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Abstract
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with Continuous Variables”, 17 - 21 June 2019, Copenhagen.

1 Introduction

1.1 What is in this lecture for you?

This Friday morning lecture covers a recent paper by Lucas Hackl and myself [1]: The minimal energy cost
for extracting entanglement from the ground state of a system of modes with a quadratic Hamiltonian.1

Our solution is very much based on the geometrical structures underlying Gaussian states. Therefore, I
want to use this lecture to give you an introduction to the geometry of Gaussian states, and to present
some practical and abstract aspects and methods along the way. My hope is that you will find them
both practical and esthetically pleasing, and get excited to address related questions and use similar
methods in your research. In addition to the references already mentioned in earlier lectures, some
relevant textbooksin this direction are [2, 3, 4, 5], and further references as cited in our article.
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Figure 1: General framework of entanglement extraction from a system of bosonic modes. Two target
modes get entangled by swapping their states with a pair of entangled modes in the source system. [1]

1.2 What is entanglement extraction?

Entanglement is a resource which plays a key role all over different quantum information processing
tasks. Hence, in technological implementations, we need to be able to provide it, e.g., at the input ports
of a quantum computer. The standard way to get input qubits entangled is to make them interact with
each other. In situations where this is not possible, be it due to engineering or spacetime constraints,
alternative approaches are needed.

One such alternative is the idea to extract entanglement from a source system. The ground state
of many complex quantum systems, from many body systems to quantum fields, exhibit entanglement

1To be specific, we find the minimum increase in the energy expectation value of a system of bosonic or fermionic modes
with a quadratic Hamiltonian, when a pair of modes in a pure entangled state is swapped out of the system and brought
into a product state.
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between spatially separated regions. Various extraction protocols have been studied in recent years, e.g.,
in the context of entanglement harvesting from quantum fields. However, only last year Beny et al.
identified the energy cost of such entanglement extraction protocols as a so far unexplored question [6].

Aside from potential future applications, this question is very interesting from a theoretical per-
spective given how much investigating the entanglement structure of complex quantum systems has
contributed to our understanding of them.

The model for which we here derive the minimum energy cost of entanglement extraction could be
called partner mode extraction. In this framework we consider the source system to consist of a system
of N modes with a quadratic Hamiltonian. (The modes can be bosonic or fermionic, both cases are
covered in [1]. For the purpose of this lecture we restrict attention to bosonic modes.) We assume the
system to be in its ground state initially.

In this source system we pick two source modes A and B which are entangled. This entanglement we
want to extract from the system. To this end we assume that we have two target modes, which initially
are in a product state. The extraction then consists of swapping the state of the target modes with the
state of the source modes in the system.

After the swap operation, the source system is not in its ground state any longer, thus its energy
expectation value has increased. This increase in the energy expectation value is what we refer to as the
energy cost and calculate in this work. (For practical implementations, in particular with a low number
of repetitions, other figures of merits such as the variance also are important.)

We restrict our choice of source modes to be a pair of partner modes. These are pair of modes which
are in a product state with the rest of the system, while being in a pure two-mode entangled state with
each other. We conjecture that this choice minimises the energy cost (for reasons to be discussed later).

Being very technical, and discarding the motivation of entanglement extraction, what we calculate is
the minimum increase in energy expectation of a quadratic Hamiltonian when a pair of modes that are
in a pure entangled state when the system is in its overall ground state, are replaced by a product state.

1.3 Warm-up example: Dilute boson gas

Consider the following Hamiltonian of a weakly interacting dilute Boson gas (see, e.g., [7]),

Ĥ =
∑
k 6=0

ωka
†
kak + γk

(
a†ka
†
−k + aka−k

)
(1)

with ωk = ω−k and γk = γ−k, and 0 < γk < ωk/2 such that the Hamiltonian is bounded from below.
The sum runs over all modes with non-zero momentum, which have very low occupation numbers, but
it excludes the zero momentum mode, which is macroscopically occupied. In this way, the Hamiltonian
describes the interaction of excitations in the higher modes with the condensate of particles in the
zero-mode.

