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Figure 14: Constraints on sterile neutrino DM. The solid lines represent the most important constraints
that are largely model independent, i.e., they can be derived for a generic SM-singlet fermion N of mass
M and a mixing angle ✓ with SM neutrinos, without specification of the model that this DM candidate is
embedded in. The model independent phase space bound (solid purple line) is based on Pauli’s exclusion
principle (c.f. Section 3.1). The bounds based on the non-observation of X-rays from the decay N ! ⌫�
(violet area, see Section 3.2 for details) assume that the decay occurs solely through mixing with the active
neutrinos with the decay rate given by eq. (29). In the presence of additional interactions, these constraints
could be stronger, see e.g. [520]. All X-ray bounds have been smoothed and divided by a factor 2 to account
for the uncertainty in the DM density in the observed objects. They are compared to two estimates of the
ATHENA sensitivity made in ref. [234]. The blue square marks the interpretation of the 3.5 keV excess as
decaying sterile neutrino DM [184, 188]. All other constraints depend on the sterile neutrino production
mechanism. As an example, we here show di↵erent bounds that apply to thermally produced sterile
neutrino DM, cf. section 4.2. The correct DM density is produced for any point along black solid line
via the non-resonant mechanism due to ✓-suppressed weak interactions (24) alone (Section 4.2.1). Above
this line the abundance of sterile neutrinos would exceed the observed DM density. We have indicated
this overclosure bound by a solid line because it applies to any sterile neutrino, i.e., singlet fermion that
mixes with the SM neutrinos. It can only be avoided if one either assumes significant deviations from the
standard thermal history of the universe or considers a mechanism that suppresses the neutrino production
at temperatures of a few hundred MeV, well within the energy range that is testable in experiments, cf. e.g.
[521]. For parameter values between the solid black line and the dotted green line, the observed DM density
can be generated by resonantly enhanced thermal production (Section 4.2.2). Below the dotted green line
the lepton asymmetries required for this mechanism to work are ruled out because they would alternate the
abundances of light elements produced during BBN [584]. The dotted purple line represents the lower bound
from phase space arguments that takes into account primordial distribution of sterile neutrinos, depending on
the production mechanism [22]. As a structure formation bound we choose to display the conservative lower
bound on the mass of resonantly produced sterile neutrinos, based on the BOSS Lyman-↵ forest data [268]
(see Section 3.3 for discussion). The structure formation constraints depend very strongly on the production
mechanism (Section 4). The dashed red line shows the sensitivity estimate for the TRISTAN upgrade of the
KATRIN experiment (90% C.L., ignoring systematics, c.f. Section 5.2).
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The principal radiative decay modes of singlet neutrinos
are shown in Figure 2. Majorana neutrinos have contribu-
tions from conjugate processes. For the Majorana neutrino
case, the decay rate for is (Pal & Wolfenstein 1982)m2 ? m1
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where a B 1/137 is the Ðne-structure constant. Here, rb \
is the square of the ratio of the bÑavor charged(mb/MW)2

lepton mass and the WB boson mass, and

F(rb) B [32 ] 34rb . (9)

The sum in equation (8) is over the charged lepton Ñavors.
For decay of a doublet neutrino into another Ñavor
doublet, the sum in equation (8) vanishes for the Ðrst term in
equation (9) on account of the unitarity property associated
with the transformation matrix elements in equation (3).
The second term in equation (9) causes the sum not to
vanish, but the resulting term is obviously very small
because it involves the fourth power of the ratio of charged
lepton to WB masses. This is the so-called Glashow-
Iliopoulos-Maiani (GIM) suppression (or cancellation).

For a singlet decay, the sum over the charged lepton
Ñavors in equation (9) does not cancel the leading contribu-
tion in equation (9) because there is no charged lepton
associated with the singlet state. The decay rate is conse-
quently greatly enhanced over the GIM-suppressed doublet
decay case. The rate of singlet neutrino radiative decay is
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where we have identiÐed since the mixing is pre-m
s
B m2,

sumed to be small.
The singlet neutrino can also decay via two-photon emis-

sion, However, this decay has a leadingl2 ] l1 ] c ] c.
contribution scaling with the inverse square of the charged
lepton mass (Nieves 1983) and therefore is strongly sup-
pressed. Since the two-photon decay rate scales as it willm

s
9,

dominate over the single-photon mode for masses m
s
Z 10

MeV. However, singlet neutrino masses over 10 MeV are
excluded by other considerations (AFP).

In the case of the single-photon channel, the decay of a
nonrelativistic singlet neutrino into two (nearly) massless
particles produces a line at energy with a widthEc \ m

s
/2

given by the velocity dispersion of the dark matter. For
example, clusters of galaxies typically have a virial velocity
dispersion of D300 km s~1. Therefore, the emitted line is
very narrow, The observed width of the line*E D 10~3Ec.

will be given by the energy resolution of the detector in this
case. For example, the energy resolution of ChandraÏs
Advanced CCD Imaging Spectrometer (ACIS) is *E B 200
eV, while the Constellation X project hopes to achieve a
resolution of *E B 2 eV.

The luminosity from a general singlet neutrino dark
matter halo is (from eq. [1])
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This implies that the radiative decay Ñux from singlet neu-
trinos in the halo is
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Therefore, for a general singlet neutrino candidate with rest
mass and vacuum mixing angle sin2 2h, the mass limitÈm

sassuming no detection of a line at a Ñux limit level of
FdetÈis
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Using equation (5), the dependence on mixing angle can
be eliminated, and with equation (1), we have for the L la B 0
case that the Ñux due to singlet neutrino decay is
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For the production case, the corresponding singletL la B 0
mass limit from a null detection of a line at at ÑuxEc \ m
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It should be noted that the decay limits presented here
derive from a speciÐc type of mass-generation mechanism

FIG. 2.ÈPrincipal radiative decay modes for massive singlet neutrinos

²   Dodelson-Widrow (thermal) production is strongly disfavored.
²   Shi-Fuller (resonant) production is viable in a limited window.*

* …which may encompass a detection.
Abazajian, Fuller, Tucker 2001

Boyarsky et al. 2019

(resonant production)



Shi & Fuller 1999
Abazajian, Fuller, Patel 2001

Resonant production leads to
non-thermal spectra that are
typically colder than DW ones. JCAP04(2016)059

Figure 1. Sterile neutrino mass versus mixing angle from resonant production. The parameter
space is delimited by an upper and lower thin black line, corresponding to production with zero (non-
resonant production) and maximum lepton asymmetry. X-ray constraints from Suzaku [81, 86] are
given as thick black line (with shaded area indication the excluded region), while the dashed line
corresponds to a more conservative limit from [30, 69]. The colormap illustrates the mean momenta
from resonant production (divided by the photon temperature T ). The tentative line signal from
refs. [25, 29] is indicated by the red symbol at 7.1 keV.

The mean momentum gives a first estimate of how a given scenario a↵ects structure
formation. However, a detailed investigation of the free-streaming e↵ect requires knowledge
of the full momentum distribution. This is especially true in the case of an e�cient resonance
where the distribution may be strongly distorted or even double-peaked. In this regime it is
not advisable to estimate the free-streaming behaviour from the mean momentum alone.

In figure 2 we show the full momentum distributions of selected scenarios representing
three di↵erent values for the particle mass (left: msn = 7.1 keV; centre: msn = 10 keV; right:
msn = 15 keV) and various mixing angles (colours). The model with the largest mixing angle
in every panel corresponds to the non-resonant scenario and has a momentum distribution
with a shape very close to the Fermi-Dirac distribution. Decreasing the mixing angles (i.e.
increasing the lepton asymmetry) first leads to a shift of the distributions towards colder
momenta until a turnover point where the distributions get warmer again. The model with
the smallest mixing angle in each panel of figure 2 has a momentum distribution which is
slightly warmer than the corresponding non-resonant distribution. This behaviour confirms
the results of the average momenta shown in figure 1.

