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Acceleration of charged nuclei (cosmic 
rays) - especially in the aftermath of 

cataclysmic events, sometimes visible in 
gravitational waves.

Secondary neutrinos and gamma-rays 
from pion decays:

cosmic ray 
proton

nucleus

pions

(…)
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Multi-Messenger Astronomy
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Unique abilities of cosmic neutrinos: 

no deflection in magnetic fields  
(unlike cosmic rays) 

no absorption in cosmic backgrounds 
(unlike gamma-rays) 

smoking-gun of  
unknown sources of cosmic rays 

coincident with  
photons and gravitational waves 

BUT, very difficult to detect!
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Detector Requirements
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High-Energy Neutrino Detection

• High energy neutrino collisions with nuclei via deep-inelastic charged and neutral
current interactions.

back-of-the-envelope (En ⇠ 1PeV = 1015 eV):

• flux of neutrinos :
d2Nn

dt dA
⇠

1
cm2 ⇥ 105yr

• cross section : snN ⇠ 10�8spp ⇠ 10�33cm2

• targets: NN ⇠ NA ⇥ V/cm3

‹ rate of events :

Ṅn ⇠ NN ⇥ snN ⇥
d2Nn

dt dA
⇠

1
year

⇥
V

1km3
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High-energy neutrino collisions with nuclei via  
deep-inelastic charged and neutral current interactions.
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IceCube Observatory
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The IceCube Observatory

• Giga-ton Cherenkov

telescope at the South Pole
• Collaboration of about 300

people at 47 intl. institutions
• 60 digital optical modules

(DOMs) per string
• 78 IceCube strings

125 m apart on triangular grid
• 8 DeepCore strings

DOMs in particularly clear ice
• 81 IceTop stations

two tanks per station, two
DOMs per tank

• 7 year construction phase
(2004-2011)

• price tag: e0.25 per ton

Markus Ahlers (NBI) Deciphering Cosmic ⌫s with MM Astronomy May 22, 2018 slide 4

• Giga-ton Cherenkov telescope 
at the South Pole 

• Collaboration of about 300 
scientists at 47 intl. institution 

• Digital optical modules (DOMs) 
attached to strings instrumenting 
1 km3 of clear glacial ice 

• 7-year construction: 2004–2011 

• price: 2 DKK per ton 

• NBI member since 2013: 

‣ tau neutrino appearance 
‣ non-standard oscillations 
‣ low-energy transients 
‣ multi-messenger analyses
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Detection Methods I
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Methods of Neutrino Detection I

cosmic
neutrino

atmospheric
neutrino

atmospheric
muon

cosmic
ray

cosmic
ray

Atmosphere

down-going

up-going

~1
2,

70
0 

kmπ-θ

Cherenkov light detection
in optical modules

IceCube

muon

‹ Selecting up-going muon tracks reduces atmospheric muon background:

10, 000, 000, 000| {z }
atmospheric muons (from above)

: 100, 000| {z }
atmospheric neutrinos

: 10|{z}
cosmic neutrinos
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Methods of Neutrino Detection II

• Outer layer of optical
modules can be used as a
veto region (gray area):

8 Atmospheric muons pass
through veto from above.

8 Atmospheric neutrinos

are produced in coincidence
with atmospheric muons.

4 Cosmic neutrino events
can start inside the

fiducial volume.

‹ High-Energy Starting

Event (HESE) analysis

90 meters

10 meters

veto region

Side 

fiducial volume

fiducial volume

80 meters

-1450 m

-2085 m
-2165 m

-2450 m

[IceCube Collaboration’13]
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• Outer layer of optical 
modules used as virtual 
veto region (gray area) 

• Atmospheric muons pass 
through veto from above. 

• Atmospheric neutrinos 
coincidence with 
atmospheric muons. 

• Cosmic neutrino events 
can start inside the 
fiducial volume. 

• High-Energy Starting 
Event (HESE) analysis
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Breakthrough in 2013
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2013: A Milestone for Neutrino Astronomy

First observation of high-energy astrophysical neutrinos by IceCube!

“track event” (from nµ scattering) “cascade event” (from all flavours)

[“Breakthrough of the Year” (Physics World), Science 2013]
(neutrino event signature: early to late light detection)
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First observation of high-energy astrophysical neutrinos by IceCube!

