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Topics

q Numerical solutions: finite difference / finite volume

q The integral equations for finite volume

q Godunov method and higher order space and time updates

q Adaptive Mesh Refinement
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Numerical Solutions to Differential Equations
NBI

q Partial differential equations come in three different types

q Hyperbolic: Solution depends on the initial value

q Elliptic: Solution depends on the boundary values

q Parabolic equations: A mixture of the two

q Today we will be concerned with the first type. In a general physics 
problem, the system of equations will contain all types

∂q(x, t)
∂t

+ A ∂q(x, t)
∂x

= 0

∇2φ = 4πGρ
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Numerical Solutions to Differential Equations
NBI

q To solve differential equations; for example the advection equation 

there are two popular approaches:

Finite Difference and Finite Volume methods

q While related, the mathematical theories behind the two techniques 
are very different

∂q(x, t)
∂t

+ A ∂q(x, t)
∂x

= 0
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Finite Difference Method
NBI

q Assume the solution is known (“sampled”) at a distinct set of points:

q q(xi ,t) is the value at each point xi = (i+1/2)Δx at time t

q Derivatives in time and space are approximated by differences:

q Example: a first order in time, second order in space approximation

ρ i, j,k (t + Δt)− ρ i, j,k (t)
Δt

= − ρux
i+1, j,k (t)− ρux

i−1, j,k (t)
2Δx

− ...

∂q(x, t)
∂x x=xi

→
q(xi +Δx, t)− q(xi, t)

Δx

Position: (i-3/2)Δx    (i-1)Δx   (i-1/2)Δx     i Δx      (i+1/2)Δx   (i+1)Δx   (i+3/2)Δx
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Finite Difference Method
NBI

q Assume the solution is known (“sampled”) at a distinct set of points:

q q(xi ,t) is the value at each point xi = (i+1/2)Dx at time t

q Derivatives in time and space are approximated by differences:

q The advantage of finite difference methods is that they are 
conceptually simple, and very fast. For smooth flows, high order 
methods can be extremely precise. For non-smooth flows, viscosity 
has to added by hand

q The disadvantage is that they do not always respect the properties of 
the equations, because they consider point values

Position: (i-3/2)Δx    (i-1)Δx   (i-1/2)Δx     i Δx      (i+1/2)Δx   (i+1)Δx   (i+3/2)Δx

∂q(x, t)
∂x x=xi

→
q(xi +Δx, t)− q(xi, t)

Δx
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Finite Volume Method
NBI

q In the finite volume method the fundamental variable is the 
volume average of the function inside a cell:

q u(xi ,t) is the average value in the interval [xi-1/2 , xi+1/2] at time t

q To find the solution to the volume average we have to consider the 
flux through the surface of each cell

u(xi, t) =
1
Δx

q(x, t)dx
xi−12

xi+12

∫

Position: (i-3/2)Δx    (i-1)Δx   (i-1/2)Δx     i Δx      (i+1/2)Δx   (i+1)Δx   (i+3/2)Δx

Cell:   u(i-2)                   u(i-1)                     u(i)                    u(i+1)
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Finite Volume Method – Evolution on Integral Form
NBI

q To find the evolution of the volume average we integrate the 
differential equation:

q Fi(+1)=F (xi±1/2 ,t) is called the flux
q We can do the spatial integral to find

q Finally doing the time-integral we find

where                                         is the time-averaged flux

dt
t

t+Δt

∫ dx
xi−1

2

xi+ 1
2

∫
∂q
∂t

+ ∂F
∂x

= 0,      F(x, t) = Aq(x, t)

dt
t

t+Δt

∫ Δx ∂u
∂t

+ (Fi+1 − Fi ) = 0

u(t + Δt)− u(t) = − Δt
Δx
( !Fi+1 − !Fi )

!Fi (t + Δt / 2) = 1
Δt

dt
t

t+Δt

∫  Fi
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General Finite Volume Method – an excursion
NBI

q In general we can imagine a problem that is written as:

q The solution to the evolution will be the result of fluxes F moving 
things around, while sources S are changing the values inside the 
cells: 

where the time averaged flux and time and space averaged 
source are:

∂q(x, t)
∂t

+ ∂F(q, t)
∂x

= S(q, x, t)

u(x, t + Δt)− u(x, t) = Δt !Si (t + Δt / 2)−
!Fi+1(t + Δt / 2)− !Fi (t + Δt / 2)