There are several possible shortcomings of the calculation performed with sterile-dm,
which we now briefly discuss. First of all, the code is restricted to a single sterile singlet
and only considers oscillation with the muon-neutrino ignoring mixing with other flavours.2

2
The authors of ref. [37] showed that very similar distributions may be obtained for other flavour mixings,

at least for a particle mass around msn = 7.1 keV.
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Figure 4. Constraints from structure formation on the sterile neutrino parameter space. The areas
in green and yellow are excluded by Lyman-↵ bounds (based on the V13 and B15 reference models,
see section 4.1). The brown area is excluded by Milky-Way satellite counts (see section 4.2). The
parameter space is delimited by an upper and lower thin line corresponding to zero (non resonant
production) and maximum lepton asymmetry. The thick line illustrates the X-ray constraints from
Suzaku [81, 86], the dashed line an independent X-ray limit from refs. [30, 69]. The tentative line
signal [25, 29] at 7.1 keV is shown by the red symbol.

the parameter space above. The region around the claimed line signal is still allowed by
satellite counts (as already shown by refs. [4, 57, 64]). Intriguingly, sterile neutrino DM with
msn = 7.1 keV and a mixing angle of sin2(2✓) ⇠ 2–20 ⇥ 10�11 also seems to alleviate both
the missing satellite and the too-big-to-fail problems [4, 27, 39].

The generalised Lyman-↵ limit based on the V13 reference model (excluding thermal
relic WDM with mWDM . 3.3 keV) is given by the green area in figure 4. It is considerably
stronger than the bound fromMilky-Way satellites and disfavours large parts of the remaining
parameter space. Only a small area above msn ⇠ 10 keV remains unchallenged by neither the
V13 nor the X-ray bounds. Furthermore, the line signal at msn = 7.1 keV is in clear conflict
with the V13 limits (as pointed out in ref. [64]) putting further pressure on the sterile neutrino
DM interpretation of the X-ray excess.

The generalised Lyman-↵ constraint based on the B15 reference model (excluding ther-
mal relic WDM with mWDM . 4.35 keV) is illustrated by the yellow area in figure 4. It
completely overlaps with the Suzaku X-ray limits and therefore excludes the entire param-
eter space of resonantly produced sterile neutrino DM. Furthermore, the limit strongly
disfavours the sterile neutrino interpretation of the suggested X-ray line signal.

In summary, the bounds presented in figure 4 show for the first time that it is possible
to not only rule out the non-resonant sterile neutrino scenario with structure formation, but
to put strong pressure on the resonant production mechanism. However, before drawing final
conclusions, it is important to note that the observational data used here could be subject to
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Sterile neutrinos require at least one other BSM ingredient if they
are to comprise all of the DM.

A large lepton number is one possibility. What else?

          1. Don’t change the dynamics of active-sterile mixing.
² Another new particle decays to
     sterile neutrinos.
² An overabundant population is
     diluted by new sources of entropy.
²  Reheating occurs at a low temp.
² Number-changing interactions
     occur in the sterile sector.

          2. Change the dynamics of active-sterile mixing.
² A (pseudo)scalar field alters the
     mixing in a time-dependent way.
²  Sterile-sector interactions alter the
     mixing.

Berlin & Hooper 2017
Bezrukov et al. 2017, 2018

Johns	&	Fuller	2019	

Also	discussed	in	connection	
with	eV-scale	sterile	neutrinos.	

Gelmini et al. 2004

Asaka et al 2006
Bezrukov et al. 2010
Patwardhan et al. 2015

Shaposhnikov & Tkachev 2006
Petraki & Kusenko 2008

Hansen & Vogl 2017
Herms et al. 2018
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An extensive, growing body of work has been penned on cosmologies that include one or more
sterile neutrinos. Early entries in the literature formulated a Boltzmann-like equation describing
sterile-neutrino production in a way that bypasses the numerical tracking of high-frequency com-
plex phases, and meticulous quantum-kinetic analyses shortly thereafter put the formula on firmer
ground. A new and more direct derivation is given here, showing that the equation follows almost
immediately from a quantum relaxation-time approximation and an expansion in the mixing angle.
Besides reproducing the desired result, the relaxation ansatz captures to a high degree of accuracy
the interlaced dynamics of oscillations, decoherence, and plasma repopulation. Successes and limita-
tions of the semiclassical equation are illustrated numerically and are shown to reflect the accuracy
of the approximations employed in the derivation. The inclusion of interactions among the sterile
neutrinos is also briefly addressed.

I. INTRODUCTION

Sterile neutrinos continue to be actively studied as
sources of oscillation anomalies, as reconcilers of cosmic
tensions, and as candidates for dark matter. In all these
cases the cosmological abundance must be calculated,
and so the dynamics of active–sterile mixing must be
contended with. The essential challenge is that the full
quantum-kinetic problem involves disparate time scales
and the interplay of coherent (/ GF ) and incoherent
(/ G

2
F ) e↵ects.

A Boltzmann-like equation is often used to calculate
the nonthermal abundance of sterile neutrinos produced
from active ones [1–3]:

dfs

dt
=

�a

4

sin2 2✓m

1 +
⇣

�a
2!m

⌘2 (fa � fs) , (1)

where fa(s) is the active (sterile) distribution function,
�a is the scattering rate of active neutrinos, and ✓m and
!m are the in-medium mixing angle and oscillation fre-
quency. (We suppress dependence on momentum here
and throughout.) Eq. (1) is a semiclassical approxima-
tion of the quantum kinetic equation (QKE) [4–8]

i
d⇢

dt
= [H, ⇢] + iC (2)

for the density matrix ⇢. Its computational appeal lies
in the fact that, by packaging together the e↵ects of the
Hamiltonian H and collision term C as a single e↵ective
production rate, one can overlook the quantum phases
and evolve only the classical densities.

The first derivations of Eq. (1) (or variations of it)
were based on single-particle arguments that equated the
⌫s production rate with the product of the ⌫a scatter-
ing rate and the probability of a ⌫a oscillating into a
⌫s [1, 2]. Later analyses hearteningly arrived at similar

⇤ ljohns@physics.ucsd.edu

formulas working from quantum-kinetic descriptions and
judiciously applying approximations for the evolution in
flavor space [9–16]. Our purpose here is to add another
entry to the list, one that is complementary to the refer-
ences just cited and whose virtue is the insight it gives
into the quantum dynamics underlying the semiclassical
behavior. Given the ongoing interest in sterile neutrinos,
having a robust simplification of the quantum dynamics
may prove useful for future applications. The guiding
idea, which we support numerically, is that the evolution
of ⇢ at small mixing angle is well described by the expo-
nential decay of its deviations from equilibrium. As we
demonstrate below, this simple ansatz leads promptly to
Eq. (1).
In Sec. II we go through the derivation and discuss it

in the context of other treatments. In Sec. III we present
numerical comparisons of the Boltzmann and QKE solu-
tions, highlighting the accuracy not only of Eq. (1) but
also of the ansatz on which it is based. In Sec. IV we
conclude.