The structure of the Hamiltonian is such that it couples mode pairs of opposite momentum. To make
this most evident, we can use ak = 1√

2
(q̂k + ip̂k) and rewrite the Hamiltonian as

Ĥ =
∑
k>0

Ĥk −
∑
k 6=0

ωk
2

=
∑
k>0

ωk
2

(
q̂2
k + p̂2

k + q̂2
−k + p̂2

−k
)

+ 2γk (q̂kq̂−k − p̂kp̂−k)−
∑
k 6=0

ωk
2
. (2)

Each operator Ĥk represents a two-mode Hamiltonian represented by the matrix

hk =


ωk 0 2γk 0
0 ωk 0 −2γk

2γk 0 ωk 0
0 −2γk 0 ωk

 , (3)

which has excitation energy ε =
√
ω2
k − 4γ2

k in both its eigenmodes. The ground state of Ĥ is thus a
product state of two-mode states where each pair of modes with opposite momentum is in the state with
covariance matrix

Gk =
1√

ω2
k − 4γ2

k


ωk 0 −2γk 0
0 ωk 0 2γk
−2γk 0 ωk 0

0 2γk 0 ωk

 , (4)
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which means that they are in a two-mode squeezed state with entanglement entropy

S = sb

(
1/
√

1− 4γ2
k/ω

2
k

)
,

where sb(x) = x+1
2 log

(
x+1

2

)
− x−1

2 log
(
x−1

2

)
.

If we want to extract that entanglement from the gas, swap the state of such a mode pair onto another
system and leave the modes of the gas behind in a product state instead - by how much do we increase
the energy expectation value of the gas?

We are restricted to leave behind a product state of the two modes. Hence we should leave behind
the modes in the ground states of the Hamiltonian restricted to the single modes. The single mode
Hamiltonians are represented by the diagonal blocks of hk, i.e., the two-by-two matrices with ωk on their
diagonal. These each have ground state energy ωk/2. Subtracting the ground state energy of hk we find
that the energy of the gas increases by

∆E = ωk −
√
ω2
k − 4γ2

k = ωk

(
1−

√
1− 4γ2

k/ω
2
k

)
. (5)

This simple examples captures all the essentials of the result presented in this lecture. This is because
the pairing of entangled modes that we see between opposite momentum moes here is a general property
of pure Gaussian states: In all pure Gaussian states, every mode has one partner mode with which it is
in a pure two-mode squeezed state. Therefore, our next step is to discuss the entanglement structure of
pure Gaussian states and how to construct the partner mode of a given mode. This we will then use to
derive the general minimal energy cost for the extraction of partner modes.

2 A (hint of the) geometry of Gaussian states

For calculations, by hand or computer, we typically use matrices and vectors to represent Gaussian states.
In fact, many text books only cover matrix and vector notation. However, sometimes the matrices can
obscure the appealing mathematical structures underneath the formalism. Therefore, in this section, let
us briefly review the symplectic geometry underlying bosonic Gaussian states, and introduce the abstract
index notation. This provides

• a geometric way to understand and think about Gaussian states,

• a formalism which seamlessly carries over to fermionic Gaussian states,

• a powerful and practical formalism for analytic calculations, in which we can derive

• basis-independent expressions safely.

2.1 Phase space and co-phase space

The symplectic formalism for Gaussian states is based on the formalism of classical mechanics. There the
phase space of a system corresponding to N modes is the 2N -dimensional vector space V which is spanned
by N generalised coordinates and their conjugate momenta {q1, p1, ..., qn, pn}. Linear observables of the
system are linear, real-valued functions of the coordinates, i.e., they are elements of the co-vector space
V ∗ = {v : V → R| v linear }.

In abstract index notation, we denote elements of the vector space as objects with one index
upstairs, and elements of the covector space with one index downstairs.

α ∈ V ↔ αa, x ∈ V ∗ ↔ va (6)

The rule of abstract index notation is that every index which appears one time downstairs and one time
upstairs is contracted (summed over). (In fact, if an index appears more than twice or appears two times
upstairs or downstairs, something is wrong!) Hence, in abstract index notation using a covector to map
a vector to a number reads

x(α)⇔ xaα
a = αaxa. (7)
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Now let us consider quantum Gaussian states. Also here, linear observables are represented by
elements of V ∗. The quantization map maps covectors to the corresponding quantum-mechanical
operators. It is a linear map:

ξ̂ : V ∗ → L(H)

xa 7→ xaξ̂
a (8)

Since the quantization map acts on covectors, we denote it with an index upstairs. And we denote it with
a hat, because it returns an operator acting on the Hilbert space of the system. (This means, objects
with hats do not commute and we need to keep track of their order when manipulating expressions.)