Δx
⎡

⎣
⎢

⎤

⎦
⎥

!Fi (t + Δt / 2) = 1
Δt

dt
t

t+Δt

∫  Fi  ,    !Si (t + Δt / 2) = 1
ΔxΔt

dt dx  S(x, t)
x

x+Δx

∫
t

t+Δt

∫



Slide 10

General Finite Volume Method – an excursion
NBI

q In general we can imagine a problem that is written as:

q The solution to the evolution will be the result of fluxes F moving 
things around, while sources S are changing the values inside the 
cells: 

q Fluxes F are related to conserved quantities, while sources S
corresponds to the creation, destruction or transfer of a quantity. 
Examples are

o Mass, momentum and total energy of a system (fluxes)
o Energy cooling and heating (sources); Gravitation (source or flux!)
o Geometric source terms (e.g. in a spherical coordinate system)

∂q(x, t)
∂t

+ ∂F(q, t)
∂x

= S(q, x, t)

u(x, t + Δt)− u(x, t) = Δt !Si (t + Δt / 2)−
!Fi+1(t + Δt / 2)− !Fi (t + Δt / 2)

Δx
⎡

⎣
⎢

⎤

⎦
⎥
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Finite Volume Method – Evolution equation
NBI

q The integral evolution equation of the volume average

is exact.

q Derivatives are converted into differences

o This is well suited for numerical evaluation

o The absence of partial derivatives means the equations are well defined 
even for discontinuous functions

u(t +Δt)−u(t) = Δt
Δx
( !Fi+1 − !Fi )
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Finite Volume Method
NBI

q The problem is to find an expression for the time averaged fluxes

q Problems:

o The flux is calculated from the actual point values q at the interface, not 
the cell-averaged values u.

o We need to approximate the time integral.

q Solutions:

o We need to reconstruct the value at the interface based on the cell 
average. This is called slope reconstruction.

o For the time evolution we can use either implicit methods (difficult) or 
some kind of predictor-corrector scheme.

!Fi (t + Δt / 2) = 1
Δt

dt
t

t+Δt

∫  Fi (xi−1/2, t)
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The Riemann Problem
NBI

q The problem is to find an expression for the time averaged fluxes

q To the very lowest order we could approximate the solution inside 
the cell to be constant

q What is q(xi+1/2 ,t) then ???

!Fi (t + Δt / 2) = 1
Δt

dt
t

t+Δt

∫  Fi (xi−1/2, t)

x
Xi+1/2

qR(t=0)=uRightqL(t=0)=uLeft
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The Riemann Problem
NBI

q The problem is to find an expression for the time averaged fluxes

q To the very lowest order we could approximate the solution inside 
the cell to be constant

q For a general system of equations there will be several wave speeds 
apart from advection (HD 3, MHD 7). Compute to find interface 
state.

!Fi (t + Δt / 2) = 1
Δt

dt
t

t+Δt

∫  Fi (xi−1/2, t)

From Toro
(2009)

x
Xi+1/2

q(xi+1/2,t)
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Problems with basic FV Godunov Method
NBI

q The problem is to find an expression for the time averaged fluxes

q In general one can solve the Riemann problem.

q Problem: The solution is extremely diffusive,

o We need to reconstruct the value at the interface based on the cell 
average. This is called slope reconstruction.

o For the time evolution we can use either implicit methods (difficult) or 
some kind of predictor-corrector scheme.

!Fi (t + Δt / 2) = 1
Δt

dt
t

t+Δt

∫  Fi (xi−1/2, t)
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Higher Order Godunov Solvers – Time:
NBI

q Make a better prediction for the flux integral by for example 

q The problem is that we do not know the value of q(x,t+Δt)

q Use a predictor scheme:

q* = q(x,t)+Δt/2 Centered Difference

Calculate F from q*

!Fi (t + Δt / 2) = 1
2
Fi (xi−1/2, t)+ Fi (xi−1/2, t + Δt)[ ]
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Higher Order in Space – Slope reconstruction
NBI

q The Godunov method is very diffusive. Van Leer got the idea (1979) 
to also use spatial reconstruction for the Flux

Position: (i-3/2)Δx    (i-1)Δx   (i-1/2)Δx     i Δx      (i+1/2)Δx   (i+1)Δx   (i+3/2)Δx

Cell:   u(i-2)                   u(i-1)                     u(i)                    u(i+1)
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Higher Order in Space – Slope reconstruction
NBI

q The Godunov method is very diffusive. Van Leer got the idea (1979) 
to also use spatial reconstruction for the Flux

q A slope reconstruction has to be Total-Variation-Diminishing 
(TVD) [Harten 1983]. It cannot introduce new maxima, at the 
interface. This would lead to oscillations in the solution.