II. DERIVATION

We begin by applying the quantum relaxation-time ap-
proximation to the collision term [12, 17–19]:

iC = {i�, ⇢eqC � ⇢} , (3)

where � = (1/2) diag(�a,�s) and ⇢
eq
C is the H = 0 equi-

librium. If the states do not mix, then the classical
relaxation-time approximation is recovered, and the den-
sities fa and fs approach their equilibrium values with
time scales ��1

a and ��1
s respectively. We posit that the

same approximation applies to the entire right-hand side
of Eq. (2), with a single e↵ective relaxation parameter
replacing the individual scattering rates and the flavor
equilibrium ⇢

eq
F replacing the classical equilibrium. That

is,

i
d⇢

dt
= {i�e↵, ⇢

eq
F � ⇢} , (4)

Production through the neutrino
portal can be calculated using a
Boltzmann-like equation

Kainulainen 1990
Cline 1992

Shi 1996
Foot & Volkas 1997 (and sequels)

Dolgov 2002

2

FIG. 1. Comparison of the Boltzmann [Eq. (1); dashed red curve] and QKE [Eqs. (8); black] solutions for fs(t). The mixing angle
is small: ✓ = ⇡/100. Insets show the same curves on shorter time scales. On ��1 time scales the curves are indistinguishable
by eye.

FIG. 2. Same as Fig. 1 but here the mixing angle is not small: ✓ = ⇡/5. Unlike in the small-✓ case, strong damping is necessary
to coerce ⇢ toward the Boltzmann solution. Early-time discrepancy is magnified compared to Fig. 1.

with �e↵ = (�m/4) diag (1, 1). (The extra factor of 1/2 is
added as a matter of preference.) Hence

d⇢

dt
=

�m

2
(⇢eqF � ⇢) , (5)

and in particular

dfs

dt
=

�m

2
(f eq

a � fs) . (6)

If the mixing angle is small, f eq
a can safely be replaced in

this equation by fa.
Using ⇢ = P0 (1 +P · �) /2, it follows from Eq. (5)

that the polarization vector obeys

dP0

dt
=

�m

2
(2f eq

a � P0) ,

dP

dt
= ��m

f
eq
a

P0
P. (7)

At the same time, using H = (!m/2)Bm and setting
�s = 0, Eqs. (2) and (3) imply

dP0

dt
= 2D

✓
f
eq
a � P0

1 + Pz

2

◆

dP

dt
= !mBm ⇥P�DPT �

Ṗ0

P0
P+

Ṗ0

P0
z, (8)

where D = �a/2 is the decoherence rate and Bm =
sin 2✓mx � cos 2✓mz. The ansatz tells us that Eqs. (7)
and Eqs. (8) can be set equal to each other at any mo-
ment in the evolution. For the sake of extracting �m, we
choose to equate them prior to significant sterile produc-
tion, during which time P nearly equals z and P0 and
fa nearly equal f eq

a . To first order in the deviations, P
satisfies the eigenvalue equation

!mBm ⇥P�DPT = ��mP. (9)

Nontrivial solutions of Eq. (9) correspond to roots of the

Compare to the QKEs (with
approximate collision term): 

Assessing	collision	approximations	
in	active-sterile	oscillations:	
			Hannestad,	Hansen,	Tram,	Wong	2015	

Papers by Bell, Lee, Volkas, & Wong
have shown that repopulation terms
in the QKEs can be ignored if the
mixing angle is small:
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i
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= [H, ⇢] + iC (2)

for the density matrix ⇢. Its computational appeal lies
in the fact that, by packaging together the e↵ects of the
Hamiltonian H and collision term C as a single e↵ective
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The first derivations of Eq. (1) (or variations of it)
were based on single-particle arguments that equated the
⌫s production rate with the product of the ⌫a scatter-
ing rate and the probability of a ⌫a oscillating into a
⌫s [1, 2]. Later analyses hearteningly arrived at similar
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formulas working from quantum-kinetic descriptions and
judiciously applying approximations for the evolution in
flavor space [9–16]. Our purpose here is to add another
entry to the list, one that is complementary to the refer-
ences just cited and whose virtue is the insight it gives
into the quantum dynamics underlying the semiclassical
behavior. Given the ongoing interest in sterile neutrinos,
having a robust simplification of the quantum dynamics
may prove useful for future applications. The guiding
idea, which we support numerically, is that the evolution
of ⇢ at small mixing angle is well described by the expo-
nential decay of its deviations from equilibrium. As we
demonstrate below, this simple ansatz leads promptly to
Eq. (1).
In Sec. II we go through the derivation and discuss it

in the context of other treatments. In Sec. III we present
numerical comparisons of the Boltzmann and QKE solu-
tions, highlighting the accuracy not only of Eq. (1) but
also of the ansatz on which it is based. In Sec. IV we
conclude.

II. DERIVATION

We begin by applying the quantum relaxation-time ap-
proximation to the collision term [12, 17–19]:

iC = {i�, ⇢eqC � ⇢} , (3)

where � = (1/2) diag(�a,�s) and ⇢
eq
C is the H = 0 equi-

librium. If the states do not mix, then the classical
relaxation-time approximation is recovered, and the den-
sities fa and fs approach their equilibrium values with
time scales ��1

a and ��1
s respectively. We posit that the

same approximation applies to the entire right-hand side
of Eq. (2), with a single e↵ective relaxation parameter
replacing the individual scattering rates and the flavor
equilibrium ⇢

eq
F replacing the classical equilibrium. That

is,

i
d⇢

dt
= {i�e↵, ⇢

eq
F � ⇢} , (4)

The Boltzmann equation also
follows directly from a quantum
relaxation-time approximation:
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eq
C is the H = 0 equi-

librium. If the states do not mix, then the classical
relaxation-time approximation is recovered, and the den-
sities fa and fs approach their equilibrium values with
time scales ��1

a and ��1
s respectively. We posit that the

same approximation applies to the entire right-hand side
of Eq. (2), with a single e↵ective relaxation parameter
replacing the individual scattering rates and the flavor
equilibrium ⇢

eq
F replacing the classical equilibrium. That

is,

i
d⇢

dt
= {i�e↵, ⇢

eq
F � ⇢} , (4)dP0

dt
= 0, fa = f eq

a
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FIG. 1. Comparison of the Boltzmann [Eq. (1); dashed red curve] and QKE [Eqs. (8); black] solutions for fs(t). The mixing angle
is small: ✓ = ⇡/100. Insets show the same curves on shorter time scales. On ��1 time scales the curves are indistinguishable
by eye.

FIG. 2. Same as Fig. 1 but here the mixing angle is not small: ✓ = ⇡/5. Unlike in the small-✓ case, strong damping is necessary
to coerce ⇢ toward the Boltzmann solution. Early-time discrepancy is magnified compared to Fig. 1.

with �e↵ = (�m/4) diag (1, 1). (The extra factor of 1/2 is
added as a matter of preference.) Hence

d⇢

dt
=

�m

2
(⇢eqF � ⇢) , (5)

and in particular

dfs

dt
=

�m

2
(f eq

a � fs) . (6)

If the mixing angle is small, f eq
a can safely be replaced in

this equation by fa.
Using ⇢ = P0 (1 +P · �) /2, it follows from Eq. (5)

that the polarization vector obeys

dP0

dt
=

�m

2
(2f eq

a � P0) ,

dP

dt
= ��m

f
eq
a

P0
P. (7)

At the same time, using H = (!m/2)Bm and setting
�s = 0, Eqs. (2) and (3) imply

dP0

dt
= 2D

✓
f
eq
a � P0

1 + Pz

2

◆

dP

dt
= !mBm ⇥P�DPT �

Ṗ0

P0
P+

Ṗ0

P0
z, (8)

where D = �a/2 is the decoherence rate and Bm =
sin 2✓mx � cos 2✓mz. The ansatz tells us that Eqs. (7)
and Eqs. (8) can be set equal to each other at any mo-
ment in the evolution. For the sake of extracting �m, we
choose to equate them prior to significant sterile produc-
tion, during which time P nearly equals z and P0 and
fa nearly equal f eq

a . To first order in the deviations, P
satisfies the eigenvalue equation

!mBm ⇥P�DPT = ��mP. (9)

Nontrivial solutions of Eq. (9) correspond to roots of the

Relaxation ansatz:
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For cosmological applications it is typically undesir-
able to have the density of sterile neutrinos approach
the thermal value, and the insets in Fig. 1 are therefore
the relevant comparison. Achieving agreement on these
shorter time scales requires ✓ to be small. Fig. 2 illus-
trates this point: the same quantities are plotted here as
in Fig. 1, but now with ✓ = ⇡/5. Early-time discrepan-
cies are greatly exacerbated.

