Beyond Isotropic Quantum Kinetics

Sherwood Richers (N3AS Fellow) Gail McLaughlin James Kneller Alexey Vlasenko Yonglin Zhu

"Network for Neutrinos, Nuclear Astrophysics, and Symmetries"

Neutrino Quantum Kinetics in Supernovae

Neutrino Halo Effect

Small number of reflected neutrinos can change neutrino flavors.

(Also, Cirigiliano+ 2018, 1807.07070, ...)

(orig. Sawyer 2005, also Izaguirre+ 2016, Capozzi+ 2017, Tamborra+2017, Dasgupta+ 2018, Capozzi+2019, Abbar+2019, Azari+2019, ...)

QKE Simulations in CCSNe have Begun!

	Dimensions	Time	Angularity	Interactions
Grohs+ (soon, cosmological)	0	Yes	Isotropic	Full
Shalgar & Tamborra (2019)	1	No	Multi-Angle	Simple
Capozzi+ (2019)	1	Yes	Two-Beam	Simple
Richers+ (2019)	0	Yes	Isotropic	Full

(+ much more in progress)

Neutrino Quantum Kinetic Equations

$$\frac{\partial f}{\partial t} = \left\{ 1 - f(\Pi^+) - \left\{ f(\Pi^-) - i \left[\mathcal{H}, f\right] \right\} \right\}$$

(See Vlasenko et al. 2014, Blaschke + Cirigliano 2016)

$$f = \begin{bmatrix} f_{ee} & f_{e\mu} \\ f_{\mu e} & f_{\mu\mu} \end{bmatrix}$$

Evolve the (generalized) occupation probability:

Oscillation Hamiltonian drives rotations

Self-energy drives rotations and changes number of neutrinos

$$\frac{\partial f}{\partial t} = \left\{1 - f, \Pi^+\right\} - \left\{f, \Pi^-\right\} - i\left[\mathcal{H}, f\right]$$

No internal neutrino lines \rightarrow Simple!

$$\frac{\partial f}{\partial t} = \left\{1 - f, \Pi^{+}\right\} - \left\{f, \Pi^{-}\right\} - i \left[\mathcal{H}, f\right]$$
No internal neutrino lines \rightarrow Simple!
$$\nu_{e} \longrightarrow \frac{df}{dt} = A \begin{bmatrix} (1 - f_{ee}) & -f_{e\mu}/2 \\ -f_{\mu e}/2 & 0 \end{bmatrix} - B \begin{bmatrix} f_{ee} & f_{e\mu}/2 \\ f_{\mu e}/2 & 0 \end{bmatrix}$$

$$\frac{\partial f}{\partial t} = \left\{1 - f, \Pi^{+}\right\} - \left\{f, \Pi^{-}\right\} - i \left[\mathcal{H}, f\right]$$
No internal neutrino lines \rightarrow Simple!
$$\nu_{e} \longrightarrow \frac{df}{dt} = A \begin{bmatrix} 1 - f_{e\mu}/2 \\ -f_{\mu e}/2 \end{bmatrix} - B \begin{bmatrix} f_{e\mu}/2 \\ f_{e\mu}/2 \end{bmatrix}$$
But we already know this part!

$$A = j_{(\nu_e)} \qquad B = \kappa_{\mathrm{abs},(\nu_e)}$$

$$\frac{\partial f}{\partial t} = \left\{1 - f, \Pi^{+}\right\} - \left\{f, \Pi^{-}\right\} - i \left[\mathcal{H}, f\right]$$
No internal neutrino lines \rightarrow Simple!
$$\nu_{e} \longrightarrow \frac{df}{dt} = A \begin{bmatrix} 1 - f_{ee} & -f_{e\mu}/2 \\ -f_{\mu e}/2 & 0 \end{bmatrix} - B \begin{bmatrix} f_{ee} & f_{e\mu}/2 \\ f_{\mu e}/2 & 0 \end{bmatrix}$$
But we already know this part!

$$A = j_{(\nu_e)} \qquad B = \kappa_{\text{abs},(\nu_e)}$$

The full QKE source term is easy to write and implement!

$$\mathcal{C}_{ab}^{+} = \int d^{3}\nu' \left[R_{ab}^{+} f_{ab}' - \varsigma_{ab}^{+} \right]$$
$$\mathcal{C}_{ab}^{-} = \int d^{3}\nu' \left[\langle R \rangle_{ab}^{-} f_{ab} - \varsigma_{ab}^{-} \right]$$

Straightforward combination of **R**, **f**, **f**'

$$\varsigma_{ab}^{\pm} = \frac{1}{2} \sum_{c} \left(R_{cb}^{\pm} f_{ac} f_{cb}' + R_{ac}^{\pm} f_{ac}' f_{cb} \right)$$

Neutrino Quantum Kinetic Equations

$$\frac{\partial f}{\partial t} = \left\{1 - f, \Pi^+\right\} - \left\{f, \Pi^-\right\} - i\left[\mathcal{H}, f\right]$$

(See Vlasenko et al. 2014 Blaschke + Cirigliano 2016)

It is straightforward to extend known interactions to a full quantum kinetic treatment!

