Observational Signature of a Near-extremal Kerr-like Black Hole at the Event Horizon Telescope

Haopeng Yan
Niels Bohr Institute, University of Copenhagen
based on PRD 98, 084063 with Minyong Guo and Niels A. Obers

January 4, 2019
Nordic Winter School on Particle Physics and Cosmology

Outline

(1) Introduction
(2) Orbiting emitter

- Kerr-like black hole in the MOG theory
- Equations of photon trajectory
- Near-extremal solutions
(3) Observational appearance
(4) Summary

Introduction

- The Event Horizon Telescope (EHT) will announce the first image of a black hole in 2019. EHT website.
- The observational signature of a near-extremal Kerr black hole (predicted by General Relativity) has been theoretically studied in Gralla, Lupsasca and Strominger, 2017
- GR is supposed to be modified, what about the signatures in alternative gravitational theories?
- I will introduce a generalization to one of these alternative theories: the MOG theory Moffat, 2005 -a modified gravity theory without invoking dark matter.

The Kerr-MOG spacetime

- The rotating solution is given by the Kerr-MOG metric

$$
\begin{equation*}
d s^{2}=-\frac{\Delta \Sigma}{\equiv} d t^{2}+\frac{\Sigma}{\Delta} d r^{2}+\Sigma d \theta^{2}+\frac{\equiv \sin ^{2} \theta}{\Sigma}(d \phi-\omega d t)^{2}, \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{rr}
\Delta=r^{2}-2 G M r+a^{2}+\alpha G_{N} G M^{2}, & \Sigma=r^{2}+a^{2} \cos ^{2} \theta, \\
& \equiv=\left(r^{2}+a^{2}\right)^{2}-\Delta a^{2} \sin ^{2} \theta, \tag{3}
\end{array} \quad \omega=\frac{a\left(a^{2}+r^{2}-\Delta\right)}{\bar{\Xi}},
$$

where α is the modified parameter and $G=(1+\alpha) G_{N}$ is called as an enhanced gravitational constant.

The Kerr-MOG spacetime

- The rotating solution is given by the Kerr-MOG metric

$$
\begin{equation*}
d s^{2}=-\frac{\Delta \Sigma}{\equiv} d t^{2}+\frac{\Sigma}{\Delta} d r^{2}+\Sigma d \theta^{2}+\frac{\overline{\sin }{ }^{2} \theta}{\Sigma}(d \phi-\omega d t)^{2}, \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{rr}
\Delta=r^{2}-2 G M r+a^{2}+\alpha G_{N} G M^{2}, & \Sigma=r^{2}+a^{2} \cos ^{2} \theta, \\
\equiv=\left(r^{2}+a^{2}\right)^{2}-\Delta a^{2} \sin ^{2} \theta, & \omega=\frac{a\left(a^{2}+r^{2}-\Delta\right)}{\equiv}, \tag{3}
\end{array}
$$

where α is the modified parameter and $G=(1+\alpha) G_{N}$ is called as an enhanced gravitational constant.

- For simplicity, we set

$$
\begin{equation*}
G_{N}=1, \quad M_{\alpha} \equiv M_{\mathrm{ADM}}=(1+\alpha) M, \quad \beta^{2}=\frac{\alpha}{1+\alpha} M_{\alpha}^{2} \tag{4}
\end{equation*}
$$

thus

$$
\begin{equation*}
\Delta=r^{2}-2 M_{\alpha} r+a^{2}+\beta^{2} \tag{5}
\end{equation*}
$$

The Kerr-MOG spacetime

- Mass dependent gravitational charge

$$
\begin{equation*}
K=\sqrt{\alpha G_{N}} M \tag{6}
\end{equation*}
$$

- The event horizon is obtained for $\Delta=0$,

$$
\begin{equation*}
r_{ \pm}=M_{\alpha} \pm \sqrt{M_{\alpha}^{2}-\left(a^{2}+\beta^{2}\right)} \tag{7}
\end{equation*}
$$

- The extremal condition

$$
\begin{equation*}
a^{2}+\beta^{2}=M_{\alpha}^{2} . \tag{8}
\end{equation*}
$$

The Kerr-MOG spacetime

- Mass dependent gravitational charge

$$
\begin{equation*}
K=\sqrt{\alpha G_{N}} M \tag{6}
\end{equation*}
$$

- The event horizon is obtained for $\Delta=0$,

$$
\begin{equation*}
r_{ \pm}=M_{\alpha} \pm \sqrt{M_{\alpha}^{2}-\left(a^{2}+\beta^{2}\right)} \tag{7}
\end{equation*}
$$

- The extremal condition

$$
\begin{equation*}
a^{2}+\beta^{2}=M_{\alpha}^{2} . \tag{8}
\end{equation*}
$$

- Note that the quantities under the square roots of (6) and (7) should be nonnegative, thus we obtain physical bounds on α as

$$
\begin{equation*}
0 \leq \alpha \leq \frac{M_{\alpha}^{2}}{a^{2}}-1 \tag{9}
\end{equation*}
$$

