QCD-like theories in strong magnetic fields

Helena Kolešová

University of Stavanger

Joint work with Tomáš Brauner and Georgios Filios

QCD phase diagram

QCD phase diagram

Dense QCD matter in strong magnetic field

[Son,Stephanov(2008)][Brauner,Yamamoto(2017)]

- Method: chiral perturbation theory with $N_f = 2$
- = Low energy effective field theory of Goldstone bosons arising from the spontaneous flavour symmetry breaking $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

Topological Wess-Zumino-Witten
term capturing the chiral anomaly
Standard LO
$$\chi$$
PT matrix GB field

$$S = \frac{f_{\pi}^2}{4} \int d^4 x \operatorname{Tr} \left[D_{\nu} \Sigma D^{\nu} \Sigma^{\dagger} + m_{\pi}^2 \left(\Sigma + \Sigma^{\dagger} \right) \right] + S_{WZW}, \quad \Sigma = e^{i \frac{\pi^2 \sigma^2}{f_{\pi}}}$$

$$D_{\nu} \Sigma = \partial_{\nu} \Sigma - i A_{\nu} \Sigma + i \Sigma A_{\nu}, \quad A_{\nu} = A_{\nu}^{B} \mathbb{1} + A_{\nu}^{Q} Q, \quad A_{\nu}^{B} = (\mu_{B}, 0, 0, 0)$$
minimal coupling to the gauge fields
(no effect of μ_{B} , only π^{\pm} coupled to electromagnetic field)

•
$$\pi^{\pm} = 0$$
:
 $S_{WZW} = \frac{1}{4\pi^2 f_{\pi}} \int d^4 x \, \mu_B \, \mathbf{B} \cdot \boldsymbol{\nabla} \pi^0$

Dense QCD matter in strong magnetic field

[Son,Stephanov(2008)][Brauner,Yamamoto(2017)]

• Ground state for $B\mu \ge 16\pi m_{\pi} f_{\pi}^2$: inhomogeneous condensate of neutral pions carrying baryon charge and magnetic moment

$$m_B(z) = rac{B}{4\pi^2 f_\pi} \partial_z \pi^0(z), \quad m(z) = rac{\mu}{4\pi^2 f_\pi} \partial_z \pi^0(z)$$

- parity and translations in z direction broken!
- named "chiral soliton lattice" in the analogy with chiral magnets
- for $B\mu^2 \ge 16\pi^4 f_\pi^4$ BEC of charged pions

Dense QCD matter on lattice?

$$\mathcal{L}^{E}_{QCD} = ar{\psi} \mathcal{M}(\mathcal{A}) \psi + rac{1}{4} F^{a}_{\mu
u} F^{\mu
u a}$$

 $\mathcal{M}(\mathcal{A})$: Dirac operator

$$\int \mathcal{D}A \,\mathcal{D}\psi \,\mathcal{D}\bar{\psi} \,e^{-S^{\mathcal{E}}_{QCD}} = \int \mathcal{D}A \,\det M(A) \,e^{-S_{YM}}$$

Standard lattice Monte Carlo methods work only if det M(A) > 0!

theory	M(A)	properties	sign problem
QCD at $\mu_B = 0$	$\not \! D + m$	$M^{\dagger} = \gamma_5 M \gamma_5$	absent
QCD at $\mu_B eq 0$	$D + m - \mu_B \gamma_0$	-	present

QCD with two colors?

- Gauge group = SU(2), quarks in fundamental representation
- Quarks in pseudoreal representation of the gauge group: $\sigma_i^* = -\sigma_2 \sigma_i \sigma_2$
- NB: In general quarks in (pseudo)real representation $\Leftrightarrow T_i^* = -P^{-1}T_iP$ (3-color QCD with adjoint quarks, G_2 as a gauge group...)

theory	M(A)	properties	sign problem
QCD at $\mu_B = 0$	$\not\!\!\!D + m$	${\cal M}^{\dagger}=\gamma_5 {\cal M}\gamma_5$	absent
QCD at $\mu_B eq 0$	$\not D + m - \mu_B \gamma_0$	-	present
QCD-like	$\not D + m - \mu_B \gamma_0$	$M^* = (C\gamma_5 P)M(C\gamma_5 P)^{-1}$	absent for $2N_f$

QCD with two colors?

