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Summary of Many-body Treatment
Adiabatic Evolution

Consider an initial many-body state, |Ψ0〉
Example: in the (two-)flavor-basis, |νeνxνe〉

Adiabatically evolve with Schrödinger’s Eq.

|Ψ〉 ≈ V e−i
∫ t
0 Σ(t′)dt′V T

0 |Ψ0〉

V, V0 real mapping of energy eigenstates to mass product states,
parametrized by the 2N solns of ~Λ ≡ (Λ1, . . . ,ΛN ), at times t, 0
Σ ≡ V HV T real, diagonal; any energy degeneracies split by
differing ~Λ parameters
Obtain both V,Σ efficiently using methods of Patwardhan et al.,
2019
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Summary of Entanglement Measures
Density Matrix, Polarization Vector, & Entanglement Entropy

Consider a pure, many-body neutrino state ρ = |Ψ〉〈Ψ|. Then, a
single-neutrino reduced density matrix:

ρq ≡ Tr1,...,q̂,...,N [ρ] =

2∑
i1,...,îq ,...,iN=1

〈νi1 . . . ν̂iq . . . νiN |ρ|νi1 . . . ν̂iq . . . νiN 〉

~P (ωq), Polarization vector of neutrino q: ρq = 1
2

(
I + ~P (ωq) · ~σ

)
S(ωq), Entropy of entanglement between neutrino q and rest:

S(P ) = −1− P
2

ln

(
1− P

2

)
− 1 + P

2
ln

(
1 + P

2

)
with P = |~P (ωq)|

NB: S and P ≡ |~P | are one-to-one, inversely related

P = 1 ⇐⇒ S = 0 (Unentangled)

P = 0 ⇐⇒ S = ln(2) (Maximally Entangled)
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Evolution of All-Electron Flavor Initial State
First Comparison of MF and MB

Consider spectra of freq ω1, . . . , ωN where ωp = pω0

For N = 2, . . . , 9, evolve from |Ψ0〉 = |νe . . . νe〉
As µ ∼ 0 (r � Rν), H diag in mass-basis

=⇒ plot final spectra as Pz = n1 − n2

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

P
z
(ω

N
)

N

Many-body
Mean-field

0

0.05

0.1

0.15

0.2

200 500 1000 2000

S
(!

N
)

r (in units of !�1
0 )

N = 2
N = 3
N = 4
N = 5
N = 6
N = 7
N = 8
N = 9

NB: In the MF case, S = 0 always

4 / 9



Correlation of Pz Discrepancies and S
Wider Comparison of MF and MB

Calculate ∆Pz(ω) ≡ |PMF
z (ω)− PMB

z (ω)| at r � Rν

For N = 4: all ICs with definite flavor νe, νx (e.g., |νe, νx, νx, νx〉)
For N = 8: same ICs, but plus four νe to top/bottom of spectrum

(N = 4)
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Trendline: y(S) ≡ PMF(S)− PMB(S) = 1− P (S)
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Comparison of Pz Spectra
Weakening the Spectral Swap

Evolve |Ψ0〉 = |νeνeνeνeνxνxνxνx〉 until r � Rν

Pairs (p, q) with Pz(ωp) = −Pz(ωq) also share S(ωp) = S(ωq)
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Comparison of Intermediate Pz Spectra
While r & Rν

Same IC, but observe Pz before r � Rν
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Comparison of Intermediate Pz Spectra
While r & Rν , N = 8 alternative IC

|Ψ0〉 = |νeνeνeνeνeνeνeνx〉
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Future Work

Ye Predictions → Nucleosynthesis yields

Next steps in calculations

Larger N
Inclusion of ν̄ ⇐⇒ ω < 0, here
Inclusion of frequency degeneracies
Beyond single-angle approximation µ→ µpq
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Comparison of Intermediate Pz Spectra
While r & Rν , N = 2 mono-flavor initially

|Ψ0〉 = |νeνe〉, and observe Pz before r � Rν
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Comparison of Intermediate Pz Spectra
While r & Rν , N = 2 different-flavor initially

|Ψ0〉 = |νeνx〉, and observe Pz before r � Rν
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Entanglement in Individual Eigenstates
Highest frequency ν to the rest, N = 5

|Ψ〉 eigenstates of H, for N = 5
hightest/lowest-weight states are trivial

m = +3/2
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