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1 Sound Waves

Let us first derive the equations describing sound waves starting from the continuity and
momentum equations

∂ρ

∂t
+∇·(ρv) = 0 , (1)

ρ

[
∂v

∂t
+ (v ·∇)v

]
= −∇P . (2)

We consider a homogeneous, time-independent equilibrium background with density ρ0,
pressure P0 and velocity v0 = 0 and assume small amplitude perturbations given by δρ,
δP and δv, such that

ρ = ρ0 + δρ , (3)

P = P0 + δP , (4)

v = δv . (5)

Substituting these into the continuity and momentum equations, we find

�
��
∂ρ0
∂t

+
∂δρ

∂t
+∇·(ρ0δv +���δρδv) = 0 , (6)

(ρ0 +��δρ)

[
∂δv

∂t
+�����

(δv·∇δv)

]
= ����−∇P0 −∇δP . (7)

We have crossed out all the terms that can be ignored because they are either identically
zero or negligible when the perturbations are small, i.e., δP/P0 � 1, δρ/ρ0 � 1.

The linearized equations for the perturbations are then

∂δρ

∂t
+ ρ0∇·δv = 0 , (8)

ρ0
∂δv

∂t
= −∇δP . (9)

Let us now differentiate the equation for δρ with respect to time. We find

∂2δρ

∂t2
+ ρ0∇·

∂δv

∂t
= 0 . (10)

We can then use the linearized momentum equation to substitute for ∂δv/∂t, yielding

∂2δρ

∂t2
=∇2δP . (11)

For an isothermal gas, the fluctuations in pressure and density are related by

δP = c2sδρ , (12)

1Adapted from NBI Theoretical Astrophysics course, with contributions from O. Gressel and G. Murphy.
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where cs has a constant value. This implies that

∂2δρ

∂t2
= c2s∇2δρ . (13)

This is a wave equation for the density perturbation. The solution of this equation is a
sound wave that propagates with speed cs. Let us take a perturbation of the form

δρ = A cos(kx− ωt) , (14)

where A is the amplitude. So that the one dimensional wave equation

∂2δρ

∂t2
= c2s

∂2δρ

∂x2
, (15)

gives
−Aω2 cos(kx− ωt) = −Ak2c2s cos(kx− ωt) . (16)

Simplifying we find the dispersion relation for sound waves

ω2 = c2sk
2 . (17)

The dispersion relation is a relation between the scale of the perturbation and its frequency.

2 Linear Mode Analysis for Sound Waves

Let us start with the linearized equations (8) and (9) but specializing them to one spatial
dimension, x, and setting δP = c2sδρ. In this case we have

∂δρ

∂t
+ ρ0

∂δvx
∂x

= 0 , (18)

ρ0
∂δvx
∂t

+ c2s
∂δρ

∂x
= 0 . (19)

Before proceeding we make these equations dimensionless by using the background value,
ρ0, the characteristic scale L, the soundspeed cs and the characteristic time t0 = L/cs. In
terms of the dimensionless parameters

δρ′ =
δρ

ρ0
, x′ =

x

L
, δv′x =

δvx
cs

, t′ =
t

L/cs
, (20)

the equations for the perturbations then become

∂δρ′

∂t′
+
∂δv′x
∂x′

= 0 , (21)

∂δv′x
∂t′

+
∂δρ′

∂x′
= 0 . (22)

We drop the primes on the dimensionless variables in the following. The main idea of a
linear mode analysis is to now assume that the perturbations depend on space and time as

δρ(x, t) =
∑
k

δρk(t)e
ikx and δvx(x, t) =

∑
k

δvk(t)e
ikx . (23)

where k is the wavenumber. Substituting this into our linearized equations we obtain∑
k

[
∂δρk(t)

∂t
+ ikδvk(t)

]
eikx = 0 and

∑
k

[
∂δvk(t)

∂t
+ ikδρk(t)

]
eikx = 0 . (24)
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Because the complex exponentials are orthogonal functions, each of the terms in the pre-
vious sums must vanish individually. This can be written in matrix form as

∂

∂t

(
δρk(t)
δvk(t)

)
=

(
0 −ik
−ik 0

)(
δρk(t)
δvk(t)

)
. (25)

This matrix equation can be written as

∂

∂t
ak(t) = Mak(t) . (26)

In order to solve this matrix equation, it is convenient to work in the basis of eigenvectors
in which the matrix is diagonal. In this basis, the action of M over the set of eigenvectors
is equivalent to a scalar multiplication, i.e.,

Mdiagek,j(t) = σj ek,j(t) , for j = 1, 2, (27)

where ek,j(t) are the eigenvectors associated with the matrix M and σj are the roots of the
characteristic polynomial associated with the matrix M and are in general complex scalars.

