Entanglement in Collective Neutrino Oscillations A Many-body Approach

Michael J. Cervia

Department of Physics, University of Wisconsin-Madison

Wednesday, August 28, 2019

- $\bullet\,$ Consider an initial many-body state, $|\Psi_0\rangle$
 - Example: in the (two-)flavor-basis, $|
 u_e
 u_x
 u_e
 angle$
- Adiabatically evolve with Schrödinger's Eq.

$$\left|\Psi\right\rangle\approx Ve^{-i\int_{0}^{t}\Sigma(t')dt'}V_{0}^{T}\left|\Psi_{0}\right\rangle$$

- V, V_0 real mapping of energy eigenstates to mass product states, parametrized by the 2^N solns of $\vec{\Lambda} \equiv (\Lambda_1, \ldots, \Lambda_N)$, at times t, 0
- $\Sigma \equiv V H V^T$ real, diagonal; any energy degeneracies split by differing $\vec{\Lambda}$ parameters
- Obtain both V, Σ efficiently using methods of Patwardhan *et al.*, 2019

Summary of Entanglement Measures Density Matrix, Polarization Vector, & Entanglement Entropy

Consider a pure, many-body neutrino state $\rho = |\Psi\rangle\langle\Psi|$. Then, a single-neutrino reduced density matrix:

$$\rho_q \equiv \operatorname{Tr}_{1,\dots,\widehat{q},\dots,N}[\rho] = \sum_{i_1,\dots,\widehat{i_q},\dots,i_N=1}^2 \langle \nu_{i_1}\dots\widehat{\nu_{i_q}}\dots\nu_{i_N}|\rho|\nu_{i_1}\dots\widehat{\nu_{i_q}}\dots\nu_{i_N}\rangle$$

P(ω_q), Polarization vector of neutrino q: ρ_q = ¹/₂(I + *P*(ω_q) · *σ*)
 S(ω_q), Entropy of entanglement between neutrino q and rest:

$$S(P) = -\frac{1-P}{2}\ln\left(\frac{1-P}{2}\right) - \frac{1+P}{2}\ln\left(\frac{1+P}{2}\right)$$

with $P = |\vec{P}(\omega_q)|$ *NB*: *S* and $P \equiv |\vec{P}|$ are one-to-one, inversely related • $P = 1 \iff S = 0$ (Unentangled)

• $P = 0 \iff S = \ln(2)$ (Maximally Entangled)

Evolution of All-Electron Flavor Initial State First Comparison of MF and MB

- Consider spectra of freq $\omega_1, \ldots, \omega_N$ where $\omega_p = p\omega_0$
- For $N=2,\ldots,9$, evolve from $|\Psi_0
 angle=|
 u_e\ldots
 u_e
 angle$
- As $\mu \sim 0$ $(r \gg R_{\nu})$, H diag in mass-basis \implies plot final spectra as $P_z = n_1 - n_2$

NB: In the MF case, S = 0 always

Correlation of P_z Discrepancies and S Wider Comparison of MF and MB

Calculate $\Delta P_z(\omega) \equiv |P_z^{\rm MF}(\omega) - P_z^{\rm MB}(\omega)|$ at $r \gg R_\nu$

• For N = 4: all ICs with definite flavor ν_e, ν_x (e.g., $|\nu_e, \nu_x, \nu_x, \nu_x\rangle$)

• For N = 8: same ICs, but plus four ν_e to top/bottom of spectrum

Trendline: $y(S) \equiv P^{MF}(S) - P^{MB}(S) = 1 - P(S)$

Comparison of P_z Spectra Weakening the Spectral Swap

- Evolve $|\Psi_0\rangle = |\nu_e \nu_e \nu_e \nu_e \nu_x \nu_x \nu_x \nu_x \rangle$ until $r \gg R_{\nu}$
- Pairs (p,q) with $P_z(\omega_p)=-P_z(\omega_q)$ also share $S(\omega_p)=S(\omega_q)$

Cervia, Patwardhan, Balantekin, Coppersmith, Johnson arXiv e-print:1908.03511

Comparison of Intermediate P_z Spectra While $r \gtrsim R_{\nu}$

Cervia, Patwardhan, Balantekin, Coppersmith, Johnson arXiv e-print:1908.03511

7 / 9

Comparison of Intermediate P_z Spectra While $r \gtrsim R_{\nu}$, N = 8 alternative IC

8 / 9

- Y_e Predictions \rightarrow Nucleosynthesis yields
- Next steps in calculations
 - Larger N
 - Inclusion of $\bar{\nu} \iff \omega < 0$, here
 - Inclusion of frequency degeneracies
 - ${\ }$ Beyond single-angle approximation $\mu \rightarrow \mu _{{\bf pq}}$

Comparison of Intermediate P_z Spectra While $r \gtrsim R_{\nu}$, N = 2 mono-flavor initially

• $|\Psi_0\rangle = |\nu_e \nu_e\rangle$, and observe P_z before $r \gg R_{\nu}$

Comparison of Intermediate P_z Spectra While $r \gtrsim R_{\nu}$, N = 2 different-flavor initially

• $|\Psi_0 angle = | u_e u_x angle$, and observe P_z before $r \gg R_{ u}$

Entanglement in Individual Eigenstates Highest frequency ν to the rest, N = 5

- $|\Psi\rangle$ eigenstates of H, for N=5
- hightest/lowest-weight states are trivial

0

12 / 9