Observational Signature of a Near-extremal Kerr-like Black Hole at the Event Horizon Telescope

Haopeng Yan

Niels Bohr Institute, University of Copenhagen

based on PRD 98, 084063 with Minyong Guo and Niels A. Obers

January 4, 2019

Nordic Winter School on Particle Physics and Cosmology

Introduction

Orbiting emitter

- Kerr-like black hole in the MOG theory
- Equations of photon trajectory
- Near-extremal solutions

Observational appearance

- The Event Horizon Telescope (EHT) will announce the first image of a black hole in 2019. EHT website.
- The observational signature of a near-extremal Kerr black hole (predicted by General Relativity) has been theoretically studied in Gralla, Lupsasca and Strominger, 2017
- GR is supposed to be modified, what about the signatures in alternative gravitational theories?
- I will introduce a generalization to one of these alternative theories: the MOG theory Moffat, 2005 - a modified gravity theory without invoking dark matter.

• The rotating solution is given by the Kerr-MOG metric

$$ds^2 = -rac{\Delta\Sigma}{\Xi}dt^2 + rac{\Sigma}{\Delta}dr^2 + \Sigma d heta^2 + rac{\Xi\sin^2 heta}{\Sigma}(d\phi - \omega dt)^2, \quad (1)$$

where

$$\Delta = r^{2} - 2GMr + a^{2} + \alpha G_{N}GM^{2}, \qquad \Sigma = r^{2} + a^{2}\cos^{2}\theta, \qquad (2)$$
$$\Xi = (r^{2} + a^{2})^{2} - \Delta a^{2}\sin^{2}\theta, \qquad \omega = \frac{a(a^{2} + r^{2} - \Delta)}{\Xi}, \qquad (3)$$

where α is the modified parameter and $G = (1 + \alpha)G_N$ is called as an enhanced gravitational constant.

• The rotating solution is given by the Kerr-MOG metric

$$ds^2 = -rac{\Delta\Sigma}{\Xi}dt^2 + rac{\Sigma}{\Delta}dr^2 + \Sigma d heta^2 + rac{\Xi\sin^2 heta}{\Sigma}(d\phi - \omega dt)^2, \quad (1)$$

where

$$\Delta = r^{2} - 2GMr + a^{2} + \alpha G_{N}GM^{2}, \qquad \Sigma = r^{2} + a^{2}\cos^{2}\theta, \qquad (2)$$
$$\Xi = (r^{2} + a^{2})^{2} - \Delta a^{2}\sin^{2}\theta, \qquad \omega = \frac{a(a^{2} + r^{2} - \Delta)}{\Xi}, \qquad (3)$$

where α is the modified parameter and $G = (1 + \alpha)G_N$ is called as an enhanced gravitational constant.

• For simplicity, we set

$$G_N = 1,$$
 $M_{\alpha} \equiv M_{ADM} = (1 + \alpha)M,$ $\beta^2 = \frac{\alpha}{1 + \alpha}M_{\alpha}^2,$ (4)

thus

$$\Delta = r^2 - 2M_{\alpha}r + a^2 + \beta^2.$$
⁽⁵⁾

18

• Mass dependent gravitational charge

$$K = \sqrt{\alpha G_N} M. \tag{6}$$

• The event horizon is obtained for $\Delta = 0$,

$$r_{\pm} = M_{\alpha} \pm \sqrt{M_{\alpha}^2 - (a^2 + \beta^2)}. \tag{7}$$

The extremal condition

$$a^2 + \beta^2 = M_\alpha^2. \tag{8}$$

Haopeng Yan (NBI, UCPH)

Jan. 4, 2019, NWSPPC 5 / 18

• Mass dependent gravitational charge

$$K = \sqrt{\alpha G_N} M. \tag{6}$$

• The event horizon is obtained for $\Delta = 0$,

$$r_{\pm} = M_{\alpha} \pm \sqrt{M_{\alpha}^2 - (a^2 + \beta^2)}.$$
 (7)