The advantage of working in this basis is that the equations are decoupled, i.e.,

∂δρk(t)

∂t
= σjδρk(t) , and

∂δvk(t)

∂t
= σjδvk(t) , (28)

and the solutions are exponentials

δρk(t) = δρk(0) eσjt , and δvk(t) = δvk(0) eσjt . (29)

In order to find the eigenvalues σj , we need to find σj such that(
0 −ik
−ik 0

)(
δρk(t)
δvk(t)

)
=

(
σj 0
0 σj

)(
δρk(t)
δvk(t)

)
, (30)

or, moving everything to the LHS,(
σj ik
ik σj

)(
δρk(t)
δvk(t)

)
= 0 . (31)

Recall from linear algebra that such a linear, homogeneous system only has non trivial
solutions (that is a solution that is not just δvk = δρk = 0) if the determinant of the matrix
is zero. This is equivalent to finding the roots of the characteristic polynomial, in this case,

σ2j + k2 = 0 , (32)

which has solutions
σj = ±ik . (33)

If only one mode k is excited, and we restore the physical dimensions, e.g. σ = kcs,
then the perturbations in real space become

δρ(x, t) = δρ−k(0)e−(ikx±iσt) + δρk(0)e(ikx±iσt) . (34)

Since the density is a real function, we must have ρ−k = ρ?k, where ? stands for complex
conjugate, and

cos θ ≡ e−iθ + e−iθ

2
, (35)

we find the same result that we have obtained previously when working directly with the
differential equations, i.e.,

δρ(x, t) ∼ cos(kx− ωt) . (36)
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2.1 Kelvin-Helmholtz Instability

The Kelvin-Helmholtz Instability can arise when there is a velocity gradient in a fluid. This
may occur within a single continuous fluid but it can also take place at the interface between
two different fluids, for example air and water, see Figure 1. For the sake of simplicity we
will assume that the two fluids are incompressible with constant background densities ρ1
and ρ2 and we will work in the frame of reference in which the fluid velocity is zero on
one side of the interface and v on the other. We are going to look for solutions that are
of the form exp[i(kx − ωt)]. If the dispersion relation between ω and the wavenumber k
leads to an ω with a positive imaginary part, then the small amplitude perturbations will
go unstable.

The linearized equations for an incompressible ideal fluid are ∇·δv = 0 and

∂δv

∂t
+ (v · ∇)δv = −∇δP

ρ
. (37)

Taking the divergence of this equation we find that the pressure perturbations must satisfy
Laplace’s equation, i.e.,

∇2δP ≡ 0 . (38)

Thus assuming that the pressure perturbations are of the form

δP = f(z)ei(kx−ωt) , (39)

Laplace’s equation leads to
d2f

dz2
= k2f , (40)

which has solutions f(z) ∝ exp[±kz].
With a little bit of algebra using the previous equations, it can be seen that demanding

that the pressure is continuous at the interface, i.e., δP1 ≡ δP2, leads to

ρ1(kv − ω)2 ≡ −ρ2ω2 , (41)

This is no other than the dispersion relation associated with the Kelvin-Helmholtz Insta-
bility, which has solutions

ω = kv

(
ρ1 ± i

√
ρ1ρ2

ρ1 + ρ2

)
. (42)

If the two fluids have the same density, i.e., ρ1 ≡ ρ2, then the imaginary part of ω reads

=(ω) = σ(k) =
kv

2
. (43)

The growth rate σ depends linearly on the wavenumber k. Obviously, this growth
can not be infinite for large k, or small physical scales, and in reality viscous dissipation
prevents the small scales from going unstable.

