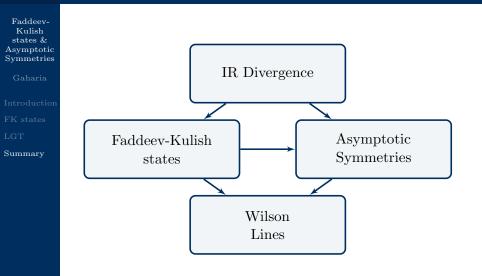
Fock states do not have a definite LGT charge, IR divergence occurred because we violated LGT charge conservation.

Faddeev-Kulish states

Are eigenstates of LGT and have definite charge, that's why the divergence cancels at *S*-matrix level. There is an underlying symmetry governing the process.


Faddeev-Kulish states & Asymptotic Symmetries


Gaharia


Introduction FK states LGT

Summary

IR Divergence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ganaria

Introduction FK states LGT

Summary

Thank you!