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Topics

O Numerical solutions: finite difference / finite volume
d The integral equations for finite volume
d Godunov method and higher order space and time updates

d Adaptive Mesh Refinement
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Numerical Solutions to Differential Equations

A Partial differential equations come in three different types

O Hyperbolic: Solution depends on the initial value

Iq(x,1)  , 9g(x,1) _
ot ox

Q Elliptic: Solution depends on the boundary values

V¢ =4nGp
d Parabolic equations: A mixture of the two

d Today we will be concerned with the first type. In a general physics
problem, the system of equations will contain all types
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Numerical Solutions to Differential Equations

d To solve differential equations; for example the advection equation

BQ(XJ)_l_ABQ(XJ) ~0
ot ox

there are two popular approaches:

Finite Difference and Finite Volume methods

d While related, the mathematical theories behind the two techniques
are very different
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Finite Difference Method

d Assume the solution is known (“sampled”) at a distinct set of points:

Position: (i-3/2)Ax  (i-1)Ax (i-1/2)Ax i Ax  (i+1/2)Ax (i+1)Ax (i+3/2)Ax
—@ % O % O % o>

Q q(x;,t) is the value at each point x; = (i+1/2)Ax at time t

A Derivatives in time and space are approximated by differences:

ag(x,0)|  __ q(x; +Ax,1)—q(x;,1)
0X Ax

.x=xl'
d Example: a first order in time, second order in space approximation

At 2Ax

prr+ AN —p (@) pu () - pu (@)
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Finite Difference Method

d Assume the solution is known (“sampled”) at a distinct set of points:

Position: (i-3/2)Ax  (i-1)Ax (i-1/2)Ax i Ax  (i+1/2)Ax (i+1)Ax (i+3/2)Ax
—@ % O % O % o>

a q(x;,t) is the value at each point x; = (i+1/2)Ax at time t

A Derivatives in time and space are approximated by differences:
GQ(XJ) s Q(xi+Axat)_Q(xiat)
0x |, Ax

d The advantage of finite difference methods is that they are
conceptually simple, and very fast. For smooth flows, high order
methods can be extremely precise. For non-smooth flows, viscosity
has to added by hand

d The disadvantage is that they do not always respect the properties of
the equations, because they consider point values A
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Finite Volume Method

a In the finite volume method the fundamental variable is the
volume average of the function inside a cell:

Position: (i-3/2)Ax  (i-1)Ax (i-1/2)Ax  iAx  (i+1/2)Ax (i+1)Ax (i+3/2)Ax
@ @ @ o>

Cell: u(i-2) u(i-1) u(i) u(i+1)

— »

d u(x;,t) is the average value in the interval [X;_;,5, X;+1,2] at time t
1
1 Xi+)h
u(x,,t)=— f q(x,t)dx
AX Xi=)5
d To find the solution to the volume average we have to consider the
flux through the surface of each cell
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Finite Volume Method - Evolution on Integral Form

d To find the evolution of the volume average we integrate the
differential equation:

+Ar X+ Y
jdz xaq oF _o. F(x,1) = Ag(x.1)
ot ox

Q Fiy1)=F (x,-ﬂ/z,t) is called the flux
d We can do the spatial integral to find

1+At au
j didv——+(F,, ~ F)=0

d Finally doing the t|me integral we find
u(t+At)—u(t) = ——(

t+At

where I:“l.(t+At/2) = AL J dt F, is the time-averaged flux
5

- F)

i+1
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General Finite Volume Method - an excursion

d In general we can imagine a problem that is written as:

doq(x,t) N 0F (g,t)
ot ox

=35(q,x,t)

d The solution to the evolution will be the result of fluxes F moving
things around, while sources S are changing the values inside the
cells:

Ax

where the time averaged flux and time and space averaged
source are:

u(x,t+At)—u(x,t) = At|:§i(t+At/2)— Fi+1(t+At/2)—Fi(l‘+Al‘/2):|

t+At t+Ar x+Ax

. 1 - 1
Fi+r/2)=— j dt F | Si(r+At/2)=M! j dt dx S(t)
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General Finite Volume Method - an excursion

d In general we can imagine a problem that is written as:

doq(x,t) N 0F (g,t)
ot ox

=35(q,x,t)

d The solution to the evolution will be the result of fluxes F moving
things around, while sources S are changing the values inside the
cells:

F (t+At/2)—F(t+At/2)
Ax

 Fluxes F are related to conserved quantities, while sources S
corresponds to the creation, destruction or transfer of a quantity.
Examples are

o Mass, momentum and total energy of a system (fluxes)
o Energy cooling and heating (sources); Gravitation (source or flux!)
o Geometric source terms (e.g. in a spherical coordinate system)

u(x,t+At)—u(x,t) = At| S.(t+At/2)—
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Finite Volume Method - Evolution equation

d The integral evolution equation of the volume average

At ~
—(F  -F
AX( i+1 1)

u(t+At)—u(t)=

is exact.