Figure 1: Initial configuration for the Kelvin-Helmholtz instability.
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2.2 Rayleigh-Taylor Instability

Let us consider two fluids with different densities separated by an interface which is slightly
distorted according to ξ(x) in the presence of a gravitational field as shown in Figure 2.
This setup is unstable in case of a heavier fluid on top of a lighter fluid. In order to simplify
this problem, let us assume that we have an irrotational, ∇×v = 0, and incompressible,
∇ · v = 0. flow. In this case the velocity can be obtained as the gradient of a potential
scalar function Ψ, which satisfies Laplace’s equation, i.e.,

v ≡ ∇Ψ , with ∇2Ψ ≡ 0 . (44)

Using the Ansatz for the potential function

Ψ(x, z) = f(z) cos(kx− ωt) , (45)

where again f(z) = e±kz and requesting that the velocity perturbations vanish at the top
and at the bottom

v(h′) = v(−h) ≡ 0 , (46)

it can be seen that the solutions for Ψ1 and Ψ2 are:

Ψ1 = A cosh[k(z + h)] cos(kx− ωt), (47)

Ψ2 = B cosh[k(z − h′)] cos(kx− ωt). (48)

After some algebra involving the equations of motion for Ψ, it can be seen that ω must
satisfy

ω2 =
kg(ρ− ρ′)

ρ coth(kh) + ρ′ coth(kh′)
. (49)

This dispersion relation for ω(k) governs the stability properties for the small amplitude
perturbations. In particular when ρ < ρ′, then

ω2 < 0 , (50)

and the system is Rayleigh-Taylor unstable. Note that for ρ > ρ′ there are various types
of waves, which are very interesting.

In general this instability occurs in a stratified medium if

dρ

dz
< 0 . (51)

Figure 2: Setup for the Rayleigh-Taylor instability.
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3 Ideal MHD Waves

We begin by recapitulating the equations for ideal MHD

∂ρ

∂t
+ (v ·∇) ρ = −ρ∇·v , (52)

ρ

[
∂v

∂t
+ (v ·∇)v

]
= −∇P +

1

µ0
(∇×B)×B , (53)

∂B

∂t
= ∇× (v×B) , (54)

where µ0 is the permeability of the vacuum. Using vector identities, the term associated
with the Lorentz force in the momentum equation can be written as

(∇×B)×B = −∇
(
B2

2

)
+ (B ·∇)B . (55)

The first term on the right hand side is associated with magnetic pressure whereas the
second one is associated with magnetic tension. The force associated with field line tension
provides a restoring force (in the transverse direction) introducing an “elastic” property of
the field-line “fabric”. Together with the flux freezing property implied by the ideal induc-
tion equation and the plasma’s inertia, this allows the propagation of wave-like disturbances
along field lines.

3.1 Linear Mode Analysis for MHD Waves

We can derive the dispersion relation for MHD waves by following the procedure that
we have already seen for acoustic waves. We begin by writing down the linearised MHD
equations, where the subscript “0” refers to the homogeneous background state, and the
subscript “1” indicates perturbations, for instance, ρ = ρ0 + ρ1. As previously, we ignore
any terms quadratic in fluctuations, and thus obtain:

∂tρ1 + ρ0∇·v1 = 0 , (56)

ρ0∂tv1 +∇P − µ−10 (∇×B1)×B0 = 0 , (57)

−∂tB1 +∇× (v1 ×B0) = 0 , (58)

∂t

(
P1

P0
− γ ρ1

ρ0

)
= 0 , (59)

with γ ≡ Cp/CV the ratio of specific heats, and where the last equation is derived from the
isentropic equation of state P/ργ =const. We now insert an Ansatz of the form

ρ1 = ρ̃1 exp [i(k·r − ωt)] , (60)

and accordingly for the other perturbed variables. With this ansatz, spatial derivatives
(curl, gradient, divergence) will morph into factors of the wavevector k, preserving the
respective vector operation associated, for instance ∇ × · · · → ik × . . . ; similarly, the
partial time derivative will translate into a factor −iω. In the following we will moreover
drop the subscript “1” to ease the notation. Dividing by common factors of the imaginary
unit, i, we obtain the following algebraic system of equations:

−ωρ+ ρ0k·v = 0 , (61)

