

Scalar Effective Field Theories and Soft Recursion Amplitude Methods

MATTIAS SJÖ - NORDIC WINTER SCHOOL ON PARTICLE PHYSICS AND COSMOLOGY 2019

Introduction

Background

Stripped amplitudes

Recursive Amplitude Methods

General Idea BCFW Recursion

Soft Recursion

Motivation

Soft Behaviour

End

This talk is connected to my my master's thesis project, supervised by Karol Kampf and Johan (Hans) Bijnens.

- I analytically calculate high-order scalar particle scattering at tree level.
- Straightforward but extremely cumbersome (we're talking billions of terms).
- Shortcuts are needed.
- This outlines one major shortcut.

Stripped amplitudes

Introduction Background Stripped amplitudes

Recursive Amplitude Methods

General Idea BCFW Recursion

Soft Recursion

Motivation Soft Behaviour Soft Recursion

End

An n-particle amplitude can be written as

$$\mathcal{M}_n^{a_1\dots a_n}(p_1,\dots,p_n) = \sum_{\sigma\in\mathcal{S}_n} \varphi_n^{\sigma}(a_1\dots a_n) \mathcal{M}_n^{\sigma}(p_1,\dots,p_n)$$

where a_i are colour/flavour indices, φ a colour/flavour structure,

$$\sigma$$
 permutations of $1, \ldots, n$.

It can be shown that

$$\mathcal{M}_n^{\sigma}(p_1,\ldots,p_n) = \mathcal{M}_n(p_{\sigma(1)},\ldots,p_{\sigma(n)})$$

where $\mathcal{M}_n = \mathcal{M}_n^{\mathrm{id}}$ and $\mathrm{id}(k) = k$ (same for φ).

- *M_n* is called the "stripped amplitude", and contains all information of the full amplitude.
- Much easier to caclulate (still tough to do diagrammatically).

Mattias Sjö, Lund ATP

Recursive Amplitude Methods

Introduction

Background Stripped amplitudes

Recursive Amplitude Methods

General Idea BCFW Recursion

Soft Recursion

Motivation

Soft Behaviou

Soft Recursion

End

The general idea of amplitude methods

Introduction

Background Stripped amplitudes

Recursive Amplitude Methods

General Idea

BCFW Recursion

Soft Recursion

Motivation

Soft Benaviour

End

Take an *n*-particle stripped amplitude M_n(p₁,..., p_n)
 Shift each momentum into an analytic function

 $p_i \rightarrow p_i(z)$ with $p_i(0) = p_i$ for each i

preserving

$$p_i(z)^2 = 0, \qquad \sum_i p_i(z) = 0.$$

Get an analytic function M_n(z); M_n(0) is our amplitude.
 Apply Cauchy's theorem:

$$0 = \oint \frac{\mathcal{M}_n(z)}{z} dz = \mathcal{M}_n(0) + \sum_{\mathsf{poles}\ z_k} \underset{z=z_k}{\operatorname{Res}\ } \frac{\mathcal{M}_n(z)}{z}$$

With cleverly chosen shifts, the residues are much simpler to compute than the amplitude itself.

Mattias Sjö, Lund ATP

Scalar EFTs and Soft Recursion

BCFW Recursion

Introduction

Background Stripped amplitudes

Recursive Amplitude Methods

General Idea

BCFW Recursion

Soft Recursion

Motivation

Soft Behaviour Soft Recursion

End

The original recursive amplitude method is due to BCFW: Britto, Cachazo, Feng & Witten (2005).

Tree-level amplitudes can only have simple poles like

with propagator on-shell — Factorisation!

- Each half is a physical amplitude with fewer particles Recursion!
- Using the BCFW choice of momentum shift,

$$\operatorname{Res}_{z=z_k} \mathcal{M}_n(z) = \mathcal{M}_L(z_k) \frac{i}{P^2(0)} \mathcal{M}_R(z_k)$$

where P(z) is the propagator momentum. The base case depends on the theory.

Mattias Sjö, Lund ATP

Scalar EFTs and Soft Recursion

Soft Recursion

Introduction

Background Stripped amplitudes

Recursive Amplitude Methods

General Idea BCFW Recursion

Soft Recursion

Motivation

Soft Behaviour

Soft Recursion

End

Failure of BCFW recursion

Introduction

Background Stripped amplitudes

Recursive Amplitude Methods

General Idea BCFW Recursion

Soft Recursion

Motivation

Soft Behaviour Soft Recursion

End

- BCFW is excellent for e.g. gluons.
- It would be nice for our EFT, but

$$0 = \oint \frac{\mathcal{M}_n(z)}{z} dz = \mathcal{M}_n(0) + \sum_{\text{poles } z_k} \underset{z = z_k}{\text{Res}} \frac{\mathcal{M}_n(z)}{z}$$

assumes that $\mathcal{M}(z)$ falls off at infinity. $\mathcal{M}_n(z) \sim z^k$ with k > 0 as $z \to \infty$, so this fails!

Soft behaviour

Introduction

Background Stripped amplitudes

Recursive Amplitude Methods

General Idea BCFW Recursion

Soft Recursion

Motivation

Soft Behaviour Soft Recursion

End

The hard limit is awful, but what about the soft limit?
EFTs (e.g. the NLSM) generally have "Adler zeroes":

$$\mathcal{M}_n(p_1,\ldots,p_n)\sim p_i^\sigma \quad \text{as } p_i o 0$$

- $\sigma > 0$ is the "soft degree"; the NLSM has $\sigma = 1$.
- We can captialise on this using soft recursion, due to Cheung, Kampf, Novotny, Shen & Trnka (2016).

Amplitudes using the soft limit

Introduction

Background Stripped amplitudes

Recursive Amplitude Methods

General Idea BCFW Recursion

Soft Recursion

- Motivation
- Soft Behaviour Soft Recursion

End

Define an Adler-zero-preserving shift

$$p_i \to p_i(z) = p_i(1 - za_i)$$

with suitable a_i that preserve $\sum_i p_i = 0$ Define

$$F_n(z) = \prod_i (1 - a_i z)^{\sigma}, \qquad F_n(0) = 1.$$

- Then $\mathcal{M}_n(z)/F_n(z)$ has the same poles as $\mathcal{M}_n(z)$, but falls off faster.
- This gives the modified expression

$$0 = \oint \frac{\mathcal{M}_n(z)}{zF_n(z)} dz = \mathcal{M}_n(0) + \sum_{\text{poles } z_k} \underset{z = z_k}{\text{Res}} \frac{\mathcal{M}_n(z)}{zF_n(z)}$$

valid if
$$\mathcal{M}_n(z) \sim z^k$$
 as $z \to \infty$, with $k < n\sigma$.

Mattias Sjö, Lund ATP

Soft recursion

Introduction

Background Stripped amplitude

Recursive Amplitude Methods

General Idea BCFW Recursion

Soft Recursion

- Motivation
- Soft Behaviou
- Soft Recursion
- End

LUND UNIVERSITY

- Amplitude factorises just as for BCFW.
- Factorised amplitude does not have Adler zeroes, so $F_n(z)$ gives additional poles.

Simplest nontrivial example: 6-particle NLSM amplitude at leading order

- First diagram factorises into two 4-particle base cases.
- Second diagram comes from the additional poles no need to derive it from the Lagrangian.

Thank you for listening! Questions?

Introduction

Background Stripped amplitudes

Recursive Amplitude Methods

General Idea BCFW Recursion

Soft Recursion

Motivation

Soft Behaviou

Soft Recursio

End