Edep~71 TeV Edep~1.0 PeV
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Diffuse TeV-PeV Neutrinos
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Multi-Messenger Interfaces
• High-Energy Starting Events (HESE) (7yrs): [Science 342 (2013); work in progress]

• bright events (Eth & 30TeV) starting inside IceCube

• e�cient removal of atmospheric backgrounds by veto layer

• Up-going muon-neutrino tracks (8yrs): [Astrophys.J. 833 (2016); update ICRC 2017]

• large e↵ective volume due to ranging in tracks

• e�cient removal of atmospheric muon backgrounds by Earth-absorption
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Primary Cosmic Rays for PeV Neutrinos
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The Cosmic “Beam”
1PeV neutrino $ 20-30PeV cosmic ray nucleon
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 [eV]E
1310 1410 1510 1610 1710 1810 1910 2010

]
-1

 sr
-1  s

-2
 m

1.
6

 [G
eV

F(
E)

2.
6

E

1

10

210

310

410

Grigorov
JACEE
MGU
Tien-Shan
Tibet07
Akeno
CASA-MIA
HEGRA
Fly’s Eye
Kascade
Kascade Grande
IceTop-73
HiRes 1
HiRes 2
Telescope Array
Auger

Knee

2nd Knee

Ankle

Figure 27.8: The all-particle spectrum as a function of E (energy-per-nucleus)
from air shower measurements [88–99,101–104].

giving a result for the all-particle spectrum between 1015 and 1017 eV that lies toward
the upper range of the data shown in Fig. 27.8. In the energy range above 1017 eV, the
fluorescence technique [100] is particularly useful because it can establish the primary
energy in a model-independent way by observing most of the longitudinal development
of each shower, from which E0 is obtained by integrating the energy deposition in
the atmosphere. The result, however, depends strongly on the light absorption in the
atmosphere and the calculation of the detector’s aperture.

Assuming the cosmic-ray spectrum below 1018 eV is of galactic origin, the knee could
reflect the fact that most cosmic accelerators in the galaxy have reached their maximum
energy. Some types of expanding supernova remnants, for example, are estimated not to
be able to accelerate protons above energies in the range of 1015 eV. E�ects of propagation
and confinement in the galaxy [106] also need to be considered. The Kascade-Grande
experiment [98] has reported observation of a second steepening of the spectrum near
8 ⇥ 1016 eV, with evidence that this structure is accompanied a transition to heavy

December 18, 2013 11:57
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[Particle Data Group’13]
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Astrophysical Flavours
Ultra-Long Baseline Oscillations

• Energy resolution of detectors is limited and neutrino source is distant.

Pna!nb = dab � 4 Â
i>j

<(U⇤
aiUbi UajU⇤

bj) sin2 Dij| {z }
!1/2

+ 2 Â
i>j

=(U⇤
aiUbi UajU⇤

bj) sin 2Dij| {z }
!0

‹ oscillation-averaged probability:

Pna!nb ' Â
i

|Uai|
2
|Ubi|

2

• initial composition: ne : nµ : nt

pion & muon decay: 1 : 2 : 0
muon-damped decay: 0 : 1 : 0
neutron decay: 1 : 0 : 0

Combined Maximum-Likelihood Analysis of IceCube High-Energy Data 13

Figure 5. Best-fit neutrino spectra for the single power law model
(all flavors combined). The blue and red shaded areas correspond
to 68% C.L. allowed regions for the conventional atmospheric and
astrophysical neutrino flux, respectively. The prompt atmospheric
flux is fitted to zero, we show the 90% C.L. upper limit on this
component instead (green line).

Figure 6. Best-fit astrophysical neutrino spectra (all flavors com-
bined). The red shaded area corresponds to the 68% C.L. allowed
region for the single power law model (cf. Figure 5). The black
data points show the result of the di�erential model; the horizontal
bars denote the bin width, the vertical error bars denote 68% C.L.
intervals.

Figure 7. Electron neutrino fraction measured at Earth in the 2-
flavor model. The black point denotes the best-fit value, the filled
bands show the 68% (green) and 90% (red) C.L. intervals. The
dashed lines mark electron neutrino fractions expected for di�erent
flavor compositions at the source, assuming tribimaximal neutrino
mixing angles.

Figure 8. Profile likelihood scan of the flavor composition
at Earth. Each point in the triangle corresponds to a ratio
�e : �µ : �� as measured on Earth, the individual contribu-
tions are read o� the three sides of the triangle. The best-fit
composition is marked with “�”, 68% and 95% confidence
regions are indicated. The ratios corresponding to three flavor
composition scenarios at the sources of the neutrinos, computed
using the oscillation parameters in Gonzalez-Garcia et al. (2014,
inverted hierarchy), are marked by the square (0 : 1 : 0),
circle (1 : 2 : 0), and triangle (1 : 0 : 0), respectively. The
best-fit composition obtained in an earlier IceCube analysis of
the flavor composition (Aartsen et al. 2015c) is marked with a “+”.