With respect to a basis of operators (q̂1, p̂1, ..., q̂n, p̂n) of the system, the quantization map is repre-

sented by an operator-valued vector ξ̂ .

ξ̂a ≡ ξ̂ =


q̂1

p̂1

...
q̂n
p̂n

 . (9)

2.2 Commutator, covariances and hamiltonians as two-forms

The symplectic form of the system, the covariance matrix of a state and also quadratic Hamiltonians all
are represented by two-forms acting on the phase and the co-phase space respectively.

The symplectic form is a non-degenerate anti-symmetric two-form on the co-phase space

Ω : V ∗ × V ∗ → R

(u, v) 7→ Ω(u, v) = −i
[
uaξ̂

a, vbξ̂
b
]

(10)

which yields the commutator between the linear observables associated with the covectors. Hence, if two
linear observables commute, then the corresponding covectors lie in the symplectic complement of each
other. In abstract index notation it has two indices upstairs Ωab, and we have[

ξ̂a, ξ̂b
]

= iΩab. (11)

Picking a symplectic basis in V ∗, i.e., a basis with respect to which Ω is represented by a matrix in
the standard form

Ωab ≡ ⊕Ni=1

(
0 1
−1 0

)
(12)

is equivalent to choosing a set of canonically commuting operators (q̂1, p̂1, ..., q̂n, p̂n) in the quantization
map. The symplectic form being non-degenerate, it both induces a map from covectors to vectors
va 7→ Ωabvb, and it has an inverse two-form Ω−1 : V × V → R which satisfies ΩabΩ−1

bc = δac. (Note, that
the latter is the symplectic form on phase space of classical mechanics.)

The symplectic group consists of all linear maps M : V → V which preserve the symplectic form.2

Ω(v, w) = Ω(Mᵀ(v),Mᵀ(w)). (13)

The abstract index notation, where the linear map on V reads Ma
b, this condition reads

Ma
bΩ

bcMᵀ
c
d = Ωad. (14)

Acting with (Mᵀ)a
b on covectors preserves the commutator between the associated linear observables.

The covariance matrix of a state |ψ〉 is represented by a symmetric two-form which gives the
correlation of the linear observables associated with the covectors.

G : V ∗ × V ∗ → R

(u, v) 7→ 〈ψ|
(
uaξ̂

avbξ̂
b + vbξ̂

buaξ̂
a
)
|ψ〉 (15)

2The transpose Mᵀ of a linear map is defined by Mᵀ(v)(α) = v(M(α)) for all v ∈ V ∗, α ∈ V .
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In abstract index notation this reads

Gab = 〈ψ|
(
ξ̂aξ̂b + ξ̂bξ̂a

)
|ψ〉 . (16)

This means we can interpret the covariance matrix of a state as a metric on the co-phase space - linear
observables that are not correlated are then represented by orthognal covectors.

For a pure Gaussian state Williamson’s theorem guarantees that there is a symplectic basis with
respect to which G is represented by the identity matrix Gab ≡ I2N , i.e., G is a product state where
these N modes each are in their vacuum state. (Note that sometimes the covariance matrix of a pure
state is defined to be half of G.)

A general quadratic Hamiltonian Ĥ is of the form

Ĥ =
1

2
habξ̂

aξ̂b + faξ̂
a. (17)

For the purpose of the scope of this lecture we will chose the linear part ξ̂afa to vanish (which can always
be achieved by a linear shift of the basis operators and does not change the entanglement properties of
the state). The quadratic part of the Hamiltonian is given by a symmetric two-form on phase space.

h : V × V → R (18)

If the Hamiltonian is bounded from below, Williamson’s theorem ensures that there exists a symplectic
basis such that hab is represented by a block-diagonal matrix

h ≡ ⊕Ni=1

(
ωi 0
0 ωi

)
, (19)

where ωi ∈ R+ are the symplectic eigenvalues or excitation energies of Ĥ. The symplectic eigenvalues
arise from the eigenvalues of the linear map Ka

b = Ωachcb : V → V which are {±iωi} for i = 1, ..., N .
The ground state of Ĥ is a Gaussian state, in the energy eigenbasis it takes the form of the identity
matrix.