- Gauge group = SU(2), quarks in fundamental representation
- Quarks in pseudoreal representation of the gauge group: $\sigma_i^* = -\sigma_2 \sigma_i \sigma_2$
- Enlarged flavour symmetry! $SU(2N_f)$ spontaneously broken to $Sp(2N_f)$
- $N_f = 2$: $SU(4)/Sp(4) \simeq SO(6)/SO(5) \Rightarrow 5$ Goldstone bosons

pseudo-GB field	baryon number	isospin
d	+1	0
ā	-1	0
π^+	0	+1
π^{-}	0	-1
π^0	0	0

QCD with two colors?

• Lattice simulations addressing the phase diagram in $\mu - T$ plane

[Kogut,Toublan,Sinclair(2001,2002)][(Boz),(Cotter),(Fister),(Giudice),Hands,(Kim),(Mehta),Skullerud(2006,2010,2013)], [Braguta,(Ilgenfritz),Kotov,(Molochkov),Nikolaev,(Vlagushev)(2015,2016)]

agree with the predictions of χPT (in the range of it's validity)

[Splittorf, Toublan, Verbaarschot(2002)]

78

J.B. Kogut et al. / Physics Letters B 514 (2001) 77-87

Fig. 1. Schematic phase diagram of diquark condensation in the $T-\mu$ plane. The thin (thick) line consists of second (first) order transitions. X labels the tricritical point.

QCD with two colors in strong magnetic field?

- Gauge group = SU(2), quarks in fundamental representation
- Quarks in pseudoreal representation of the gauge group: $\sigma_i^* = -\sigma_2 \sigma_i \sigma_2$
- Enlarged flavour symmetry! $SU(2N_f)$ spontaneously broken to $Sp(2N_f)$
- $N_f = 2$: $SU(4)/Sp(4) \simeq SO(6)/SO(5) \Rightarrow 5$ Goldstone bosons

pseudo-GB field	baryon number	isospin
d	+1	0
$ar{d}$	-1	0
π^+	0	+1
π^-	0	-1
π^{0}	0	0

EFT with different coset space

 \Rightarrow different shape of the Wess-Zumino-Witten term!

Wess-Zumino-Witten term

- Standard machinery for constructing EFT for Goldstone bosons = coset construction [Callan,Coleman,Wess,Zumino(1969)]
- But $\pi^0 \to \gamma \gamma$ was missing in the χPT !
- The term in χPT capturing the chiral anomaly first identified in [Wess,Zumino(1971)], its geometrical meaning given by [Weinberg (1983)]

$$S_{WZW} = \int_Q \omega_5$$

(spacetime compactified to 4-sphere M; $U: M \rightarrow SU(3)$, the 4-sphere in SU(3) defined by U(x) = boundary of 5-dimensional disc Q; ω_5 : closed SU(3)-invariant 5-form)

426

E. Witten / Global aspects of current algebra

Fig. 2. Space-time, a four-sphere, is mapped into the SU(3) manifold. In part (a), space-time is symbolically denoted as a two sphere. In parts (b) and (c), space-time is reduced to a circle that bounds the discs Q and Q'. The SU(3) manifold is symbolized in these sketches by the interior of the oblong.