−ρ0ωv + kP − µ−10 (k×B)×B0 = 0 , (62)

ωB + k × (v ×B0) = 0 , (63)

−ω
(
P

P0
− γ ρ

ρ0

)
= 0 . (64)
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Assuming ω 6= 0, we can solve the resulting system of equations for three of the dependent
variables

ρ = ρ0k·v/ω , (65)

P = γ P0k·v/ω , (66)

B = [(k·v)B0 − (k·B0)v]/ω , (67)

already, leaving only the velocity v undetermined. By substituting these relations into the
momentum equation (62), we obtain the following vector equation for v,[

ω2 − (k·B0)
2

ρ0µ0

]
v = −(k·B0) (v ·B0)

ρ0µ0
k +

[
(c2s + c2A)k − k·B0

ρ0µ0
B0

]
(k·v) , (68)

where we identify the adiabatic sound speed and the Alfvén speed, which corresponds to
the speed at which transverse perturbations propagate along the field lines,

cs ≡

√
γ
P0

ρ0
, (69)

cA ≡

√
B2

0

ρ0µ0
. (70)

Without loss of generality, we can orient the z-axis so that B0 ‖ ẑ. Furthermore, we
can orient the y-axis so that it is perpendicular to k, i.e., k · ŷ = 0. In this way k lies on
the x-z-plane. Denoting the angle θ between B0 and k, we can rewrite equation (68) in
matrix form asω2−k2(c2A+c2s sin2 θ) 0 −k2c2s sin θ cos θ

0 ω2−k2c2A cos2 θ 0
−k2c2s sin θ cos θ 0 ω2−k2c2scos2θ

vxvy
vz

=0 . (71)

The non-trivial solution of this linear system can be found by requiring that the determinant
of the matrix vanishes. This yields the dispersion relation(

ω2 − k2c2A cos2 θ
) [
ω4 − ω2k2(c2A + c2s ) + k4c2Ac

2
s cos2 θ

]
= 0 , (72)

which is a third-order polynomial in ω2. The three independent roots for ω2 correspond to
3 distinct wave types.

3.1.1 Alfvén Waves

The obvious pair of roots in the dispersion relation (72) for ideal-MHD waves can be
obtained by setting (ω2 − k2c2A cos2 θ) = 0, which yields

ω = ±kcA cos θ ,

where the plus and minus sign correspond to the left- and right-travelling waves, respec-
tively. The group speed, cφ ≡ ω/k, of the perturbations is simply the “projected” Alfvén
speed cA cos θ, that is, the maximum propagation speed is obtained for k ‖ B0, and waves
that are perpendicular to the field lines do not propagate at all. The associated eigenvector
of this particular solution of (72) is vA = (0, vy, 0) satisfying both k·v = 0 (incompressible
perturbation), and v ·B0 = 0 (transverse polarisation of the wave).
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Figure 3: MHD wave speeds, cφ ≡ ω/k, as a function of the angle θ between the background
magnetic field and the wave vector, k. Left : magnetically dominated case, cA > cs. Right :
gas-pressure dominated case, cA < cs.

3.1.2 Slow and Fast Magnetosonic Waves

The two remaining roots of (72) follow from setting the term in square brackets to zero.
Solving this simple quadratic equation in ω2, we obtain

ω = ±k c+ , and ω = ±k c− , (73)

with the fast (c+) and slow (c−) magnetosonic velocities defined by

c± ≡

√
1

2

[
c2A + c2s ±

√(
c2A + c2s

)2 − 4c2Ac
2
s cos2 θ

]
. (74)

Note that c± → cs for the unmagnetised case B0 → 0 (i.e., for cA → 0), illustrating the
relation of these waves with regular sound waves. Because all terms appearing in (74)
are positive definite, we easily see that c+ > c−, explaining the names of the two wave
branches.