The expectation value of Ĥ (with fa = 0) in a Gaussian state with covariance matrix Gab is〈
Ĥ
〉

=
1

4
Tr
(
habG

ba
)

=
1

4
habG

ab. (20)

2.3 Complex linear structure

In the abstract index notation it is straightforward to concatenate vectors, maps and two-forms to define
new objects. If the index structure of the expression is valid we can be sure that the definition is
well-behaved and basis-independent. Let us here make use of this to introduce the linear complex
structure of a Gaussian state as

Jab := −GacΩ−1
cb . (21)

The index structure shows that J : V → V is a linear map acting on the phase space. It has a row of
interesting properties, and just in the next section we will use it to construct partner modes.

• It is called a linear complex structure because if G is a pure Gaussian state, then J2 = −I.

• It contains all information about the state’s covariance matrix, since G = −JΩ. Thus J is used to
derive the entanglement structure of Gaussian states.

• It can also be expressed as

Jab = ΩacG−1
cb . (22)

This identity is easily checked using the matrix representation with respect to the symplectic basis
where Gab ≡ I is given by the identity matrix.
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3 Partner modes and entanglement structure of Gaussian states

Consider a system of N bosonic modes which is in a pure state |Ψ〉. In this system we can define a single
mode A by picking two linear observables which obey the canonical commutation relations[

Q̂A, P̂A

]
= i. (23)

It is has been shown that it is possible to find a partner mode Ā of the mode A, such that |Ψ〉 factors
into a product state between the two-mode subspace AĀ and the rest of the system [8].

|Ψ〉 = |ψ〉AĀ ⊗ |0〉R (24)

Hence, if |Ψ〉 is a Gaussian state, there is a symplectic basis such that G is represented by the matrix

G ≡


cosh 2r 0 sinh 2r 0 0

0 cosh 2r 0 − sinh 2r 0
sinh 2r 0 cosh 2r 0 0

0 − sinh 2r 0 cosh 2r 0
0 0 0 0 IN−2

 . (25)

The basis corresponds to a decomposition A ⊕ Ā ⊕ R of the system’s phase space, i.e, the first two
columns refer to the mode A and the second two to the partner mode Ā.

The von Neumann entropy SA between the partner modes A and Ā is given by [9, 10]

SA = sb(cosh 2ri), sb(x) =

(
x+ 1

2

)
log

(
x+ 1

2

)
−
(
x− 1

2

)
log

(
x− 1

2

)
. (26)

For a given mode A, we can use the simple and appealing partner mode formula to construct Ā.
We assume that the linear observables defining the mode

Q̂a = xaξ̂
a, P̂a = kaξ̂

a (27)

bring the single-mode covariance matrix into the standard form we see on the first diagonal block3, i.e.,

Gabxaxb = Gabkakb = cosh 2r, Gabxakb = 0. (28)

Then the partner mode is spanned by the two quadrature operators Q̂Ā = x̄aξ̂
a and P̂Ā = k̄aξ̂

a with

x̄a = coth(2r)xa +
1

sinh 2r
(Jᵀ)a

ckc, (29)

k̄a = − coth(2r)ka +
1

sinh 2r
(Jᵀ)a

cxc. (30)

(Note that the transpose of J , i.e., (Jᵀ)a
b = Ω−1

ac G
cb = −G−1

ac Ωcb, is a linear map V ∗ → V ∗.)
Using the identities (Jᵀ)2 = −I and GΩ−1G = −Ω, we can check that the covectors (x, k, x̄, k̄) bring

the upper right 4× 4-block of G in the form above, i.e., that

Gabx̄ax̄b = Gabk̄ak̄b = cosh 2r, Gabxax̄b = −Gabkak̄b = sinh 2r, (31)

Gabkax̄b = Gabxak̄b = Gabx̄ak̄b = 0. (32)

How do we know, that the modes A and Ā share no correlations with the rest of the system? To see
this, let x′a and k′a define another mode in the system, i.e., Ωabx′ak

′
b = 1. Then

Ωabx′ax̄b = coth(2r)Ωabx′axb +
Gadx′akd
sinh 2r

, Ωabk′ax̄b = coth(2r)Ωabk′axb +
Gadk′akd
sinh 2r

, (33)

Ωabx′ak̄b = − coth(2r)Ωabx′akb +
Gadx′axd
sinh 2r

, Ωabx′ax̄b = − coth(2r)Ωabk′akb +
Gadk′axd
sinh 2r

. (34)

This means that if the mode commutes with the original mode, i.e.,

Ω(x, x′) = Ω(x, k′) = Ω(k, x′) = Ω(k, k′) = 0, (35)

3This form can always be obtained by a single-mode symplectic transformation.
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then the commutator with the partner mode is proportional to the correlation with the original mode.
In particular, this warrants that Gab can be cast into the standard form (25).