The relaxation ansatz asserts that fa should decay ex-
ponentially toward f

eq
a . Since a small mixing angle in-

hibits fa from ever deviating greatly from the equilibrium
value, the ansatz also implies a delicate near-cancellation
between the growth of P0 and the decay of P = |P|.
Fig. 3 verifies that both of these expectations are indeed
borne out in the case D/! = 10�2. The result is similar
for stronger damping.

Interestingly, it was shown in Ref. [24] that the Boltz-
mann equation can be derived from the assumption that

⇢as and ⇢sa are both constant. Despite its expedience,
that approximation is not an accurate description of how
the active-sterile coherence develops, particularly on a
�
�1 time scale. Fig. 4 shows that in fact the real part

declines throughout production and is well fit by the re-
laxation ansatz. The imaginary part is similar.

Cosmological production of sterile neutrinos involves
time-dependent parameters of course, and many sce-
narios of interest involve resonant mixing in particular
[23, 25–31]. It is well-known that the Boltzmann equa-
tion is inadequate when the system passes adiabatically
and coherently through a resonance [26, 28, 32]. To il-
lustrate this claim, and to make a connection with the
foregoing analysis, we add a potential V (t)z to !B, with

V (t) = V0e
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. (14)

The adiabaticity parameter [32] is defined to be

↵ = !H sin 2✓ tan 2✓, (15)

Repopulation is captured well by the ansatz: 
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Fig. 3 verifies that both of these expectations are indeed
borne out in the case D/! = 10�2. The result is similar
for stronger damping.
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mann equation can be derived from the assumption that
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that approximation is not an accurate description of how
the active-sterile coherence develops, particularly on a
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Cosmological production of sterile neutrinos involves
time-dependent parameters of course, and many sce-
narios of interest involve resonant mixing in particular
[23, 25–31]. It is well-known that the Boltzmann equa-
tion is inadequate when the system passes adiabatically
and coherently through a resonance [26, 28, 32]. To il-
lustrate this claim, and to make a connection with the
foregoing analysis, we add a potential V (t)z to !B, with
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cies are greatly exacerbated.
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between the growth of P0 and the decay of P = |P|.
Fig. 3 verifies that both of these expectations are indeed
borne out in the case D/! = 10�2. The result is similar
for stronger damping.
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the thermal value, and the insets in Fig. 1 are therefore
the relevant comparison. Achieving agreement on these
shorter time scales requires ✓ to be small. Fig. 2 illus-
trates this point: the same quantities are plotted here as
in Fig. 1, but now with ✓ = ⇡/5. Early-time discrepan-
cies are greatly exacerbated.

The relaxation ansatz asserts that fa should decay ex-
ponentially toward f
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a . Since a small mixing angle in-

hibits fa from ever deviating greatly from the equilibrium
value, the ansatz also implies a delicate near-cancellation
between the growth of P0 and the decay of P = |P|.
Fig. 3 verifies that both of these expectations are indeed
borne out in the case D/! = 10�2. The result is similar
for stronger damping.

Interestingly, it was shown in Ref. [24] that the Boltz-
mann equation can be derived from the assumption that

⇢as and ⇢sa are both constant. Despite its expedience,
that approximation is not an accurate description of how
the active-sterile coherence develops, particularly on a
�
�1 time scale. Fig. 4 shows that in fact the real part

declines throughout production and is well fit by the re-
laxation ansatz. The imaginary part is similar.

Cosmological production of sterile neutrinos involves
time-dependent parameters of course, and many sce-
narios of interest involve resonant mixing in particular
[23, 25–31]. It is well-known that the Boltzmann equa-
tion is inadequate when the system passes adiabatically
and coherently through a resonance [26, 28, 32]. To il-
lustrate this claim, and to make a connection with the
foregoing analysis, we add a potential V (t)z to !B, with

V (t) = V0e
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. (14)

The adiabaticity parameter [32] is defined to be
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As is decoherence:
Could this be helpful for 

active-active mixing?
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An extensive, growing body of work has been penned on cosmologies that include one or more
sterile neutrinos. Early entries in the literature formulated a Boltzmann-like equation describing
sterile-neutrino production in a way that bypasses the numerical tracking of high-frequency com-
plex phases, and meticulous quantum-kinetic analyses shortly thereafter put the formula on firmer
ground. A new and more direct derivation is given here, showing that the equation follows almost
immediately from a quantum relaxation-time approximation and an expansion in the mixing angle.
Besides reproducing the desired result, the relaxation ansatz captures to a high degree of accuracy
the interlaced dynamics of oscillations, decoherence, and plasma repopulation. Successes and limita-
tions of the semiclassical equation are illustrated numerically and are shown to reflect the accuracy
of the approximations employed in the derivation. The inclusion of interactions among the sterile
neutrinos is also briefly addressed.

I. INTRODUCTION

Sterile neutrinos continue to be actively studied as
sources of oscillation anomalies, as reconcilers of cosmic
tensions, and as candidates for dark matter. In all these
cases the cosmological abundance must be calculated,
and so the dynamics of active–sterile mixing must be
contended with. The essential challenge is that the full
quantum-kinetic problem involves disparate time scales
and the interplay of coherent (/ GF ) and incoherent
(/ G

2
F ) e↵ects.

A Boltzmann-like equation is often used to calculate
the nonthermal abundance of sterile neutrinos produced
from active ones [1–3]:

dfs

dt
=

�a

4

sin2 2✓m

1 +
⇣

�a
2!m

⌘2 (fa � fs) , (1)

where fa(s) is the active (sterile) distribution function,
�a is the scattering rate of active neutrinos, and ✓m and
!m are the in-medium mixing angle and oscillation fre-
quency. (We suppress dependence on momentum here
and throughout.) Eq. (1) is a semiclassical approxima-
tion of the quantum kinetic equation (QKE) [4–8]

i
d⇢

dt
= [H, ⇢] + iC (2)

for the density matrix ⇢. Its computational appeal lies
in the fact that, by packaging together the e↵ects of the
Hamiltonian H and collision term C as a single e↵ective
production rate, one can overlook the quantum phases
and evolve only the classical densities.

The first derivations of Eq. (1) (or variations of it)
were based on single-particle arguments that equated the
⌫s production rate with the product of the ⌫a scatter-
ing rate and the probability of a ⌫a oscillating into a
⌫s [1, 2]. Later analyses hearteningly arrived at similar

⇤ ljohns@physics.ucsd.edu

formulas working from quantum-kinetic descriptions and
judiciously applying approximations for the evolution in
flavor space [9–16]. Our purpose here is to add another
entry to the list, one that is complementary to the refer-
ences just cited and whose virtue is the insight it gives
into the quantum dynamics underlying the semiclassical
behavior. Given the ongoing interest in sterile neutrinos,
having a robust simplification of the quantum dynamics
may prove useful for future applications. The guiding
idea, which we support numerically, is that the evolution
of ⇢ at small mixing angle is well described by the expo-
nential decay of its deviations from equilibrium. As we
demonstrate below, this simple ansatz leads promptly to
Eq. (1).
In Sec. II we go through the derivation and discuss it

in the context of other treatments. In Sec. III we present
numerical comparisons of the Boltzmann and QKE solu-
tions, highlighting the accuracy not only of Eq. (1) but
also of the ansatz on which it is based. In Sec. IV we
conclude.