O Derivatives are converted into differences

o This is well suited for numerical evaluation

o The absence of partial derivatives means the equations are well defined
even for discontinuous functions
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Finite Volume Method

d The problem is to find an expression for the time averaged fluxes
t+At

. 1
Fi+A1/2)=— j dt F(x._,.1)

O Problems:

o The flux is calculated from the actual point values g at the interface, not
the cell-averaged values u.

o We need to approximate the time integral.

O Solutions:

o We need to reconstruct the value at the interface based on the cell
average. This is called slope reconstruction.

o For the time evolution we can use either implicit methods (difficult) or
some kind of predictor-corrector scheme.
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The Riemann Problem

d The problem is to find an expression for the time averaged fluxes
t+At

. 1
Fi+A1/2)=— j dt F(x._,.1)

A To the very lowest order we could approximate the solution inside
the cell to be constant

d What is q(X;;+1,2,t) then ???

q.(t=0)=u s qR(t=o)=uRight

Xi+1/2
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The Riemann Problem

d The problem is to find an expression for the time averaged fluxes
t+At

. 1
Fi+A1/2)=— j dt F(x._,.1)

A To the very lowest order we could approximate the solution inside
the cell to be constant

d For a general system of equations there will be several wave speeds
apart from advection (HD 3, MHD 7). Compute to find interface

At
state. N | M S A(Xi+1/2,t)
1

From Toro
(2009)

ﬁx

Leftdata U Rightdata U ,
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Problems with basic FV Godunov Method

d The problem is to find an expression for the time averaged fluxes
t+At

. 1
Fi+A1/2)=— j dt F(x._,.1)

d In general one can solve the Riemann problem.

d Problem: The solution is extremely diffusive,

o We need to reconstruct the value at the interface based on the cell
average. This is called slope reconstruction.

o For the time evolution we can use either implicit methods (difficult) or
some kind of predictor-corrector scheme.
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Higher Order Godunov Solvers — Time:

d Make a better prediction for the flux integral by for example

. 1
F(t+At/2)= E[Fl.(xi_l/z,t)+E.(xl._l/z,t+At)]

d The problem is that we do not know the value of q(x,t+At)
O Use a predictor scheme:
qg* = q(x,t)+At/2 Centered Difference

Calculate F from g*
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Higher Order in Space - Slope reconstruction

d The Godunov method is very diffusive. Van Leer got the idea (1979)
to also use spatial reconstruction for the Flux

Position: (i-3/2)Ax (i-1)Ax (i-1/2)Ax i Ax (i+1/2)Ax (i+1)Ax (i+3/2)Ax
@ O O o>

Cell: u(i-2) u(i-1) u(i) u(i+1)

e
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Higher Order in Space - Slope reconstruction

d The Godunov method is very diffusive. Van Leer got the idea (1979)
to also use spatial reconstruction for the Flux

Position: (i-3/2)Ax (i-1)Ax (i-1/2)Ax i Ax (i+1/2)Ax (i+1)Ax (i+3/2)Ax
@ O O o>

Cell: u(i-2) u(i-1) u(i) u(i+1)

e

d A slope reconstruction has to be Total-Variation-Diminishing
(TVD) [Harten 1983]. It cannot introduce new maxima, at the
interface. This would lead to oscillations in the solution.
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Higher Order in Space - Slope reconstruction

d The Godunov method is very diffusive. Van Leer got the idea (1979)
to also use spatial reconstruction for the Flux

Position: (i-3/2)Ax (i-1)Ax (i-1/2)Ax
l

i AX (i+1/2)Ax (i+1)Ax (i+3/2)Ax

Cell: u(i-2) u(i-1)

e

u(i)

o>
u(i+1)

%

'

d A slope reconstruction has to be Total-Variation-Diminishing
(TVD) [Harten 19832]. It cannot introduce new maxima, at the

interface. This would lead to oscillations in the solution.

d Different slope limiters are more or less aggressive in limiting the

state at the interface.
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Higher Order in Space - Slope reconstruction

minmod

slope type=1

superbee

Made with
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Romain Teyssier

NBI
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Higher Order in Space - Slope reconstruction

d The Godunov method is very diffusive. Van Leer got the idea (1979)
to also use spatial reconstruction for the Flux

Position: (i-3/2)Ax (i-1)Ax (i-1/2)Ax i Ax (i+1/2)Ax (i+1)Ax (i+3/2)Ax
o O O o>

Cell: u(i-2) u(i-1) u(i) u(i+1)

. ___

d Even higher order methods uses piece-wise parabolic reconstruction
(PPM) or higher order polynomials (WENO).