Orbiting emitter

We assume the emitter ("hot spot") is on a circular orbit with radius r_{s} at the equatorial plane. The angular velocity is

$$
\begin{equation*}
\Omega_{s}=\frac{d \phi}{d t}= \pm \frac{\Gamma\left(r_{s}\right)}{r_{s}^{2} \pm a \Gamma\left(r_{s}\right)}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma^{2}(r)=M_{\alpha} r-\beta^{2} \tag{11}
\end{equation*}
$$

Orbiting emitter

- There are four conserved quantities along each photon trajectory: the invariant mass $\mu^{2}=0$, the total energy E, the angular momentum L and the Carter constant Q.
- Introducing two rescaled quantities,

$$
\begin{equation*}
\hat{\lambda}=\frac{L}{E}, \quad \hat{q}=\frac{\sqrt{Q}}{E} . \tag{12}
\end{equation*}
$$

Orbiting emitter

Equations of Photon trajectory

- Using Hamilton-Jacobi method, we can obtain the equations,

$$
\begin{align*}
& f_{r_{s}}^{r_{0}} \frac{d r}{ \pm \sqrt{\mathcal{R}(r)}}=f_{\theta_{s}}^{\theta_{0}} \frac{d \theta}{ \pm \sqrt{\Theta(\theta)}}, \tag{13}\\
& \Delta \phi=\phi_{o}-\phi_{s}= \int_{r_{s}}^{r_{0}} \frac{a\left(2 M_{\alpha} r-\beta^{2}-a \hat{\lambda}\right)}{ \pm \Delta \sqrt{\mathcal{R}(r)}} d r+\int_{\theta_{s}}^{\theta_{0}} \frac{\hat{\lambda} \csc ^{2} \theta}{ \pm \sqrt{\Theta(\theta)}} d \theta \tag{14}\\
& \Delta t=t_{o}-t_{s}= \int_{r_{s}}^{r_{0}} \frac{\left[r^{4}+a^{2}\left(r^{2}+2 M_{\alpha} r-\beta^{2}\right)-a\left(2 M_{\alpha} r-\beta^{2}\right) \hat{\lambda}\right]}{ \pm \Delta \sqrt{\mathcal{R}(r)}} d r \\
&+\int_{\theta_{s}}^{\theta_{0}} \frac{a^{2} \cos ^{2} \theta}{ \pm \sqrt{\Theta(\theta)}} d \theta \tag{15}
\end{align*}
$$

where

$$
\begin{align*}
& \mathcal{R}(r)=\left(r^{2}+a^{2}-a \hat{\lambda}\right)^{2}-\Delta\left[\hat{q}^{2}+(a-\hat{\lambda})^{2}\right] \tag{16}\\
& \Theta(\theta)=\hat{q}^{2}+a^{2} \cos ^{2} \theta-\hat{\lambda}^{2} \cot ^{2} \theta \tag{17}
\end{align*}
$$

Orbiting emitter

Photon trajectory

- Each photon trajectory can be labeled by a pair of conserved quantities $(\hat{\lambda}, \hat{q})$, which connects the $\operatorname{star}\left(t_{s}, r_{s}, \theta_{s}, \phi_{s}\right)$ to an observer $\left(t_{0}, r_{o}, \theta_{o}, \phi_{o}\right)$.
- We decouple the coordinates t_{s} and ϕ_{s} by using $\phi_{s}=\Omega_{s} t_{s}$, and made the following choice, $\theta_{s}=\pi / 2, r_{o} \rightarrow \infty$ and $\phi_{o}=2 \pi N$.
- For given choice of r_{s} and θ_{0}, solving these equations gives the time-dependent trajectories $\left[\hat{\lambda}\left(t_{0}\right), \hat{q}\left(t_{o}\right)\right]$ corresponding to a track of the emitter's image.
- Plugging $\hat{\lambda}$ and \hat{q} into the functions of observables: position $[x(\hat{\lambda}, \hat{q}], y(\hat{\lambda}, \hat{q}))$, redshift $g(\hat{\lambda}, \hat{q})$ and flux $F_{o}(\hat{\lambda}, \hat{q})$.