II. DERIVATION

We begin by applying the quantum relaxation-time ap-
proximation to the collision term [12, 17–19]:

iC = {i�, ⇢eqC � ⇢} , (3)

where � = (1/2) diag(�a,�s) and ⇢
eq
C is the H = 0 equi-

librium. If the states do not mix, then the classical
relaxation-time approximation is recovered, and the den-
sities fa and fs approach their equilibrium values with
time scales ��1

a and ��1
s respectively. We posit that the

same approximation applies to the entire right-hand side
of Eq. (2), with a single e↵ective relaxation parameter
replacing the individual scattering rates and the flavor
equilibrium ⇢

eq
F replacing the classical equilibrium. That

is,

i
d⇢

dt
= {i�e↵, ⇢

eq
F � ⇢} , (4)

Adding in self-interactions…

D =
�a + �s

2

V = Vµ + Va + Vs

+ Cs

which is easily consistent with the bound from BBN, viz.,
ΔNν ¼ 0 .66þ0 .47

−0 .45 [12]. Up to three generations of sterile
neutrinos could be accommodated within≃1σ. Note that we
have conservatively taken Tν at the end of BBN.
At lower temperatures, Ts ≲ 0 .1 MeV, A0 becomes non-

relativistic, and decays to sterile neutrinos, heating them up
by a factor of ≃1.4. However, these neutrinos with masses
m≳ 1 eV are nonrelativistic by the epoch of matter-
radiation equality (Tγ ≃ 0 .7 eV) and recombination
(Tγ ≃ 0 .3 eV). Thus, the impact of thermal abundances
of A0 and νs on the cosmic microwave background
(CMB) and structure formation is negligible. See also
Refs. [16–18] for alternate approaches. We will now show
that oscillations of active neutrinos into sterile neutrinos,
which are normally expected to bring the two sectors into
equilibrium again, are also strongly suppressed due to
“matter” effects.
The basic idea underlying our proposal is similar to the

high-temperature counterpart of the MSW effect. Let us
recall that at high temperatures, i.e., in the early Universe,
an active neutrino with energy E experiences a potential
VMSW ∝ G2

FET
4
γ due to their own energy density [19]. This

is not zero even in a CP symmetric universe. A similar, but
much larger, potential can be generated at high temperature
for sterile neutrinos if they couple to a light hidden gauge
boson A0. There are two types of processes that can
contribute to this potential—the sterile neutrino can for-
ward scatter off an A0 in the medium or off a fermion f that
couples to A0.
These interactions of the sterile neutrino with the

medium modify its dispersion relation through a potential
Veff :

E ¼ jkjþm2

2E
þ Veff ; (3)

where E and jkj are the energy and momentum of the sterile
neutrino.
We calculated Veff using the real-time formalism in

thermal field theory (see Supplemental Material [20]).
Physically, this potential is the correction to the sterile
neutrino self-energy. In the low-temperature limit, i.e., Ts,
E ≪ M,we findVeff ≃−28 π3αχET4

s=ð45M4Þ, similar to the
potential for active neutrinos [19], with αχ ≡ e2χ=ð4πÞ being
the Uð1Þχ fine-structure constant. In the high-temperature
limit Ts, E ≫ M, we find Veff ≃þπαχT2

s=ð2EÞ, similar to
the result for hot QED [21]. We have assumed that there is
no asymmetry in νs, which may be interesting to consider
[16,22]. These analytical results are plotted in Fig. 1 (thick
black lines). For comparison,we also calculated the potential
numerically (thin black lines), and found excellent consis-
tency with the analytical approximations in their region of
validity. The potential is small only in a very small range of
temperatures Ts ≈M, where the potential changes sign and

goes through zero. Note that the potential is always smaller
than jkj and vanishes at zero temperature.
In the presence of a potential, it is well known that

neutrino mixing angles are modified. In the two-flavor
approximation, the effective mixing angle θm in matter is
given by [23]

sin22θm ¼ sin22θ0
ðcos 2θ0 þ 2E

Δm2 VeffÞ2 þ sin22θ0
; (4)

where θ0 is the vacuum mixing angle and Δm2 ¼ m2
s −m2

a
is the difference between the squares of the mostly sterile
mass eigenstatems and the active neutrino mass scalema. If
the potential is much larger than the vacuum oscillation
frequency, i.e.,

jVeff j ≫ jΔm
2

2E
j; (5)

then θm will be tiny, and oscillations of active neutrinos into
sterile ones are suppressed.
This is confirmed by Fig. 1, which summarizes our main

results. For a typical neutrino energy E ∼ Tγ and
M ≲ 10 MeV, we see that condition (5) is well satisfied
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FIG. 1 (color online). Comparison of the effective matter
potential Veff for sterile neutrinos (black curves) to the active-
sterile oscillation frequency Δm2=ð2EÞ (green line) at E≃ Tγ
and Δm2 ¼ 1 eV2. As long as jVeff j ≫ Δm2=ð2EÞ, oscillations
are suppressed. Different black curves show jVeff j for different
values of the gauge boson massM, with solid lines corresponding
to Veff > 0 and dashed lines indicating Veff < 0 . Thin (thick)
lines show exact numerical (approximate analytical) results.
The hidden sector fine-structure constant is taken as
αχ ≡ e2χ=ð4πÞ ¼ 10 −2=ð4πÞ. Red lines show the contribution to
Veff from an asymmetric DM particle with mχ ¼ 1 GeV. The
QCD phase transition and active neutrino decoupling epochs are
annotated. The small kinks in the curves are due to changes in g%,
the effective number of degrees of freedom in the Universe.
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from ⌫a scattering on ⌫a, and a contribution Vs from ⌫s

scattering on ⌫s. The exact form of this last piece de-
pends on the properties of the mediator of ⌫s scattering.
For the model that we study, it is

Vs = +
G�

3m2
�

⇢sp, (6)

valid only when m� is much larger than the typical neu-
trino energy. The analogue of the Fermi coupling con-
stant is defined asG� = (g�/m�)2, where g� is the sterile-
sector coupling and m� is the mediator mass.

One-loop self-energy diagrams also generate a poten-
tial proportional to the di↵erence of the neutrino and
antineutrino number densities. Although any asymme-
try in the active sector does get partially transferred to
the sterile sector, we have confirmed that this potential is
always unimportant if the lepton number is comparable
to the baryon asymmetry, which we assume to be true.
If the lepton number is much larger, then the physics
explored here will interact in complicated ways with the
Shi–Fuller mechanism and with flavor evolution in the
active sector [68–75].

The scattering rate of muon neutrinos can be written
in the form

�a = c(p, T )G2
FT

4
p, (7)

where c(p, T ) is a momentum- and temperature-
dependent coe�cient. In our calculations we use the
results of Venumadhav et al. [40], who computed
c(p, T ) over the range of temperatures relevant to sterile-
neutrino production, accounting for the changing degrees
of freedom through the quark-hadron transition. We also
employ their tabulated data for the relativistic degrees of
freedom g⇤ and g⇤S , which appear in H and in the rela-
tion between time and temperature.

For the calculations that follow, we adopt a simple
model in which the sterile neutrino  s couples to a heavy
real scalar �:

Ls =
1

2
 ̄s

�
i/@ �ms

�
 s +

1

2
(@µ�)

2

�
1

2
m

2
��

2
�

g�

2
 ̄s s�. (8)

As we see in the next section, self-interactions facili-
tate active–sterile conversion through a series of reso-
nances beginning at a temperature Tres. For � to qual-
ify as heavy, it must have a mass m� � Eres, where
Eres ⇠ 3Tres, to ensure that Eq. (6) is valid at the onset
of resonance. In practice this means that m� must be at
least ⇠ 1 GeV.