Position: (i-3/2)Δx    (i-1)Δx   (i-1/2)Δx     i Δx      (i+1/2)Δx   (i+1)Δx   (i+3/2)Δx

Cell:   u(i-2)                   u(i-1)                     u(i)                    u(i+1)
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Higher Order in Space – Slope reconstruction
NBI

q The Godunov method is very diffusive. Van Leer got the idea (1979) 
to also use spatial reconstruction for the Flux

q A slope reconstruction has to be Total-Variation-Diminishing 
(TVD) [Harten 1983]. It cannot introduce new maxima, at the 
interface. This would lead to oscillations in the solution.

q Different slope limiters are more or less aggressive in limiting the 
state at the interface.

Position: (i-3/2)Δx    (i-1)Δx   (i-1/2)Δx     i Δx      (i+1/2)Δx   (i+1)Δx   (i+3/2)Δx

Cell:   u(i-2)                   u(i-1)                     u(i)                    u(i+1)
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Higher Order in Space – Slope reconstruction
NBI

Made with
RAMSES by
Romain Teyssier
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Higher Order in Space – Slope reconstruction
NBI

q The Godunov method is very diffusive. Van Leer got the idea (1979) 
to also use spatial reconstruction for the Flux

q Even higher order methods uses piece-wise parabolic reconstruction 
(PPM) or higher order polynomials (WENO). 

Position: (i-3/2)Δx    (i-1)Δx   (i-1/2)Δx     i Δx      (i+1/2)Δx   (i+1)Δx   (i+3/2)Δx

Cell:   u(i-2)                   u(i-1)                     u(i)                    u(i+1)

n: (i-3/2)Δx    (i-1)Δx   (i-1/2)Δx     i Δx      (i+1/2)Δx   (i+1)Δx   (i+3/2)Δx

l:   u(i-2)                   u(i-1)                     u(i)                    u(i+1)
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Summary Finite Volume Methods for PDE’s
NBI

1. Start with the average values in a cell u(x,t).

2. Find the fastest signal speed and adjust the timestep size Δt

3. Reconstruct the interface values through slope reconstruction

4. Calculate the time averaged flux. Either directly using the equation 
or indirectly by solving the Riemann problem.

5. Evolve the equation: 

Position: (i-3/2)Δx    (i-1)Δx   (i-1/2)Δx     i Δx      (i+1/2)Δx   (i+1)Δx   (i+3/2)Δx

Cell:   u(i-2)                   u(i-1)                     u(i)                    u(i+1)

u(t + Δt)− u(t) = − Δt
Δx
( !Fi+1 − !Fi )
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Adaptive Mesh Refinement

NBI
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What is Adaptive Mesh Refinement (AMR) ?
NBI

Most of you probably already know about Adaptive Mesh Refinement, or 
have heard about the concept.  But here is a quick summary:

q AMR-codes are able to (recursively) resolve small details, by using 
patches (small or large) with increasingly large resolutions

q It is adaptive, because the cell placement can change with time
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Motivations for Adaptive Mesh Refinement
NBI

q Fluid dynamics in three dimensions is costly:
o Cost of a uniform grid scales as the resolution to the fourth power
o Even today only ~10243 is routine, and the largest unigrid run to date is 

~163843

q Many problems in astrophysics contain relevant, coupled processes 
at very different scales

o Use a sub-grid model description
o Use different resolution at different places à AMR in space

q If velocities are approximately (order of magnitude!) constant the 
dynamical time-scale scales with the physical scale

o Large scales evolve slower than small scales à AMR in time

q Using adaptive meshes we can “easily” supply realistic boundaries to 
a local problem; the ladder of astrophysical AMR is:

o Cosmology à Galaxy formation à Star formation à Planet Formation
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Multiscale Astrophysics
NBI

