

Performance of Port-based teleportation

Friday 21 June 2019 11:40 (40 minutes)

Quantum teleportation is one of the fundamental building blocks of quantum Shannon theory. While ordinary teleportation is simple and efficient, port-based teleportation (PBT) enables applications such as universal programmable quantum processors, instantaneous non-local quantum computation and attacks on position-based quantum cryptography. In this work, we determine the fundamental limit on the performance of PBT: for arbitrary fixed input dimension and a large number N of ports, the error of the optimal protocol is proportional to the inverse square of N . We also give an improved converse bound of matching order in the number of ports. In addition, we determine the leading-order asymptotics of PBT variants defined in terms of maximally entangled resource states.

This is joint work with Felix Leditzky, Christian Majenz, Graeme Smith, Florian Speelman, Michael Walter, available here: <https://arxiv.org/abs/1809.10751>

Presenter: CHRISTANDL, Matthias (University of Copenhagen)

Session Classification: Reference Frames, Relativity and Gravity in QM