The ⌫s scattering rate �s is

�s ⇡ 3⇥ 10�2
↵G

2
�T

4
p. (9)

where ↵ is a normalization constant appearing in the
ansatz fs(p) ' ↵fFD(p), fFD being the thermal Fermi–
Dirac spectrum. Taking fs to have this form is a reason-
able approximation that makes it possible to parametrize

�s in a form similar to �a. The other approximations im-
plicit in Eq. (9) are noted in the Appendix. We assume
that �s never becomes so large that the deviations of fa
from equilibrium are important. This assumption has
the potential to break down near resonance, since the
factor of sin2 2✓m in Eq. (1) fails to significantly suppress
the fa depletion rate. We will find in the next section
that the approximation is justified nonetheless. The frac-
tional change in fa that occurs over a weak-interaction
time scale is always small in the parameter space that we
explore.
In addition to enhancing active-to-sterile conversion,

self-interactions also modify the thermodynamics of the
sterile population. The 2-to-2 process ⌫s⌫s ! ⌫s⌫s ki-
netically equilibrates the sterile neutrinos provided that
�s & H. If self-interactions occur rapidly enough to have
a substantial impact on production (that is, if �s & �a),
then they are guaranteed to be rapid enough to cause
kinetic equilibration, by the fact that �a � H at the
temperatures that concern us.
Less obvious is whether the higher-order 2-to-4 and

4-to-2 processes are fast enough to cause chemical equi-
libration. Dimensionally, one expects �2!4 ⇠ G

2
�T

4�s.
Using the assumption �s & �a and the approximation
H ⇠ T

2
/mPl, the condition �2!4 & H at T ⇠ 100 MeV

translates to G� & O(104)GF , which is the upper limit
of what we study in this paper. Since sterile-neutrino
equilibration does not feed back into production in any
considerable way, and since number-changing processes
are only expected to be important in a region of param-
eter space that we find to be ruled out regardless of their
presence, we ignore these e↵ects in the results that fol-
low (i.e., Cs = 0 in Eq. (1)). We have checked our results
against those obtained when approximate expressions are
used for the rates of number-changing interactions, find-
ing that our conclusions are unaltered. Number densities
are enhanced by chemical equilibration at large G�, but
the only cases in which this e↵ect changes the subsequent
course of production are those in which the dark matter
abundance is overproduced regardless.

III. THE RELIC DENSITY

By numerically solving the Boltzmann equation, we
find that self-interactions facilitated by a heavy mediator
are unable to rescue sterile neutrino dark matter from
constraints. Either self-interactions have too small an
impact and are unable to move production out of the
observationally excluded region, or they have too great
an impact and elicit excessive production. The reason
is that for any choice of G�, m�, and ms, there is some
critical vacuum mixing angle ✓c above which a resonance
criterion is satisfied. Whether the mixing angle is above
or below ✓c makes a radical di↵erence in the dynamics
and outcome of production.

The curves in Fig. 1 represent the mixing angles above
which ⌦s > ⌦DM, for various choices of G� (fixing

For simplicity, we’ll let the self-
interactions be mediated by a
heavy scalar.

m� & 1 GeV

Vs = +
G�

3m2
�

⇢sp

Potential from sterile neutrinos
coherently scattering on each
other:

2

[46, 47]. While we are interested in making contact with
this body of work, we will not be able to do so here be-
cause we focus exclusively on the limit in which the new
mediator is very heavy, an assumption that simplifies the
analysis in a number of ways. Keeping the coupling per-
turbative, while at the same time staying in the heavy-
mediator limit, precludes any consideration of the large
cross sections needed to hold sway over the dynamics of
dark matter halos. The tantalizing case of lighter medi-
ators is left for future work. We settle here for making
some brief remarks in the conclusion on how that analysis
is expected to di↵er from the present one.

It is also worth noting that self-interactions among
sterile neutrinos have been discussed in connection to the
persistent anomalies in short-baseline oscillation experi-
ments [48–63]. These are sterile neutrinos of a di↵erent
variety, being at the eV scale and therefore much too light
to be of relevance to dark matter. In fact, the problem
facing eV sterile neutrinos is somewhat like the reverse
of the problem facing those at the keV scale: because
experimental fits indicate a small mass and a large mix-
ing angle, the challenge is to prevent eV sterile neutrinos
from being populated in the early universe. This, indeed,
is the purpose for which self-interactions are invoked. But
despite the di↵erence in model-building philosophy, the
underlying physics is closely related.

One last tie-in deserves mention. If they exist, sterile
neutrinos at the MeV scale and below are not only frozen
into the early universe but are also, much later, produced
and emitted by core-collapse supernovae. This includes,
of course, the keV dark matter contenders, whose cre-
ation benefits from the active neutrinos encountering at
least one resonance on their way out of the proto-neutron
star, as in Refs. [36, 64–66]. Formulating accurate con-
straints on the basis of sterile neutrino production in su-
pernovae is a challenge, made even more so if the particles
are self-interacting. We do not take up the task here, but
we refer to Ref. [67] for a recent analysis of the standard
scenario, where sterile neutrinos are truly inert except for
their mixing.

In the rest of this paper we study whether self-
interactions are a viable way to rescue sterile neutrino
dark matter from current bounds on the mass and mix-
ing. In the heavy-mediator limit, the answer is a flat no,
as the factors poised to abet production ultimately con-
spire to make self-interactions far too much of a good
thing. The central finding is that, for any choice of
coupling, the (ms, ✓) parameter space is split into two
regions, one where the e↵ect of self-interactions is only
marginal and one where it is overwhelming (Figs. 1 and
2). The di↵erence between these regions is whether the
active–sterile mixing ever becomes resonant. As we show
below, both numerically and analytically, resonance is
guaranteed whenever the rate of self-interactions is large
enough to be very impactful—and, because the Boltz-
mann equation is nonlinear in the density of sterile neu-
trinos, runaway production inevitably results. Even fine-
tuning the parameters is to no avail, since the transition
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FIG. 1. Curves indicate the vacuum mixing angles above
which sterile neutrinos are overproduced (⌦s > ⌦DM) for
various choices of self-interaction strength G� (up to 104GF ,
past which either the heavy-� assumption breaks down or the
coupling becomes nonperturbative). The Dodelson–Widrow
mechanism produces ⌦s = ⌦DM along the solid line border-
ing the gray region. X-ray and �-ray constraints (orange)
[8, 11, 13, 17] are plotted to orient the overproduction curves
relative to bounds from radiative decay.

between these regions is a sharp one. In the end, either
dark matter is severely underproduced or it is severely
overproduced.
In the next section we set up the equations govern-

ing sterile-neutrino production, discuss the underlying
physics, and introduce the model used in the calcula-
tions. In Sec. III we present the results, showing that
self-interacting sterile neutrinos cannot be all of the dark
matter if their interactions are mediated by a very heavy
particle. In Sec. IV we conclude and reflect on how the
analysis changes if the mediator is made lighter. The
Appendix contains a few notes on the calculation of the
sterile-neutrino scattering rate.