A ¢,
CH z<4
iz
G
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Summary Finite Volume Methods for PDE’s

1. Start with the average values in a cell u(x,t).

2. Find the fastest signal speed and adjust the timestep size At

3. Reconstruct the interface values through slope reconstruction

Position: (i-3/2)Ax (i-1)Ax (i-1/2)Ax i Ax (i+1/2)Ax (i+1)Ax (i+3/2)Ax
@ O O o>

Cell: u(i-2) u(i-1) u(i) u(i+1)

D = —"

4. Calculate the time averaged flux. Either directly using the equation
or indirectly by solving the Riemann problem.

At ~ ~ R
5. Evolve the equation: u(t+At)—u(t)=——(~F,, —F)) AL
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Adaptive Mesh Refinement
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What is Adaptive Mesh Refinement (AMR) ?

Most of you probably already know about Adaptive Mesh Refinement, or
have heard about the concept. But here is a quick summary:

0 AMR-codes are able to (recursively) resolve small details, by using
patches (small or large) with increasingly large resolutions

A It is adaptive, because the cell placement can change with time

3 - ‘ 2 <z i)
- i ‘ ERIY
. H T G
. " - 2
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Motivations for Adaptive Mesh Refinement

d Fluid dynamics in three dimensions is costly:
o Cost of a uniform grid scales as the resolution to the fourth power

o Even today only ~10243 is routine, and the largest unigrid run to date is
~163843

d Many problems in astrophysics contain relevant, coupled processes
at very different scales

o Use a sub-grid model description
o Use different resolution at different places > AMR in space

a If velocities are approximately (order of magnitude!) constant the
dynamical time-scale scales with the physical scale

o Large scales evolve slower than small scales > AMR in time

d Using adaptive meshes we can “easily” supply realistic boundaries to
a local problem; the ladder of astrophysical AMR is:
o Cosmology - Galaxy formation - Star formation - Planet Formation

<% "z
s, V K2y
Ly
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Multiscale AStrOthSiCS [Spitzer Science Center]

a dark cloud b gravitational collapse

d Selfgravity: induces
collapse, with a rapid
decrease in scales

/
dense core

j«-200,000 AU -»

Q Shocks: inherently ;
localized; often o Mach stom 2
part of complex .3
flows 1o

0.2 3

0 Compact sources: Injects
energy from the smallest
scales to the largest

[lonization front in
a molecular cloud
launched by central

source]
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Flavors of Adaptive Mesh Refinement

Level 0
el T TP PR TETY L2

0 Block based AMR (original Collela, W 5
Berger, Oliger '84 & '89) [FLASH, § g 1
Enzo, Nirvana, Pluto, AZeus] : 5 [l

o Use patches of higher resolution )

completely contained inside lower
resolution patches

———— - -

d Oct based Fully-Threaded-Tree - )
(Khokhlov '98) [RAMSES, [PLUTO AMR paper]
AMRVAC, ART]

o Refine on a cell-by-cell basis, with
one cell being split in to 8 (in 3D)

O Unstructured Meshes [AREPO,
GIZMO, finite elements]
o Partition space using one volume

per tracer particle; f.ex. using a
Voronoi tessellation.
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Fully-Threaded-Tree Adaptive Mesh Refinment

d Refinement is done on a cell-by-cell basis
Q 3D: octree (8 cells per oct), 2D: quadtree

O Each cell can be refined to one oct with 8 cells
d Very adaptive grid

d Very simple relationship structure
d 1 parent cell
O 6 neighbor parent cells
O Potentially 8 children octs

d Everything is constructed recursively

d Position and relationships are picked
up from parent cell at creation

Q All cells in the tree are kept
O Leaf cells have no children octs
O Refined cells are inactive

<% 5.:
1,{3:»,4 N y";‘i’
Ly
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Block based Adaptive Mesh Refinement

O Refinement is done in a number of cells inside a
patch to create a new patch

Q Typical size of a patch is (12-16)Ndim
O Reasonable grid size. Efficient to manage

d Complex but flexible relationship structure
d 1 parent patch (in simplest version)
Q N, neighbor patches (at different levels)

PLUTO AMR
O Ngq children patches [ paper]

Level 0 _

-t e e -

Level 1

d Everything is constructed recursively

d Position and relationships are
picked up from parent patches at
creation

— T e — e ———— - ——— -

e i e e e

d Normally all cells in a patch are kept
Q Leaf cells have no patches on top
O Refined cells are inactive
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Unstructured (moving) meshes

Slide 30

O Unstructured codes are
using tracer points for their
geometry.

