Self-interacting sterile neutrino dark matter

Luke Johns UC San Diego

LA-UR-19-27589

- ♦ Dodelson-Widrow (thermal) production is strongly disfavored.
- Shi-Fuller (resonant) production is viable in a limited window.*

Resonant production leads to **non-thermal spectra** that are typically colder than DW ones.

Shi & Fuller 1999 Abazajian, Fuller, Patel 2001

Subhalo counts and Lyman-o constraints (two different models) Sterile neutrinos require **at least one other BSM ingredient** if they are to comprise all of the DM.

A large lepton number is one possibility. What else?

1. Don't change the dynamics of active-sterile mixing.

- ♦ Another new particle decays to sterile neutrinos.
- An overabundant population is diluted by new sources of entropy.
- ♦ Reheating occurs at a low temp.
- Number-changing interactions occur in the sterile sector.

Shaposhnikov & Tkachev 2006 Petraki & Kusenko 2008

Asaka et al 2006 Bezrukov et al. 2010 Patwardhan et al. 2015

Gelmini et al. 2004

Hansen & Vogl 2017 Herms et al. 2018

2. *Change* the dynamics of active-sterile mixing.

♦ A (pseudo)scalar field alters the mixing in a **time-dependent** way.

Sterile-sector interactions alter the mixing.

Berlin & Hooper 2017 Bezrukov et al. 2017, 2018

Johns & Fuller 2019

Also discussed in connection with eV-scale sterile neutrinos.

Production through the neutrino portal can be calculated using a **Boltzmann-like equation**

$$\frac{df_s}{dt} = \frac{\Gamma_a}{4} \frac{\sin^2 2\theta_m}{1 + \left(\frac{\Gamma_a}{2\omega_m}\right)^2} \left(f_a - f_s\right)$$

Compare to the QKEs (with approximate collision term):

$$\frac{dP_0}{dt} = 2D\left(f_a^{\rm eq} - P_0\frac{1+P_z}{2}\right)$$

$$\frac{d\mathbf{P}}{dt} = \omega_m \mathbf{B}_m \times \mathbf{P} - D\mathbf{P}_T - \frac{\dot{P}_0}{P_0}\mathbf{P} + \frac{\dot{P}_0}{P_0}\mathbf{z}$$

Papers by Bell, Lee, Volkas, & Wong have shown that **repopulation terms** in the QKEs can be ignored if the mixing angle is small:

$$\frac{dP_0}{dt} = 0, \ f_a = f_a^{\rm eq}$$

Kainulainen 1990 Cline 1992 Shi 1996 Foot & Volkas 1997 (and sequels) Dolgov 2002

Assessing collision approximations in active-sterile oscillations: Hannestad, Hansen, Tram, Wong 2015

The Boltzmann equation also follows directly from a **quantum relaxation-time approximation**:

$$iC = \{i\Gamma, \rho_C^{\text{eq}} - \rho\}$$
$$i\frac{d\rho}{dt} = \{i\Gamma_{\text{eff}}, \rho_F^{\text{eq}} - \rho\}$$

Johns 1908.04244

Relaxation ansatz:

$$\frac{d\rho}{dt} = \frac{\gamma_m}{2} \left(\rho_F^{\rm eq} - \rho\right)$$

The prefactor is determined by by equating this with the QKEs.

Agreement is strong between **QKE** and **Boltzmann** solutions (as expected):

(time-independent parameters)

Repopulation is captured well by the ansatz:

As is **decoherence**:

Repopulation is captured well by the ansatz:

Adding in self-interactions...

 $\mathcal{V} = \mathcal{V}_{\mu} + \mathcal{V}_{a} + \mathcal{V}_{s}$

$$D = \frac{\Gamma_a}{2} \frac{\sin^2 2\theta_m}{1 + \left(\frac{\Gamma_a}{2\omega_m}\right)^2} (f_a - f_s) + C_s$$

These effects have been invoked as a way to **reconcile eV sterile neutrinos with cosmology**.

Hannestad, Hansen, & Tram 2014 Dasgupta & Kopp 2014

The goal there is to *suppress* the production of sterile neutrinos rather than enhance it.

For simplicity, we'll let the selfinteractions be mediated by a **heavy scalar**.

$$\mathcal{L}_s = \frac{1}{2} \bar{\psi}_s \left(i \partial \!\!\!/ - m_s \right) \psi_s + \frac{1}{2} (\partial_\mu \phi)^2 - \frac{1}{2} m_\phi^2 \phi^2 - \frac{g_\phi}{2} \bar{\psi}_s \psi_s \phi.$$

 $m_{\phi} \gtrsim 1 \text{ GeV}$

Potential from sterile neutrinos coherently scattering on each other: $\mathcal{V}_s = + \frac{G_\phi}{3m_\phi^2} \rho_s p$

The **overproduction curves** shift to smaller mixing angle as the coupling is increased.

But in fact there's more to the story...

Fraction of dark matter produced

If the coupling is large enough to appreciably enhance the scattering rate, it's also large enough to set up a resonance.

Nonlinearity then leads to **runaway production**.

Fraction of DM produced vs. temp:

Logarithmic production rate vs. temp:

Why can't the scattering rate be boosted without generating a resonance?

Conversely, resonance *can* occur with subdominant sterile scattering—but overproduction still ensues.

The resonance sweeps from high energy down to a cutoff, then doubles back...

Summary

4. We're beginning to extend the analysis to **lighter mediators**.

The **sub-keV** range (including models motivated by issues of small-scale structure) doesn't look promising.