II. PRODUCTION MECHANISM AND
PARTICLE MODEL

If the Standard Model (SM) neutrinos mix with a
sterile state, then the propagating modes in the cosmic
plasma are active–sterile mixtures, with lifetimes that
are finite due to interactions in the medium. Decay of
these quasiparticles—or, in other words, flavor decoher-
ence of the propagating modes—is what sources the ster-
ile neutrinos that accumulate in the early universe. In
the Dodelson–Widrow scenario, only SM couplings con-
tribute to the in-medium active–sterile mixing and de-
coherence rate. In a scenario with self-interacting sterile
neutrinos, the new coupling contributes as well. As is
typical, we assume that no sterile neutrinos inhabit the
universe prior to their creation through this mechanism.
Letting �tot = �a + �s be the sum of the interaction

rates of active and sterile neutrinos, the Boltzmann equa-
tion for the sterile neutrino distribution function fs(p, t)
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FIG. 2. Fraction of relic sterile neutrino density ⌦s to observed dark matter density ⌦DM. Dark gray indicates overproduction
due to the Dodelson–Widrow mechanism, light gray indicates overproduction due to self-interactions. For G� = 102GF ,
⌦s/⌦DM = 1 is achieved at slightly smaller mixing compared to G� = 0 because �tot is slightly larger and ✓m is nonresonantly
enhanced. For G� = 103GF and G� = 104GF , ⌦s/⌦DM never reaches unity because resonant enhancement sets in.

is then

@fs

@t
�Hp

@fs

@p
=

�tot

2

sin2 2✓m

1 +
⇣

�tot
2!m

⌘2 (fa � fs) + Cs, (1)

where all variables tacitly depend on neutrino momentum
p and time t. The functional Cs, which depends on fs of
all momenta, denotes the collision integrals for all-sterile
scattering processes; H is the Hubble parameter; and the
subscript m indicates that in-medium values are used for
the mixing angle and oscillation frequency. In terms of
the vacuum mixing angle ✓ and the vacuum oscillation
frequency ! = �m

2
/2p, the defining formulae are

!
2
m = !

2 sin2 2✓ + (! cos 2✓ � V)2 (2)

and

!
2
m sin2 2✓m = !

2 sin2 2✓. (3)

The potential V, also a function of p, is generated by for-
ward scattering of neutrinos on particles in the medium.
To be consistent with previous studies [36, 38, 40], we
take ⌫a to be a muon neutrino. Muons are then the rele-
vant charged-lepton population, with total (µ+ and µ

�)
energy density ⇢µ. The potential V = Vµ + Va + Vs is
then composed of

Vµ = �
8
p
2GF

3m2
W

⇢µp (4)

from ⌫a scattering on µ
±,

Va = �
8
p
2GF

3m2
Z

⇢ap (5)

But in fact there’s more to the story… Fraction of dark
matter produced

If the coupling
is large enough
to appreciably
enhance the
scattering rate,
it’s also large
enough to set
up a resonance.

Nonlinearity
then leads to
runaway
production.

Johns & Fuller 2019



5

g� = 0.5). The curves move progressively downward
until G� tops out at ⇠ 104GF , past which the heavy-
� assumption begins to be violated. (Alternatively, g�
must become nonperturbative if � is to remain heavy be-
yond ⇠ 104GF .) The orange region marks the part of
parameter space excluded by X-ray and �-ray observa-
tions assuming that sterile neutrinos are all of the dark
matter [8, 11, 13, 17], and the gray region marks the part
excluded by overproduction of sterile neutrinos solely
through the Dodelson–Widrow mechanism. To be clear,
the points within these regions are not excluded a priori
in the self-interacting model; they are only necessarily ex-
cluded if G� is chosen such that the produced density of
sterile neutrinos matches or exceeds the observed density
of dark matter.

Other constraints could be drawn on the plot, in-
cluding upper bounds on ms from Milky Way satellite
counts or Lyman-↵ observations, which in the Dodelson–
Widrow scenario severely limit the open window in
Fig. 1 [14–24]. But the final spectrum—on which these
constraints depend—is parameter-dependent in the self-
interacting model and generally di↵ers from either a
Dodelson–Widrow spectrum or a thermal one. If self-
interactions were enabling the production of the observed
dark-matter density well below the Dodelson–Widrow
curve (solid black in Fig. 1, bordering the gray region),
then a careful analysis of the resulting spectrum and its
e↵ects on structure would be warranted. This is espe-
cially true since number-changing processes might come
into play at stronger couplings, thereby causing sterile
neutrinos to proliferate and cool and causing structure-
related constraints to weaken. Based on our results, how-
ever, such an analysis does not appear to be necessary,
and the main role of pre-existing bounds on ms is only to
disfavor the smallest values ofG�, namely those for which
✓c lies above the mixing angle required by Dodelson–
Widrow. At these couplings (G� . 102GF ), we expect
the constraints to apply approximately as they do in the
absence of self-interactions.

While Fig. 1 locates the overproduction curves rel-
ative to radiative-decay constraints, Fig. 2 shows that
their deeper significance depends on the self-interaction
strength. At large couplings, the curves signal sharp
transitions from a production regime in which the sterile-
neutrino density ⌦s is much less than the observed dark-
matter density ⌦DM, to one in which it is much greater.
This is true of G� = 103GF and G� = 104GF , for which
the fraction ⌦s/⌦DM only reaches about 10�1 and 10�3,
respectively, before the resonance threshold is crossed.
The G� = 0 (Dodelson–Widrow) panel, in contrast, de-
picts the fraction smoothly passing through unity. Only
in the vicinity of G� = 102GF do self-interactions al-
low for ⌦s/⌦DM = 1 to be achieved with a mixing angle
smaller than in the Dodelson–Widrow scenario, and even
then the e↵ect is likely too small to evade constraints.
Although not shown in the figure, sin2 2✓c in this case
nearly coincides with the Dodelson–Widrow curve: low
enough to have a visible impact, but high enough not to

50 100 500 1000
T (MeV)

10-6

0.001

1

Ωs

ΩDM

FIG. 3. ⌦s/⌦DM as a function of temperature. The solid
curve corresponds to the test case described in the text (and
plotted in Figs. 4 through 6 as well): ms = 10 keV, G� =
3⇥103GF , sin

2 2✓ = 2⇥10�12. The dashed curve has the same
parameters but with G� = 0. The dotted curve has the same
parameters as the solid curve (including G� = 3⇥103GF ) but
with sin2 2✓ = 1⇥ 10�12, which lies below the critical mixing
angle required for resonant production.

FIG. 4. Logarithmic growth rate in sterile neutrino number
density ns. The dashed curve has the same mixing parameters
as the test case (solid curve) but with G� = 0. The solid
curve peaks at a value of ⇠ 0.5—well o↵ the plot—right when
resonant production first sets in, and remains elevated while
the resonance sweeps down, and then back up, the neutrino
spectrum.

induce a resonance before all of the observed abundance
is made. The message, ultimately, is that there is very
little leeway for self-interactions to assist in production
without overdoing it.
To zero in on how production changes once ✓c is

surpassed, we shine the spotlight in Figs. 3 through 6
on a single test case: a 10 keV sterile neutrino with
G� = 3 ⇥ 103GF and sin2 2✓ = 2 ⇥ 10�12. This mix-
ing angle lies just above ✓c, and as Fig. 3 shows, the
conversion of active neutrinos into sterile ones departs
dramatically from what it looks like with the same ✓ but
G� = 0 (dashed curve in the figure) or with the same
G� but ✓ < ✓c (dotted curve). At very high tempera-
tures the e↵ect of self-interactions on the abundance is

5
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parameters as the solid curve (including G� = 3⇥103GF ) but
with sin2 2✓ = 1⇥ 10�12, which lies below the critical mixing
angle required for resonant production.