Near-extremal solutions

Near-extremal expansion

- Set $M_{\alpha}=1$ and introduce dimensionless coordinate $R=r-1$,
- The near-extremal condition $(\epsilon \ll 1)$

$$
\begin{equation*}
a^{2}+\beta^{2}=1-\epsilon^{3}, \quad \beta^{2}=\alpha /(1+\alpha) . \tag{18}
\end{equation*}
$$

- We use a as modified parameter instead of α (to avoid square root),

$$
\begin{equation*}
\alpha=1 / a^{2}-1+\mathcal{O}\left(\epsilon^{3}\right) \tag{19}
\end{equation*}
$$

- The emitter is located on (or near) ISCO $R_{s}=\epsilon \bar{R}+\mathcal{O}\left(\epsilon^{2}\right)$, where

$$
\begin{equation*}
\bar{R} \geq \bar{R}_{\mathrm{ISCO}}=\left(2 a^{2} /\left(2 a^{2}-1\right)\right)^{1 / 3} \tag{20}
\end{equation*}
$$

- Introducing new quantities λ and q to track the small corrections

$$
\begin{equation*}
\hat{\lambda}=\frac{1+a^{2}}{a}(1-\epsilon \lambda), \quad \hat{q}=\sqrt{4-\frac{1}{a^{2}}-q^{2}} \tag{21}
\end{equation*}
$$

Near-extremal solutions

- $r-\theta$ equation: $\int_{r_{s}}^{r_{o}} \frac{d r}{ \pm \sqrt{\mathcal{R}(r)}}=\int_{\theta_{s}}^{\theta_{o}} \frac{d \theta}{ \pm \sqrt{\Theta(\theta)}}$,
- Introducing a separation scaling of $\epsilon^{p}\left(\epsilon \ll \epsilon^{p} \ll 1\right)$ with $p \in(0,1)$ and split the radial integral into two pieces (set $M_{\alpha}=1$),

$$
\begin{equation*}
I_{r}=\int_{\epsilon \bar{R}}^{\epsilon^{p} C} \frac{d R}{\sqrt{\mathcal{R}}}+\int_{\epsilon^{p} C}^{R_{0}} \frac{d R}{\sqrt{\mathcal{R}}} . \tag{22}
\end{equation*}
$$

- Performing the radial integral by using matched asymptotic expansion method.
- The angular integral is given by elliptic integral.
- From the $r-\theta$ equation, we can write λ in terms of q, i.e., we get a function $\lambda(q)$.

Near-extremal solutions

- Δt and $\Delta \phi$ equation: $\Delta \phi-\Omega_{s} \Delta t=-\Omega_{s} t_{0}+\phi_{o}\left(\right.$ set $\left.\phi_{0}=2 \pi N\right)$,
- We introduce a dimensionless time coordinate \hat{t}_{o},

$$
\hat{t}_{o}=\frac{t_{o}}{T_{s}}=\frac{t_{o} \Omega_{s}}{2 \pi}=\frac{a t_{o}}{2\left(1+a^{2}\right) \pi M_{\alpha}}+\mathcal{O}(\epsilon) .
$$

- Plugging $\lambda(q)$ into this equation gives functions of $q\left(\hat{t}_{o}\right)$ and $\lambda\left(\hat{t}_{o}\right)$.

Near-extremal solutions

Observational quantities

Observational quantities in terms of λ and q :

- The image position

$$
\begin{align*}
& x=-\frac{1+a^{2}}{a} \frac{1}{\sin \theta_{o}} \tag{23}\\
& y=s \sqrt{4-\frac{1}{a^{2}}-q^{2}+a^{2} \cos ^{2} \theta_{o}-\frac{\left(1+a^{2}\right)^{2}}{a^{2}} \cot ^{2} \theta_{o}} \tag{24}
\end{align*}
$$

- The image redshift

$$
\begin{equation*}
g=\frac{1}{\frac{\sqrt{4 a^{2}-1}}{a}+\frac{2 a\left(1+a^{2}\right)}{\sqrt{4 a^{2}-1}} \frac{\lambda}{R}} . \tag{25}
\end{equation*}
$$

Near-extremal solutions

Observational quantities

Observational quantities in terms of λ and q :

- The image flux (relative to the comparable "Newtonian flux") Cunningham \& Bardeen, 1972. is given by

$$
\frac{F_{o}}{F_{N}}=\frac{\sqrt{4 a^{2}-1} \epsilon \bar{R}}{2 a^{2} D_{s}} \frac{q g^{3}}{\sqrt{4-\frac{1}{a^{2}}-q^{2}} \sqrt{\Theta_{0}\left(\theta_{o}\right)} \sin \theta_{o}}\left|\operatorname{det} \frac{\partial(B, A)}{\partial(\lambda, q)}\right|^{-1}
$$

where

$$
\begin{equation*}
D_{s}=\sqrt{q^{2} \bar{R}^{2}+4\left(1+a^{2}\right) \lambda \bar{R}+\left(1+a^{2}\right)^{2} \lambda^{2}} \tag{26}
\end{equation*}
$$

and A and B are functions associated with the trajectory equations.

Observational appearance

Making a choice of the modified parameter α and parameters $\epsilon, \bar{R}, R_{o}, \theta_{0}$.

Observational appearance

The entire image at EHT

redshift

Summary

- We study the observaitonal signature of a near-extremal Kerr-like black hole in the modified gravity theory (MOG), in particular, we study the optical appearance of an emitter orbiting near the BH.
- There are typical signatures away from the Kerr case which may be tested by the Event Horizon Telescope (EHT).
- Outlook: black hole surroundings, such as plasma and accretion disk.

Thank you for your attention!