The extremal condition

$$a^2 + \beta^2 = M_\alpha^2. \tag{8}$$

• Note that the quantities under the square roots of (6) and (7) should be nonnegative, thus we obtain physical bounds on α as

$$0 \le \alpha \le \frac{M_{\alpha}^2}{a^2} - 1. \tag{9}$$

We assume the emitter ("hot spot") is on a circular orbit with radius r_s at the equatorial plane. The angular velocity is

$$\Omega_s = \frac{d\phi}{dt} = \pm \frac{\Gamma(r_s)}{r_s^2 \pm a\Gamma(r_s)},\tag{10}$$

where

$$\Gamma^2(r) = M_\alpha r - \beta^2. \tag{11}$$

- There are four conserved quantities along each photon trajectory: the invariant mass $\mu^2 = 0$, the total energy *E*, the angular momentum *L* and the Carter constant *Q*.
- Introducing two rescaled quantities,

$$\hat{\lambda} = \frac{L}{E}, \qquad \hat{q} = \frac{\sqrt{Q}}{E}.$$
 (12)

Orbiting emitter Equations of Photon trajectory

• Using Hamilton-Jacobi method, we can obtain the equations,

$$\int_{r_s}^{r_o} \frac{dr}{\pm\sqrt{\mathcal{R}(r)}} = \int_{\theta_s}^{\theta_o} \frac{d\theta}{\pm\sqrt{\Theta(\theta)}},$$
(13)

$$\Delta \phi = \phi_o - \phi_s = \int_{r_s}^{r_o} \frac{a(2M_\alpha r - \beta^2 - a\hat{\lambda})}{\pm\Delta\sqrt{\mathcal{R}(r)}} dr + \int_{\theta_s}^{\theta_o} \frac{\hat{\lambda}\csc^2\theta}{\pm\sqrt{\Theta(\theta)}} d\theta,$$
(14)

$$\Delta t = t_o - t_s = \int_{r_s}^{r_o} \frac{\left[r^4 + a^2(r^2 + 2M_\alpha r - \beta^2) - a(2M_\alpha r - \beta^2)\hat{\lambda}\right]}{\pm\Delta\sqrt{\mathcal{R}(r)}} dr$$

$$+ \int_{\theta_s}^{\theta_o} \frac{a^2\cos^2\theta}{\pm\sqrt{\Theta(\theta)}} d\theta,$$
(15)

where

$$\mathcal{R}(r) = (r^2 + a^2 - a\hat{\lambda})^2 - \Delta \left[\hat{q}^2 + (a - \hat{\lambda})^2\right], \quad (16)$$

$$\Theta(\theta) = \hat{q}^2 + a^2 \cos^2 \theta - \hat{\lambda}^2 \cot^2 \theta.$$
(17)

Haopeng Yan (NBI, UCPH)

- Each photon trajectory can be labeled by a pair of conserved quantities $(\hat{\lambda}, \hat{q})$, which connects the star $(t_s, r_s, \theta_s, \phi_s)$ to an observer $(t_o, r_o, \theta_o, \phi_o)$.
- We decouple the coordinates t_s and ϕ_s by using $\phi_s = \Omega_s t_s$, and made the following choice, $\theta_s = \pi/2$, $r_o \to \infty$ and $\phi_o = 2\pi N$.
- For given choice of r_s and θ_o , solving these equations gives the time-dependent trajectories $[\hat{\lambda}(t_o), \hat{q}(t_o)]$ corresponding to a track of the emitter's image.
- Plugging $\hat{\lambda}$ and \hat{q} into the functions of observables: position $[x(\hat{\lambda}, \hat{q}], y(\hat{\lambda}, \hat{q}))$, redshift $g(\hat{\lambda}, \hat{q})$ and flux $F_o(\hat{\lambda}, \hat{q})$.