,-./.+'")+'(+-()3-$'>&)+H⇒+4>-I4-$#4.JK+@#(.)I4)(@)+
#7+'(B4&'"+D#D)($4D+@#(.)"3'5#([Spitzer	Science	Center]

[Double	Mach	shock with Flash]

[Ionization	front	in

a	molecular	cloud

launched	by	central

source]

q Selfgravity: induces 
collapse, with a rapid 
decrease in scales

q Shocks: inherently 
localized; often            
part of complex          
flows

q Compact sources: Injects 
energy from the smallest 
scales to the largest
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Flavors of Adaptive Mesh Refinement
NBI

q Block based AMR (original Collela, 
Berger, Oliger ‘84 & ‘89) [FLASH, 
Enzo, Nirvana, Pluto, AZeus]

o Use patches of higher resolution 
completely contained inside lower 
resolution patches

q Oct based Fully-Threaded-Tree 
(Khokhlov ‘98) [RAMSES, 
AMRVAC, ART]

o Refine on a cell-by-cell basis, with 
one cell being split in to 8 (in 3D)

q Unstructured Meshes [AREPO, 
GIZMO, finite elements]

o Partition space using one volume 
per tracer particle; f.ex. using a 
Voronoi tessellation.

[PLUTO	AMR	paper]
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Fully-Threaded-Tree Adaptive Mesh Refinment
NBI

q Refinement is done on a cell-by-cell basis
q 3D: octree (8 cells per oct), 2D: quadtree

q Each cell can be refined to one oct with 8 cells
q Very adaptive grid

q Very simple relationship structure
q 1 parent cell
q 6 neighbor parent cells
q Potentially 8 children octs

q Everything is constructed recursively
q Position and relationships are picked          

up from parent cell at creation

q All cells in the tree are kept
q Leaf cells have no children octs
q Refined cells are inactive
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Block based Adaptive Mesh Refinement
NBI

q Refinement is done in a number of cells inside a 
patch to create a new patch

q Typical size of a patch is (12-16)Ndim

q Reasonable grid size. Efficient to manage

q Complex but flexible relationship structure
q 1 parent patch (in simplest version)
q Nbor neighbor patches (at different levels)
q Nchild children patches

q Everything is constructed recursively
q Position and relationships are              

picked up from parent patches at       
creation

q Normally all cells in a patch are kept
q Leaf cells have no patches on top
q Refined cells are inactive

[PLUTO	AMR	paper]
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Unstructured (moving) meshes
NBI

q Unstructured codes are 
using tracer points for their 
geometry.

q F.x. the AREPO and GIZMO 
codes use unstructured and 
meshless representations, 
respectively.

q Their representation has the 
important advantage (over 
fixed-grid codes), to respect 
Galilean invariance; i.e., 
their results are the same, 
independent of any bulk 
motion of the system under 
study.

q The Courant condition is 
only due to relative motion.

q But cost is high!
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Ingredients of an AMR method

NBI
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Fluid Dynamics on an AMR patch / in an oct
NBI

q The fluid dynamics in on a adaptive mesh is 
solved exactly as on a normal mesh

1. Extract patch or oct
2. Pick up “guard cells”:

1. Check if neighbors are refined
2. Else create new cells on-the-fly

q Use MHD solver from e.g. the uni-grid code

q Hard to use higher order methods; we 
typically only use 2 guard cells to maintain 
a reasonable surface-to-volume ratio
q Motivates the use of Godunov methods 

or very compact finite differences

q Parent neighbors always need to exist, or 
we cannot get boundaries on-the-fly
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AMR Refinement Rules