From the partner mode construction one can derive the entanglement structure of pure Gaussian
states: For arbitrary bipartitions the state factors into a product of entangled mode pairs [11, 1].

To see this, consider a system of N modes which we bipartite into two subsystems of NA and
NB modes, with NA ≤ NB . Then by combining the normal modes (qA1 , p

A
1 , · · · , qANA

, pANA
) of A, i.e.,

the modes which bring the partial covariance matrix of A into normal form, and the normal modes
(qB1 , p

B
1 , · · · , qBNB

, pBNB
) of B, we obtain a symplectic basis of the whole system in which Gab is represented

by

G ≡



ch1 · · · 0 sh1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · chNA
0 · · · shNA

0 · · · 0
sh1 · · · 0 ch1 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · shNA

0 · · · chNA
0 · · · 0

0 · · · 0 0 · · · 0 I2 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · I2


, (36)

built from the 2× 2-matrices, with ri ≥ 04,

chi =

(
cosh 2ri 0

0 cosh 2ri

)
, shi =

(
sinh 2ri 0

0 − sinh 2ri

)
. (37)

4 Energy cost of partner mode extraction

We can now derive the least amount of energy that one needs to inject into a system with a quadratic
Hamiltonian, when extracting a pair of partner modes from its ground state. In fact, it turns out that
at its core this problem effectively simplifies to solving the case of a source system of only 2 modes.

4.1 Partner mode extraction is a two-mode problem

Recall that our overall framework was the following: We are given a source system S consisting of N
modes, which is in the ground state of its quadratic Hamiltonian Ĥ = 1

2habξ̂
aξ̂b. We then pick a pair of

partner modes A and Ā in the system, and swap the state of these modes with the states of two external
target modes.

Initially the system is in its ground state |0〉 which we know is a product state between the mode pair
and the rest of the system. After the swap, the two partner modes are left behind in a product state.

|0〉〈0|S = |ψ〉〈ψ|AĀ ⊗ |0
′〉〈0′|R

SWAP−→ ρA ⊗ σĀ ⊗ |0′〉〈0′|R (38)

By how much increases the energy expectation value of the system under this process?

∆E = ∆
〈
Ĥ
〉

= Tr
(
ρA ⊗ σĀ ⊗ |0′〉〈0′|R Ĥ

)
− Tr

(
|ψ〉〈ψ|AĀ ⊗ |0

′〉〈0′|R Ĥ
)

= ...? (39)

We can split the Hamiltonian into three terms,

Ĥ = ĤR + ĤAĀ,R + ĤAĀ (40)

separating the part of the Hamiltonian acting only on the rest of the system, the part coupling the rest
of the system and the partner modes, and the part acting only on the partner modes. Then we see that:

• ĤR contributes to both terms equally because the state of R is unchanged

•
〈
ĤAĀ,R

〉
= 0 in both states because they both are product states without correlations between

AĀ and R

4Note, that ri = 0 means the two modes are actually not entangled.
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• hence ĤAĀ determines the energy cost alone

∆E = ∆
〈
Ĥ
〉

= ∆
〈
ĤAĀ

〉
= Tr

(
ρA ⊗ σĀĤAĀ

)
− Tr

(
|ψ〉〈ψ|AĀ ĤAĀ

)
(41)

Furthermore, it is clear which state ρA ⊗ σĀ minimizes the energy cost: We need to choose the product
of the ground states of the single mode restrictions of

ĤAĀ = ĤA + ĤĀ + ĤA,Ā. (42)

That is we choose

ρA = |gA〉〈gA| , σĀ = |gĀ〉〈gĀ| (43)

where |gA〉 is the ground state of ĤA and |gĀ〉 of ĤĀ, both of which are Gaussian states.
This shows that to calculate the energy cost for extracting the partner modes A and Ā we only need

to know the two-mode quadratic Hamiltonian ĤAĀ. Hence, once we know the minimum energy cost for
a source system of only two modes, in larger source systems we only need to optimize over the choice of
partner modes such that the restricted two-mode Hamiltonian yields the lowest energy cost possible.