50 100 500 1000
T (MeV)0.00

0.05

0.10

0.15

-
1

ns

dns

dT
(MeV-1 )

FIG. 4. Logarithmic growth rate in sterile neutrino number
density ns. The dashed curve has the same mixing parameters
as the test case (solid curve) but with G� = 0. The solid
curve peaks at a value of ⇠ 0.5—well o↵ the plot—right when
resonant production first sets in, and remains elevated while
the resonance sweeps down, and then back up, the neutrino
spectrum.
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without overdoing it.
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surpassed, we shine the spotlight in Figs. 3 through 6
on a single test case: a 10 keV sterile neutrino with
G� = 3 ⇥ 103GF and sin2 2✓ = 2 ⇥ 10�12. This mix-
ing angle lies just above ✓c, and as Fig. 3 shows, the
conversion of active neutrinos into sterile ones departs
dramatically from what it looks like with the same ✓ but
G� = 0 (dashed curve in the figure) or with the same
G� but ✓ < ✓c (dotted curve). At very high tempera-
tures the e↵ect of self-interactions on the abundance is
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FIG. 5. Growth rate of the sterile neutrino distribution functions due to active–sterile conversion. (a) Neutrinos with energies
above the cuto↵ ✏res go through resonance in quick succession, from high to low energy, leading to a sharp spike in production
beginning just above 200 MeV. (b) These neutrinos then pass back through resonance at much lower temperatures, from low
to high energy. (c) Neutrinos with energies below ✏burst but above a lower threshold ✏res are pushed through resonance by the
burst in production at energies above ✏burst. Some of these neutrinos subsequently pass through resonance multiple times; the
peaks shown in the panel correspond to these lower-temperature traversals. (d) Neutrinos with energies below ✏res never pass
through resonance.

As shown in panel (d), neutrinos of energies ✏ < ✏res do
not go through resonance at all. Neutrinos in this energy
range make a modest contribution to the sterile-neutrino
abundance, their production primarily reflecting the scat-
tering rate. The gentle peak near 50 MeV, for example,
marks the point at which active–sterile conversion can
no longer overcome the redshifting of �s. Higher-energy
neutrinos in this range do see another peak before this
one, indicative of the minor enhancement of ✓m that oc-
curs when sterile neutrinos above ✏res pass through res-
onance for the first time, but it is pronounced only for
energies close to the resonant threshold.

Fig. 6 shows the relic spectrum left over after active–
sterile conversion has shut o↵, juxtaposing the test case
(solid) with the Dodelson–Widrow (dashed) and nonde-
generate Fermi–Dirac (dotted) spectra. The resonantly
produced spectrum is the “hottest” of the three, with
a negligibly small fraction of number density below ✏res.
(The small spike right at the cuto↵ is due to ✏res linger-
ing near resonance while the sweep reverses its direction.)
As noted earlier, alterations to the spectrum from sterile-
sector scattering—which tend to push it toward an equi-
librium distribution—are not included in the calculation.

FIG. 6. Normalized relic spectra, comparing the test case
(solid) to Dodelson–Widrow (dashed) and nondegenerate
Fermi–Dirac (dotted). The solid curve cuts o↵ sharply at
✏res.

We have addressed in this section why a series of res-
onances occurs (in those cases where it does) and what

Johns & Fuller 2019

The resonance sweeps from high energy down to a cutoff, then doubles back… 



Summary

Figure 14: Constraints on sterile neutrino DM. The solid lines represent the most important constraints
that are largely model independent, i.e., they can be derived for a generic SM-singlet fermion N of mass
M and a mixing angle ✓ with SM neutrinos, without specification of the model that this DM candidate is
embedded in. The model independent phase space bound (solid purple line) is based on Pauli’s exclusion
principle (c.f. Section 3.1). The bounds based on the non-observation of X-rays from the decay N ! ⌫�
(violet area, see Section 3.2 for details) assume that the decay occurs solely through mixing with the active
neutrinos with the decay rate given by eq. (29). In the presence of additional interactions, these constraints
could be stronger, see e.g. [520]. All X-ray bounds have been smoothed and divided by a factor 2 to account
for the uncertainty in the DM density in the observed objects. They are compared to two estimates of the
ATHENA sensitivity made in ref. [234]. The blue square marks the interpretation of the 3.5 keV excess as
decaying sterile neutrino DM [184, 188]. All other constraints depend on the sterile neutrino production
mechanism. As an example, we here show di↵erent bounds that apply to thermally produced sterile
neutrino DM, cf. section 4.2. The correct DM density is produced for any point along black solid line
via the non-resonant mechanism due to ✓-suppressed weak interactions (24) alone (Section 4.2.1). Above
this line the abundance of sterile neutrinos would exceed the observed DM density. We have indicated
this overclosure bound by a solid line because it applies to any sterile neutrino, i.e., singlet fermion that
mixes with the SM neutrinos. It can only be avoided if one either assumes significant deviations from the
standard thermal history of the universe or considers a mechanism that suppresses the neutrino production
at temperatures of a few hundred MeV, well within the energy range that is testable in experiments, cf. e.g.
[521]. For parameter values between the solid black line and the dotted green line, the observed DM density
can be generated by resonantly enhanced thermal production (Section 4.2.2). Below the dotted green line
the lepton asymmetries required for this mechanism to work are ruled out because they would alternate the
abundances of light elements produced during BBN [584]. The dotted purple line represents the lower bound
from phase space arguments that takes into account primordial distribution of sterile neutrinos, depending on
the production mechanism [22]. As a structure formation bound we choose to display the conservative lower
bound on the mass of resonantly produced sterile neutrinos, based on the BOSS Lyman-↵ forest data [268]
(see Section 3.3 for discussion). The structure formation constraints depend very strongly on the production
mechanism (Section 4). The dashed red line shows the sensitivity estimate for the TRISTAN upgrade of the
KATRIN experiment (90% C.L., ignoring systematics, c.f. Section 5.2).
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FIG. 3. Comparison of the relaxation [Eq. (5); dashed, red curve] and QKE [Eq. (2); black] solutions for P0(t), fa(t), and
P (t) = |P(t)|. The thin red line in the right panel denotes the equilibrium value. The onset time of the relaxation solution is
fit by hand.

FIG. 4. Same as Fig. 3 but showing P0(t)Px(t) = ⇢as(t) + ⇢sa(t).

parameters:

fs(t
0) = f

eq
a

⇣
1� e

� t0
2

⌘
. (13)

For cosmological applications it is typically undesir-
able to have the density of sterile neutrinos approach
the thermal value, and the insets in Fig. 1 are therefore
the relevant comparison. Achieving agreement on these
shorter time scales requires ✓ to be small. Fig. 2 illus-
trates this point: the same quantities are plotted here as
in Fig. 1, but now with ✓ = ⇡/5. Early-time discrepan-
cies are greatly exacerbated.
The relaxation ansatz asserts that fa should decay ex-

ponentially toward f
eq
a . Since a small mixing angle in-

hibits fa from ever deviating greatly from the equilibrium
value, the ansatz also implies a delicate near-cancellation
between the growth of P0 and the decay of P = |P|.
Fig. 3 verifies that both of these expectations are indeed
borne out in the case D/! = 10�2. The result is similar
for stronger damping.
Interestingly, it was shown in Ref. [24] that the Boltz-

mann equation can be derived from the assumption that

⇢as and ⇢sa are both constant. Despite its expedience,
that approximation is not an accurate description of how
the active-sterile coherence develops, particularly on a
�
�1 time scale. Fig. 4 shows that in fact the real part

declines throughout production and is well fit by the re-
laxation ansatz. The imaginary part is similar.

Cosmological production of sterile neutrinos involves
time-dependent parameters of course, and many sce-
narios of interest involve resonant mixing in particular
[23, 25–31]. It is well-known that the Boltzmann equa-
tion is inadequate when the system passes adiabatically
and coherently through a resonance [26, 28, 32]. To il-
lustrate this claim, and to make a connection with the
foregoing analysis, we add a potential V (t)z to !B, with

V (t) = V0e
�⌫t

. (14)

The adiabaticity parameter [32] is defined to be

↵ = !H sin 2✓ tan 2✓, (15)

2.

3.
4.  We’re beginning to extend the

analysis to lighter mediators.

The sub-keV range (including
models motivated by issues
of small-scale structure) doesn’t
look promising. 