[from talk by Romain Teyssier]

q Most codes enforce mesh consistency 
and grading of patches / octs
q All neighbors have to be at the 

same level or one level below     
or above

q Specific Criteria
q Jeans Criteria
q Gradients
q Quasi-Lagranian
q Geometrical (zoom)
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Refinement Criteria
q Jeans / Truelove Criteria

q If the Jeans length is not resolved, collapse becomes 
unphysical

q Gradients
q Beware of shocks; if encounter a real jump you get AMR 

catastrophe -> individual max level for gradient-refinement

q Quasi-Lagranian
q Related to Jeans. F.x. refine every time density goes up with 4 

to have same Jeans resolution on all levels

q Geometrical (zoom)
q Only allow code to refine in specific region. Adapt center to 

flow; Gallilean transform; follow star
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Refinement Criteria
q Jeans / Truelove Criteria

q If the Jeans length is not resolved, collapse becomes 
unphysical

q Gradients
q Beware of shocks; if encounter a real jump you get AMR 

catastrophe -> individual max level for gradient-refinement

q Quasi-Lagranian
q Related to Jeans. F.x. refine every time density goes up with 4 

to have same Jeans resolution on all levels

q Geometrical (zoom)
q Only allow code to refine in specific region. Adapt center to 

flow; Gallilean transform; follow star

[Refinement to pick up Jet; VAPOR viz by M. Küffmeier]
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AMR Refinement Rules

[from lectures by Romain Teyssier]

q Most codes enforce mesh consistency 
and grading of patches / octs
q All neighbors have to be at the 

same level or one level below     
or above

q Specific Criteria
q Jeans Criteria
q Gradients
q Quasi-Lagranian
q Geometrical (zoom)

q Smoothing is often done
q Patch has to be convex
q Expand patch sizes with     

nexpand layers (ex. 2 layers)
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Interpolation and Flux consistency

Romain TeyssierHIPACC 2010

Berger & Oliger (84), Berger & Collela (89)

Prolongation (interpolation) to finer levels

- fill buffer cells (boundary conditions)

- create new cells (refinements)

Restriction (averaging) to coarser levels

- destroy old cells (de-refinements)

Flux correction at level boundary

Careful choice of interpolation variables (conservative or not ?)

Several interpolation strategies (with RT P = I) :

- straight injection

- tri-linear, tri-parabolic reconstruction

Godunov schemes and AMR

interpol_var=0, 1

interpol_type=0, 1, 2, 3

[from lectures by Romain Teyssier]

q Prolongation: Interpolation to finer meshes
q Creation of new cells
q On-the-fly boundary cells

q Restriction: Averaging to coarser levels
q Destruction / derefinement
q Filling of the threaded tree

q Flux correction at boundaries
q Relatively easy for volume fluxes
q Tricky for EMF at edges

q Different interpolators
q Conservative / internal energy
q Apply different slope limiters
q When changing the resolution the 

method looses one order
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Time-adaptivity: Fineàcoarse level time Evolution
NBI

2230 J. Rosdahl et al.

Figure C5. Close-up of temperature convergence, for the UV inclusive test
with initial temperature T ≈ 105 K and nH = 10−2 cm−3

are accounted for, the solver must work from the same initial cell
state U for all the intercell updates. Thus, a copy is first made of the
original cell states involved, i.e.

U → Ũ , (D1)

where we can term U the source state and Ũ the destination state.
Using U as source terms for the intercell fluxes, the advection can
be solved with some computational method (e.g. Godunov solver
for the hydrodynamics in RAMSES and an HLL/GLF flux function
for the RT advection in RAMSES-RT), which performs the update on
Ũ . To take a concrete example, each RT advection update, equation
(22), uses Ũ for the update (the LHS term and the first RHS term),
but the intercell fluxes are derived from U , i.e. F (U). Once all the
updates (6 per cell) have been collected, the cell update is made final
by

Ũ → U . (D2)

In the amr_step hierarchy in RAMSES, such copies are made of
all ℓ cells before the AMR recursion, and the update is made final
after the recursion has returned and the hydro_solver has been
called at the current level, i.e. advection has been performed over
the time-step over the current level and all finer levels.

This allows cell states to be updated not only at the current
level, but also (twice) in all neighbouring cells at the next coarser
level. The coarser level update is only partial though, because
it only reflects the intercell fluxes across interlevel boundaries,
and fluxes across other boundaries (same level or next coarser
level) will only be accounted for when the coarser level time-
step is advanced. Until then, these coarser level neighbour cells
have two gas states, U and Ũ . This is shown schematically in
Fig. D1.

If RT subcycling is to be done at each AMR fine-level step, over
the whole grid, the question is which cell state do we use for the
thermochemistry, i.e. the interaction between photons and gas, in
those interlevel boundary cells?