Just as one would assume, the lowest possible energy cost can be achieved if the space spanned by A
and Ā coincides with the space of the two energy eigenmodes of Ĥ with the lowest excitation energies.

4.2 Connecting energy eigenmodes to partner modes

In order to calculate and to minimize the energy cost we need to relate the partner modes that we are
extracting to the eigenmodes of the Hamiltonian ĤAĀ.

Because in the basis given by the partner modes (xa, ka, x̄a, k̄a) we know that the covariance matrix
of the initial state is given by

Gab ≡AĀ


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r
sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

 , hab ≡AĀ ...? (44)

but we do not know which matrix represents hab. We do know however that there is a symplectic basis
of eigenmodes of ĤAĀ. In this basis we have

Gab ≡H


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , hab ≡H


ε1 0 0 0
0 ε1 0 0
0 0 ε2 0
0 0 0 ε2

 . (45)

Since both bases are symplectic, there is a symplectic transformation connecting them. We will derive
the most general form of such a transformation between the energy eigenmodes to a pair of partner
modes with squeezing parameter r. Then we can pick the optimal one to minimise the energy cost.

To get from energy modes to partner modes, we work our way backwards and first apply the inverse
squeezing operation to the partner modes

Sab ≡AĀ


cosh r 0 − sinh r 0

0 cosh r 0 sinh r
− sinh r 0 cosh r 0

0 sinh r 0 cosh r

 (46)

This symplectic transformation maps the partner modes to a basis of modes in which Gab ≡ I is repre-
sented by the identity matrix, just as it is in the energy eigenbasis. However, we still do not know the
form of hab.

What we do know is that the unsqueezed modes and the energy eigenbasis are connected by a
symplectic transformation Ma

b which leaves the shape of G ≡ I invariant. That means M also lies in
the orthogonal group. As such, it can be written as the exponential Ma

b = exp (K)
a
b of a generator

Ka
b : V → V . In order for M to be both orthogonal and symplectic, the generator has to obey two

conditions:

Ma
bG

bc(Mᵀ)c
d = Gad ⇒ Ka

bG
bc +Gab(Kᵀ)b

c = 0 (47)
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Ma
bΩ

bc(Mᵀ)c
d = Gad ⇒ Ka

bΩ
bc − Ωab(Kᵀ)b

c = 0 (48)

There is a two-parameter family of such matrices, which in turn means that we obtain a two-parameter
family of possible M(θ, φ) of possible transformations between the energy eigenmodes and unsqueezed
modes.

4.3 Optimal partner modes

Now we know that the any possible pair of partner modes is connected to the energy eigenmodes by a
transformation of the form

Na
b = SacM(θ, φ)cb. (49)

We can use the explicit expressions for M(θ, φ) and S to calculate the energy increase ∆E as a function
of the parameters. As worked out in our paper [1], ∆E is minimal if

M(θ, φ) ≡H


1√
2

0 1√
2

0

0 1√
2

0 1√
2

− 1√
2

0 1√
2

0

0 − 1√
2

0 1√
2

 , (50)

i.e., the optimal partner modes are obtained by taking the odd and even combinations of the energy
eigenmodes and then perform two-mode squeezing on these modes where the amount of entanglement
between the modes is controlled by the squeezing parameter r.

4.4 Minimal energy cost

0 1 2 3 4

0.01

0.10

1

10

100

Figure 2: Minimal energy cost ∆Emin as a function of the extracted entanglement entropy ∆S from a
bosonic, quadratic two-mode Hamiltonian with excitation energies ε1 and ε2. [1]

The minimal energy cost for the extraction of a partner mode pair with an amount of entanglement
set by the squeezing parameter r is found to be

∆Emin =
1

2

(√
ε21 + ε22 + 2ε1ε2 cosh 4r − ε1 − ε2

)
, (51)

where ε1, ε2 are the excitation energies of ĤAĀ. In the limit of a degenerate Hamiltonian the energy cost
goes down to

Emin
ε2→ε1−→ 2ε1 sinh2(r). (52)

Even as the value of the second energy level diverges, the energy cost is upper bounded by

Emin
ε2→∞−→ ε1 (sinh 2r)

2
. (53)
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