4 F.x. the AREPO and GIZMO
codes use unstructured and
meshless representations,
respectively.

d Their representation has the
important advantage (over
fixed-grid codes), to respect
Galilean invariance; i.e.,
their results are the same,
independent of any bulk
motion of the system under
study.

0 The Courant condition is
only due to relative motion.

O But cost is high!
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Ingredients of an AMR method
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Fluid Dynamics on an AMR patch / in an oct

d The fluid dynamics in on a adaptive mesh is
solved exactly as on a normal mesh

1. Extract patch or oct

2. Pick up “guard cells”:
1. Check if neighbors are refined
2. Else create new cells on-the-fly

d Use MHD solver from e.g. the uni-grid code

d Hard to use higher order methods; we
typically only use 2 guard cells to maintain
a reasonable surface-to-volume ratio

O Motivates the use of Godunov methods
or very compact finite differences

Q Parent neighbors always need to exist, or
we cannot get boundaries on-the-fly
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AMR Refinement Rules

0 Most codes enforce mesh consistency
and grading of patches / octs

O All neighbors have to be at the
same level or one level below V N.-m
or above
O Specific Criteria
Q0 Jeans Criteria W= . . ]
O Gradients

O Quasi-Lagranian
d Geometrical (zoom)

[from talk by Romain Teyssier]
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Refinement Criteria

O Jeans / Truelove Criteria

a If the Jeans length is not resolved, collapse becomes
unphysical

d Gradients
O Beware of shocks; if encounter a real jump you get AMR
catastrophe -> individual max level for gradient-refinement

O Quasi-Lagranian
O Related to Jeans. F.x. refine every time density goes up with 4
to have same Jeans resolution on all levels

O Geometrical (zoom)

A Only allow code to refine in specific region. Adapt center to
flow; Gallilean transform; follow star
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Refinement Criteria

O Jeans / Tru
Q If the ]
unphys

0 Gradients
0 Beware AMR
catastrg nement
0 Quasi-Lagr:
0 Relatec up with 4
to have
0 Geometrica
a Only al nter to
flow; G
Siide 35 [Refinement to pick up Jet; VAPOR viz by M. Kiuffmeier] @
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AMR Refinement Rules

0 Most codes enforce mesh consistency
and grading of patches / octs

O All neighbors have to be at the
same level or one level below V \rccl
or above
O Specific Criteria
Q0 Jeans Criteria S . -
O Gradients

O Quasi-Lagranian
d Geometrical (zoom)

d Smoothing is often done
Q Patch has to be convex
d Expand patch sizes with
nexpand layers (ex. 2 layers)

[from lectures by Romain Teyssier]
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Interpolation and Flux consistency

Q Prolongation: Interpolation to finer meshes
d Creation of new cells

Q On‘thE‘ﬂy boundary cells Solve for fine MMuxes using buffer regions

Q Restriction: Averaging to coarser levels] . A O AR
O Destruction / derefinement ° . -
Q Filling of the threaded tree 5 P o PO FESpag

O Flux correction at boundaries
O Relatively easy for volume fluxes
a Tricky for EMF at edges

A Different interpolators
O Conservative / internal energy
a Apply different slope limiters
O When changing the resolution the [from lectures by Romain Teyssier]
method looses one order
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Time-adaptivity: Fine->coarse level time Evolution

d Evolves in a W-cycle recursively from coarser to finer mesh and back

1. Prepare: Check on coarse level if we need to create new cells,
prepare boundary conditions for finer levels. Then go to finer level.

2+6: Repeat step 1 and recursively progress to finer levels.

3-5,7-10. Evolve: Solve MHD on finest level; update Courant, update
flux for coarser cells via neighbor pointer; flag any cells on this level
that have to be refined or destroyed.

Then recursively go to coarser level (diagonal lines) or repeat timestep

A A
\
AN

A9
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