Choosing one but not the other leads to an obvious and severe
inconsistency between the source and destination states. If the ther-
mochemistry does the update on Ũ , then a gas element which is
transported from one cell to a neighbour during the following hy-
dro transport is not thermochemically evolved over the time-step,
because it originates from U . If instead the update is done on U , a
gas element which stays still in any cell over the following hydro
transport step is not thermochemically evolved over the time-step.
One might then just update both states via thermochemistry, i.e. ap-
ply it on each cell twice. This does not really make sense for these
interlevel intercell boundary cells that have U ̸= Ũ , as Ũ does not

Figure D1. Level ℓ gas state updates via intercell fluxes also perform
partial gas updates in neighbouring cells at level ℓ − 1. The example shown
corresponds to the hierarchy from Fig. 5. Steps 3 and 4 at the finest level also
include partial updates of neighbouring ℓmax − 1 cells, but these neighbour
cell states are not fully updated until all the intercell fluxes are taken into
account, which is in step 5 from Fig. 5.

represent a true state but is rather an intermediate and temporary
quantity that exists between well-defined times. Also, it would be
really non-trivial to implement: applying thermochemistry on each
of the states also implies transporting the photons through two dif-
ferent states in each cell, which creates alternative time lines for the
RT!

Thus, subcycling RT within multistepping hydrodynamics in a
conservative way is not possible (or at least non-trivial), which has
led us to disallow RT subcycling within the hydro time-step in our
implementation.

A P P E N D I X E : I N T E R AC T I O N R AT E
C OE F FI CI ENTS ADOPTED I N RAMSES-RT

Here we collect the rate coefficients used in RAMSES-RT for hy-
drogen and helium interactions, which are fitted functions taken
from various sources. These are, in order of appearance, collisional
ionization rates, recombination rates, cooling rates (collisional
ionization, recombination, collisional excitation, bremsstrahlung,
Compton and dielectric recombination) and photoionization
cross-sections.

E1 Collisional ionization rate coefficients

Those are in units of [cm3 s−1] and are taken from Cen (1992), with
temperature everywhere assumed in kelvin:

βH I(T ) = 5.85 × 10−11
√

T
(

1 +
√

T
105

)−1
e−157 809.1/T

βHe I(T ) = 2.38 × 10−11
√

T
(

1 +
√

T
105

)−1
e−285 335.4/T

βHe II(T ) = 5.68 × 10−12
√

T
(

1 +
√

T
105

)−1
e−631 515/T .

E2 Recombination rate coefficients

These are all taken from Hui & Gnedin (1997). For readability, we
use the following unitless functions:

λH I(T ) = 315 614 K
T
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of galaxies, clusters and stars. Dark matter and stars are modelled
as collisionless particles that move around the simulation box and
interact via gravity. We will focus here on the hydrodynamics of
RAMSES though, which is where the RT couples to everything else.

RAMSES employs a second-order Godunov solver on the Euler
equations of gravitohydrodynamics in their conservative form,

∂ρ

∂t
+ ∇ · (ρu) = 0 (38)

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) + ∇P = −ρ∇φ (39)

∂E

∂t
+ ∇ · ((E + P ) u) = −ρu · ∇φ + #(ρ, ε), (40)

where t is time, ρ is the gas density, u is the bulk velocity, φ is
the gravitational potential, E is the gas total energy density, P is the
pressure and # represents radiative cooling and heating via thermo-
chemistry terms (resp. negative and positive), which are functions
of the gas density, temperature and ionization state. In RAMSES, colli-
sional ionization equilibrium (CIE) is traditionally assumed, which
allows the ionization states to be calculated as surjective functions
of the temperature and density and thus they do not need to be
explicitly tracked in the code. E is divided into kinetic and thermal
energy density (ε) components:

E = 1
2
ρu2 + ε. (41)

The system of Euler equations is closed with an equation of state
which relates the pressure and thermal energy,

P = (γ − 1)ε, (42)

where γ is the ratio of specific heats. The Euler equations are
adapted to super comoving coordinates, to account for cosmological
expansion, by a simple transformation of variables (see Section 5.4).

The Euler equations are solved across an AMR grid structure.
Operator splitting is employed for the thermochemistry source
terms, i.e. # is separated from the rest of the Euler equations in
the numerical implementation – which makes it trivial to modify
the thermochemistry solver, i.e. change it from equilibrium to non-
equilibrium.