Near-extremal solutions

Near-extremal expansion

- Set $M_{lpha} = 1$ and introduce dimensionless coordinate R = r 1,
- The near-extremal condition $(\epsilon \ll 1)$

$$a^{2} + \beta^{2} = 1 - \epsilon^{3}, \qquad \beta^{2} = \alpha/(1 + \alpha).$$
 (18)

• We use a as modified parameter instead of α (to avoid square root),

$$\alpha = 1/a^2 - 1 + \mathcal{O}(\epsilon^3).$$
(19)

• The emitter is located on (or near) ISCO $R_s = \epsilon \bar{R} + \mathcal{O}(\epsilon^2)$, where

$$\bar{R} \ge \bar{R}_{\mathsf{ISCO}} = \left(2a^2/(2a^2-1)\right)^{1/3}$$
. (20)

• Introducing new quantities λ and q to track the small corrections

$$\hat{\lambda} = \frac{1+a^2}{a}(1-\epsilon\lambda), \qquad \hat{q} = \sqrt{4-\frac{1}{a^2}-q^2}.$$
 (21)

•
$$r - \theta$$
 equation: $\int_{r_s}^{r_o} \frac{dr}{\pm \sqrt{\mathcal{R}(r)}} = \int_{\theta_s}^{\theta_o} \frac{d\theta}{\pm \sqrt{\Theta(\theta)}}$,

 Introducing a separation scaling of ε^p (ε ≪ ε^p ≪ 1) with p ∈ (0, 1) and split the radial integral into two pieces (set M_α = 1),

$$I_r = \int_{\epsilon\bar{R}}^{\epsilon^p C} \frac{dR}{\sqrt{\mathcal{R}}} + \int_{\epsilon^p C}^{R_o} \frac{dR}{\sqrt{\mathcal{R}}}.$$
 (22)

- Performing the radial integral by using matched asymptotic expansion method.
- The angular integral is given by elliptic integral.
- From the r θ equation, we can write λ in terms of q, i.e., we get a function λ(q).

Δt and Δφ equation: Δφ − Ω_sΔt = −Ω_st_o + φ_o (set φ_o = 2πN),
We introduce a dimensionless time coordinate t̂_o,

$$\hat{t}_o = rac{t_o}{T_s} = rac{t_o \Omega_s}{2\pi} = rac{a t_o}{2(1+a^2)\pi M_lpha} + \mathcal{O}(\epsilon).$$

• Plugging $\lambda(q)$ into this equation gives functions of $q(\hat{t}_o)$ and $\lambda(\hat{t}_o)$.

Observational quantities

Observational quantities in terms of λ and q:

• The image position

$$x = -\frac{1+a^2}{a}\frac{1}{\sin\theta_o},$$
(23)

$$y = s\sqrt{4-\frac{1}{a^2}-q^2+a^2\cos^2\theta_o-\frac{(1+a^2)^2}{a^2}\cot^2\theta_o}.$$
(24)

• The image redshift

$$g = \frac{1}{\frac{\sqrt{4a^2 - 1}}{a} + \frac{2a(1 + a^2)}{\sqrt{4a^2 - 1}}\frac{\lambda}{\bar{R}}}.$$
 (25)

Observational quantities in terms of λ and q:

• The image flux (relative to the comparable "Newtonian flux") Cunningham & Bardeen, 1972. is given by

$$\frac{F_o}{F_N} = \frac{\sqrt{4a^2 - 1}\epsilon \bar{R}}{2a^2 D_s} \frac{qg^3}{\sqrt{4 - \frac{1}{a^2} - q^2}\sqrt{\Theta_0(\theta_o)}\sin\theta_o} \left|\det\frac{\partial(B, A)}{\partial(\lambda, q)}\right|^{-1},$$

where

$$D_s = \sqrt{q^2 \bar{R}^2 + 4(1+a^2)\lambda \bar{R} + (1+a^2)^2 \lambda^2},$$
 (26)

and A and B are functions associated with the trajectory equations.

Observational appearance

Making a choice of the modified parameter α and parameters $\epsilon, \bar{R}, R_o, \theta_o$.

Haopeng Yan (NBI, UCPH)

Observational appearance The entire image at EHT

Haopeng Yan (NBI, UCPH)

Jan. 4, 2019, NWSPPC

- We study the observaitonal signature of a near-extremal Kerr-like black hole in the modified gravity theory (MOG), in particular, we study the optical appearance of an emitter orbiting near the BH.
- There are typical signatures away from the Kerr case which may be tested by the Event Horizon Telescope (EHT).
- Outlook: black hole surroundings, such as plasma and accretion disk.

• ...

Thank you for your attention!

Haopeng Yan (NBI, UCPH)

Jan. 4, 2019, NWSPPC 18