In contrast to the Alfvén wave, the eigenvectors for the magnetosonic waves have the
form vMS = (vx, 0, vz) implying compressional waves (k ·v 6= 0) with longitudinal polar-
isation (v ·B0 6= 0). The different propagation speed of the two wave branches can be
understood in terms of the pressure perturbations being in phase or out of phase with the
(linear) magnetic pressure fluctuation B0 ·B/µ0. More specifically

B0 ·B
µ0

=
k·vB2

0 − (k·B0) (v ·B0)

µ0ω
=
c2A
c2s

(
1− k2c2s cos2 θ

ω2

)
. (75)

From this equation, we can see that both perturbations have the same sign if cφ > cs cos θ,
and have opposite signs if cφ < cs cos θ. As a simple exercise, check that this is indeed the
case for cφ = c+ and cφ = c−, as stated above.
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4 Hydrodynamic Shocks

When we studied sounds waves, we assumed that the amplitude of the perturbations was
small. This conditions does not always hold. In particular because the sound speed cs is
proportional to (some power of) the density ρ (for an adiabatic, monoatomic gas cs ∼ ρ1/3),
regions of the fluid with higher densities will be moving faster, distorting the shape of the
wave and causing it to steepen. This leads to the conclusion that after a finite time
the density is bound to become a multiple-valued function of position. Because this is
physically impossible, a sharp discontinuity, known as a shock, forms in the fluid. The
processes involved cannot be understood in the framework of linear theory. Even though
the detailed properties of the shock front could involve complicated micro-physics, a lot
of progress can be made under a set of reasonable assumptions and by considering the
conservation of mass, momentum, and energy on both sides of the shock.

4.1 Conservative Form of Equations for Hydrodynamics

We have already seen the equations describing an ideal fluid. In order to understand the
dynamical properties of shocks, it is useful to write this equations in conservative form,

∂ρ

∂t
+∇·(ρv) = 0 , (76)

∂ρv

∂t
+∇·(ρv v + PI) = 0 , (77)

∂E

∂t
+∇·

[
ρv

(
1

2
v2 + ε+

P

ρ

)]
= 0 . (78)

In these equations, I is the 3× 3 identity matrix, E = (ρv2)/2 + ρε is the total energy
per unit volume, i.e., the sum of the kinetic energy and internal energy, both per unit
volume. Recall that for an ideal gas under isentropic conditions, P/ργ=const., the pressure
is related to the internal energy per unit volume according to P = (γ− 1)ρε. Here, ε is the
energy per unit mass, i.e., ε = kBT/(γ − 1)µmH, where kB is the Boltzmann constant, T
is the temperature, µ is the mean molecular weight, and mH is the mass of the hydrogen
atom. The adiabatic index/ratio of specific heats is defined as γ = Cp/Cv. Typical values
are γ = 5/3 for an ideal, monatomic gas and γ = 7/5 for an ideal diatomic gas.

Figure 4: Sinusoidal velocity oscillation propagating in a gas. The “crests” have higher
velocity than the “troughs”, and outrun (b) and eventually overtake them (c). The system
does not become multivalued and a shock forms (c, dashed line). M. Ruderman, 2006.
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4.2 Rankine-Hugoniot Jump Conditions

We will consider the shock as a region of small thickness over which the dynamical variables
change abruptly. We are interested in understanding the relationship between the fluid
properties on the two sides of the shock, which we label 1 (pre-shock region) and 2 (post-
shock region). In order to do this, it is useful to solve the problem in the reference frame
in which the shock is at rest. Under steady conditions, the density, pressure, and velocity
on the two sides of the shock are related by the Rankine-Hugoniot jump conditions,

ρ1v1 = ρ2v2 , (79)

ρ1v
2
1 + P1 = ρ2v

2
2 + P2 , (80)

1

2
v21 + h1 =

1

2
v22 + h2 , (81)

where we have defined the enthalpy h = ε+P/ρ. Note that in the frame of the undisturbed
medium, the shock is propagating with velocity vs = −v1, which is expected to be larger
than the speed of sound, since otherwise the shock would produce ordinary sound waves
that would propagate faster then the shock thereby weakening it.