The basic grid element in RAMSES is an oct (Fig. 4), which is a
grid composed of eight cubical cells. A conservative state vector
U = (ρ, ρu, E, ρZ) is associated with each cell storing its hydro-
dynamical properties of gas density ρ, momentum density ρu, total
energy density E and metal mass density ρZ. [One can also use the
primitive state vector, defined as W = (ρ, u, P , Z).] Each cell in
the oct can be recursively refined to contain sub-octs, up to a max-
imum level ℓ of refinement. The whole RAMSES simulation box is
one oct at ℓ = 1, which is homogeneously and recursively refined to
a minimum refinement level ℓmin, such that the coarse (minimum)
box resolution is 2ℓmin cells on each side. Octs at or above level
ℓmin are then adaptively refined during the simulation run, to follow
the formation and evolution of structures, up to a maximum refine-

Figure 4. An oct – the basic grid element in RAMSES.

ment level ℓmax, giving the box a maximum effective resolution of
2ℓmax cell widths per box width. The cell refinement is gradual: the
resolution must never change by more than one level across cell
boundaries.

5.1 RAMSES multistepping approach

With AMR multistepping, the resolution is not only adaptive in terms
of volume, but also in time, with different time-step sizes on different
refinement levels. A coarse time-step, over the whole AMR grid,
is initiated at the coarse level, ℓmin, as we show schematically in
Fig. 5. First, the coarse time-step length 'tℓmin is estimated via (the
minimum of) Courant conditions in all ℓmin cells. Before the coarse
step is executed, the next finer level, ℓmin + 1, is made to execute
the same time-step, in two substeps since the finer level Courant
condition should approximately halve the time-step length. This
process is recursive: the next finer level makes its own time-step
estimate (Courant condition, but also 'tℓ ≤ 'tℓ − 1) and has its
next finer level to execute two substeps. This recursive call up the
level hierarchy continues to the highest available level ℓmax, which
contains only leaf cells and no sub-octs. Here the first two substeps
are finally executed, with step lengths 'tℓmax ≤ 'tℓmin/2ℓmax−ℓmin .
When the two ℓmax substeps are done, the ℓmax − 1 time-step is
re-evaluated to be no longer than the sum of the two substeps just
executed at ℓmax, and then one ℓmax − 1 step is executed. Then
back to level ℓmax to execute two steps, and so on. The substepping
continues in this fashion across the level hierarchy, ending with
one time-step for the coarsest level cells (with a modified time-step
length 'tℓmin ).

At the heart of RAMSES lies a recursive routine called amr_step(ℓ)
which describes a single time-step at level ℓ, and is initially called
from the coarsest level (ℓmin). To facilitate our descriptions of how
the RT implementation is placed into RAMSES, we illustrate the rou-
tine in pseudo-code format in Listing 1, where we have excluded
details and bits not directly relevant to RHD (e.g. MPI syncing
and load-balancing, adaptive refinement and de-refinement, parti-
cle propagation, gravity solver, star formation and stellar feedback).

First, the recursion is made twice, solving the hydrodynamics
over two substeps at all finer levels. Then the Euler equations are
solved over the current coarse time-step, for all cells belonging
to the current level. It is important to note here that the hydro-
dynamical quantities are fully updated at the current level in the
hydro_solver, but there are also intermediate hydro updates in
all neighbouring cells at the next coarser level. The coarser level

Figure 5. Recursive hydro time-stepping over one coarse time-step in the
AMR levels of RAMSES, here shown for a three-level AMR structure. Each
solid arrowed line represents a time-step which is executed for all cells
belonging to the corresponding AMR level. The numbers indicate the order
of the time-stepping, including the calls to finer levels (1, 2 and 6).
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q Evolves in a W-cycle recursively from coarser to finer mesh and back
1. Prepare: Check on coarse level if we need to create new cells, 
prepare boundary conditions for finer levels. Then go to finer level.

2+6: Repeat step 1 and recursively progress to finer levels.

3-5,7-10. Evolve: Solve MHD on finest level; update Courant, update 
flux for coarser cells via neighbor pointer; flag any cells on this level 
that have to be refined or destroyed.

Then recursively go to coarser level (diagonal lines) or repeat timestep

[Figs from Rosdahl 2013]