IsotropicSQA

github.com/srichers/IsotropicSQA

- Evolve **oscillations only** for some "block" time 1)
- 2) Evolve interactions only for same amount of "block" time
- 3) Check the impact of the interactions and adjust "block" time

- accurately sample distribution
- Must evolve oscillations with high accuracy (many many timesteps)

Moment-Based Transport

Neutrino Transport

 $f(x^{\mu}, p^{\mu})$ is (# of neutrinos) per (volume) per (energy) per (solid angle)

CC scattering helps suppress flavor coherence

Scattering flips quantum state

മ

5

ar

sq

Scattering collapses quantum state

Scattering preserves quantum state

Neutrino Transport

 $f(x^{\mu}, p^{\mu})$ is (# of neutrinos) per (volume) per (energy) per (solid angle)

Ray-Based Transport

Pure oscillations in neutron star mergers

Neutrino-matter resonance efficiently transforms neutrinos.

Matter-Neutrino Resonance!

Conclusions

- Existing neutrino interaction rates can be extended to **full QKE source terms!**
- Anisotropic numerical quantum kinetics is finally an active field.
- Needs:
 - Multiple numerical techniques
 - HPC code infrastructure
 - Numerical techniques for multi-rate equations (error accumulation and cost)
 - Force/drift terms? Multi-flavor? Majorana/Dirac? Sterile? Non-standard interactions? Spin coherence? Magnetic fields? ...

Everything Together

Decoherence with/without oscillations is **similar**

Separate timescales:

- 1) Damping oscillations
- 2) Relaxing to equilibrium

Many collision processes are important!

- Absorption/Emission
- Pair Processes
- Scattering
- Bremsstrahlung
- Neutrino-Neutrino

Heating Region:

Absorption/Emission

Simple "effective opacity"

electron

neutrino

electron

neutrino

electron

neutrino

electron

neutrino

muon

neutrino

ntaun

neutrino

0.17 MeV/c²

electron

neutrino

ntaur

neutrino <18.2 MeV/c2

tau

neutrino

More effective than mean free path or absorption opacity

Numerical Challenges

electron

neutrino

electron

neutring

electron

neutrino

muon

neutrino

0.17 MeV/c²

electror

neutrino

ntau

neutrinc

tau

neutrino

Once again, we know the diagonals. **Just solve for A and B!** (the hard part: multiplying matrices)

$$\mathcal{C}_{ab}^{+} = \int d^{3}\nu' \left[R_{ab}^{+} f_{ab}' - \varsigma_{ab}^{+} \right]$$
$$\mathcal{C}_{ab}^{-} = \int d^{3}\nu' \left[\langle R \rangle_{ab}^{-} f_{ab} - \varsigma_{ab}^{-} \right]$$

$$\mathcal{C}_{ab}^{+} = \int d^{3}\nu' \begin{bmatrix} R_{ab}^{+} j_{ab}' - \varsigma_{ab}^{+} \end{bmatrix}$$

$$\mathcal{C}_{ab}^{-} = \int d^{3}\nu' \begin{bmatrix} R_{ab} j_{ab} - \varsigma_{ab}^{-} \end{bmatrix}$$

$$\langle R \rangle = \begin{bmatrix} R_{(\nu_{e})} & \frac{R_{(\nu_{e})} + R_{(\nu_{\mu})}}{2} \\ \frac{R_{(\nu_{e})} + R_{(\nu_{\mu})}}{2} & R_{(\nu_{e})} \end{bmatrix}$$
Simple combination of

Simple combination of **known scattering rates**

$$R = \langle R \rangle - \begin{bmatrix} 0 & \frac{R_{(\nu_e)} - R_{(\nu_\mu)}}{4\sin^2 \theta_W} \\ \frac{R_{(\nu_e)} - R_{(\nu_\mu)}}{4\sin^2 \theta_W} & 0 \end{bmatrix}$$