4.3 Relationship Between Pre-shock and Post-shock Properties

The Rankine-Hugoniot jump conditions are three equations in six variables. It is convenient
to write their solutions in terms of the ratios of the variables in the pre- and post-shock
regions in terms of the mach number M = v1/cs, such that M > 1, as mentioned above.
After some algebraic manipulations we find

ρ2
ρ1

=
(γ + 1)M2

(γ + 1) + (γ − 1)(M2 − 1)
=
v1
v2
, (82)

p2
p1

=
(γ + 1) + 2γ(M2 − 1)

(γ + 1)
, (83)

T2
T1

=
[(γ + 1) + 2γ(M2 − 1)][(γ + 1) + (γ − 1)(M2 − 1)]

(γ + 1)2M2
. (84)

It is clear from the above equations that p2 > p1, ρ2 > ρ1, v2 < v1, and T2 > T1. The
strongest possible shock corresponds toM→∞. In this limit the pressure and temperature
ratios diverge but ρ2/ρ1 = (γ + 1)/(γ − 1). This corresponds to a factor of ρ2/ρ1 = 4 for
monoatomic gas and and ρ2/ρ1 = 7 for a diatomic gas.

A few remarks concerning the approximations involved are in order. We derived the
junction conditions using the conservation of mass, momentum, and energy. The first
two are usually very good approximations, however, the equation that we used for energy
conservation is incomplete if energy can be gained or lost at the shock front. The former
could take place if chemical or nuclear reactions can happen at the shock front. The latter
could take place if the gas heated by the shock reaches a high enough temperature that
radiative losses become important. In our derivation, we assumed that the shock itself can
be thought of as a contact discontinuity. However, because the gradients in these regions
are large dissipative processes are expected to be important in this region and they in fact
determine the actual shock thickness. Further thickening of the shock front could arise
do to energetic particles that can propagate faster than the sound speed and travel to the
pre-shock region pre-heating the incoming gas. When none of these effects are important,
mass, momentum, and energy are conserved at the shock discontinuity we discussed above
and the shock is called adiabatic.
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5 Phases of Supernova Remnant Evolution

Supernovae occur when massive stars implode and eject their outer layers. 99% of the en-
ergy released is carried away by neutrinos. The remainder drives a supernova remnant
into the ISM. The material ejected expands into the interstellar medium, and shocks it.
This process can be roughly divided into four phases: 1) free expansion/constant velocity
phase; 2) adiabatic, energy-conserving/ Sedov phase; 3) radiative/momentum conserv-
ing/snowplow phase; and 4) merging of shock with interstellar medium. In what follows,
we will summarise some of the salient characteristics of these phases.

• Free expansion phase (constant velocity) – Early on after the explosion, the shell
of swept-up material in front of shock does not represent a significant mass compared to
the mass ejected Mej. As long as the swept-up mass is much smaller that the mass ejected,
momentum conservation implies that the velocity of the shock front remains approximately
constant and Rs(t) ∼ V0 t. This phase ends when the swept-up mass becomes comparable
to the mass of ejecta, i.e., 4πR3

s (t)ρ0/3 = 4πV 3
0 t

3
SWρ0/3 = Mej.

• Sedov phase (adiabatic/energy-conserving) – The Sedov phase begins after the
sweep-up time, at about 102 years, when enough mass has been accumulated to decelerate
the remnant from a constant velocity. During 1941-1945, J. von Neumann, L. Sedov and
G. I. Taylor independently studied the instantaneous input of fixed amounts of energy E0

into systems with uniform density, ρ0. They found that the evolution of the shock in this
phase was characterised by only three parameters: the initial energy (at the end of the free
expansion phase), the initial ambient density, and the radius of the blast wave. Dimensional

analysis shows that the evolution of the shock front is Rs(t) ∼ E1/5
0 ρ

1/5
0 t2/5.

• Snowplow phase (radiative/momentum-conserving) – The Sedov phase ends
after a few ∼ 103 years, when the temperature has dropped to T ∼ 106K. C,N,O ions now
recombine and cool the remnant efficiently. During this phase, momentum is conserved
but the energy is gradually lost. In order to calculate the expansion radius Rs(t) we
consider that the momentum is conserved 4πR3

sρ0Vs/3 = const. and the shock speed is
just Vs(t) = dRS/dt. This equation can be integrated to obtain Rs(t) ∼ t1/4. During the
final stages of the snow-plow phase, the swept-up mass gradually slows down the front to
subsonic speeds and the remnant merges with the ISM.
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Figure 5: Radius and velocity evolution of supernova shell during the different phases.
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