Helena Kolešová: QCD-like theories in strong magnetic fields

Gauged Wess-Zumino-Witten term for general coset space [H.K., Tomáš Brauner; arXiv:1809.05310]

$$S_{WZW} = \int_{Q} \omega_{5} = \int_{Q} \mathrm{d}\omega_{4} \stackrel{\mathrm{Stokes}}{=} \int_{\partial Q} \omega_{4} = \int_{U(M)} \omega_{4} = \int_{M} U^{*} \omega_{4}$$

(spacetime compactified to 4-sphere M; $U: M \rightarrow SU(3)$, the 4-sphere in SU(3) defined by U(x) = boundary of 5-dimensional disc Q; ω_5 : closed SU(3)-invariant 5-form)

• Using methods based on theory of cohomology [D'Hoker(1995)] we got

$$\omega_{5} = \operatorname{Tr}\left[\frac{1}{10}\bar{\phi}^{5} - \frac{1}{2}(\bar{W} + \bar{F})\bar{\phi}^{3} + (\bar{W}^{2} + \bar{F}^{2})\bar{\phi} + \frac{1}{2}(\bar{W}\bar{F} + \bar{F}\bar{W})\bar{\phi}\right]$$

•
$$\omega_5 - \omega_5^{A=0} = \mathsf{d}\omega_{4A}$$

$$\begin{split} \boldsymbol{\omega_{4A}} &= \operatorname{Tr} \left\{ \frac{1}{2} \phi^3 (\bar{A} + \bar{A}_{\parallel}) + \frac{1}{4} \phi \bar{A}_{\perp} \phi (\bar{A} + \bar{A}_{\parallel}) + \frac{1}{2} \phi^2 [\bar{A}_{\perp}, \bar{A}_{\parallel}] + \frac{1}{2} \bar{A}_{\perp} \bar{A}_{\parallel}^3 - \frac{1}{2} \bar{A}_{\parallel} \bar{A}_{\perp}^3 - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{2} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{2} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{2} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{2} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{2} \bar{A}_{\parallel} \bar{A}_{\parallel} - \frac{1}{2} \bar{A}_{\parallel} \bar{A}_{\parallel} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{2} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} \bar{A}_{\parallel} - \frac{1}{4} \bar{A}_{\parallel} \bar{A}_{\perp} - \frac{1}{4} \bar{A}_{\parallel} - \frac{1}{4} \bar{$$

Preliminary study of the 2-color QCD phase diagram

- We have derived the WZW term in case of SU(4)/Sp(4) coset space
- For $\pi^0 = 0$, the WZW term is absent \Rightarrow diquark condensate phase expected
- For $d, \bar{d} = 0$, the Lagrangian is identical with the QCD case \Rightarrow chiral soliton lattice phase expected
- Comparison of the two ground state energies \Rightarrow

Preliminary study of the 2-color QCD phase diagram

- We have derived the WZW term in case of SU(4)/Sp(4) coset space
- For $\pi^0 = 0$, the WZW term is absent \Rightarrow diquark condensate phase expected
- For $d, \bar{d} = 0$, the Lagrangian is identical with the QCD case \Rightarrow chiral soliton lattice phase expected
- Comparison of the two ground state energies \Rightarrow

Conclusions

- Chiral Soliton Lattice phase found recently to be the ground state of dense QCD matter in strong magnetic field
- Such a phase could be seen on lattice if present for QCD-like theories
- EFT study: construction of the WZW term for general G/H necessary
- Side product: formula for gauged WZW term which could have application in different fields of physics (composite Higgs models, composite dark matter models, solid state physics...)
- Preliminary results suggest the presence of CSL phase in case of 2-color QCD
- Inhomogeneous phase present in the theory without the sign problem! (not expected in the B = 0 case [Splittorff,Son,Stephanov(2001)])

Conclusions

- Chiral Soliton Lattice phase found recently to be the ground state of dense QCD matter in strong magnetic field
- Such a phase could be seen on lattice if present for QCD-like theories
- EFT study: construction of the WZW term for general G/H necessary
- Side product: formula for gauged WZW term which could have application in different fields of physics (composite Higgs models, composite dark matter models, solid state physics...)
- Preliminary results suggest the presence of CSL phase in case of 2-color QCD
- Inhomogeneous phase present in the theory without the sign problem! (not expected in the B = 0 case [Splittorff,Son,Stephanov(2001)])

Thank you for your attention!