Ruiz et al. (2015) (based on event sample H1, presented
in Aartsen et al. 2014e), and by Palladino et al. (2015),
Pagliaroli et al. (2015), and Aartsen et al. (2015c) (based
on event samples that were extended with respect to H1,
respectively). With respect to these measurements, the
constraints presented here are significantly improved; we
attribute this to the fact that the combined event sam-
ple analyzed here contains a significant number of shower
events as well as track events. Though the best-fit flavor
composition obtained in Aartsen et al. (2015c) (white
“+” in Figure 8) lies outside the 95% C.L. region, the
68% C.L. region obtained here is completely contained
within that obtained in the previous work, demonstrat-
ing the compatibility of the two results. Because neither
analysis was designed to identify tau neutrinos, a degen-
eracy with respect to the �� -fraction is observed in both,
the slight preference towards a smaller �� -contribution
found here is likely connected to the slight di�erences in
the energy distributions of the three neutrino flavors. In
future, the identification of tau neutrinos will enable us
to place stronger constraints on the flavor composition
of the astrophysical neutrino flux.

We acknowledge the support from the following agen-
cies: U.S. National Science Foundation-O�ce of Polar
Programs, U.S. National Science Foundation-Physics Di-
vision, University of Wisconsin Alumni Research Foun-
dation, the Grid Laboratory Of Wisconsin (GLOW) grid
infrastructure at the University of Wisconsin - Madi-
son, the Open Science Grid (OSG) grid infrastructure;
U.S. Department of Energy, and National Energy Re-
search Scientific Computing Center, the Louisiana Opti-
cal Network Initiative (LONI) grid computing resources;
Natural Sciences and Engineering Research Council
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tions are read o� the three sides of the triangle. The best-fit
composition is marked with “�”, 68% and 95% confidence
regions are indicated. The ratios corresponding to three flavor
composition scenarios at the sources of the neutrinos, computed
using the oscillation parameters in Gonzalez-Garcia et al. (2014,
inverted hierarchy), are marked by the square (0 : 1 : 0),
circle (1 : 2 : 0), and triangle (1 : 0 : 0), respectively. The
best-fit composition obtained in an earlier IceCube analysis of
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in Aartsen et al. 2014e), and by Palladino et al. (2015),
Pagliaroli et al. (2015), and Aartsen et al. (2015c) (based
on event samples that were extended with respect to H1,
respectively). With respect to these measurements, the
constraints presented here are significantly improved; we
attribute this to the fact that the combined event sam-
ple analyzed here contains a significant number of shower
events as well as track events. Though the best-fit flavor
composition obtained in Aartsen et al. (2015c) (white
“+” in Figure 8) lies outside the 95% C.L. region, the
68% C.L. region obtained here is completely contained
within that obtained in the previous work, demonstrat-
ing the compatibility of the two results. Because neither
analysis was designed to identify tau neutrinos, a degen-
eracy with respect to the �� -fraction is observed in both,
the slight preference towards a smaller �� -contribution
found here is likely connected to the slight di�erences in
the energy distributions of the three neutrino flavors. In
future, the identification of tau neutrinos will enable us
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We acknowledge the support from the following agen-
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Programs, U.S. National Science Foundation-Physics Di-
vision, University of Wisconsin Alumni Research Foun-
dation, the Grid Laboratory Of Wisconsin (GLOW) grid
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Oscillation of neutrino flavours between source and observatory.

νe

νμ ντ

νe

ντ νμ

Cosmic neutrinos visible via their 
oscillation-averaged flavour.

Pνα→νβ
= ∑

i

|Uαi |
2 |Uβi |

2
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Status of Neutrino Astronomy

12

No significant steady or transient emission from known Galactic and 
extragalactic high-energy sources (except for one candidate).
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Csl layers to the number initiated in the plastic layers was 10 ± 1 for the more 
frequent atmospheric events, and 10 ± 4 for the few sky events recorded during the 
brief period. We consider both values to be consistent with the conclusion that most 
of the atmospheric and the sky events were electromagnetic in nature. 

c) Celestial Distribution of Sky Events 
The celestial distribution of all of the sky events is shown on an equal-solid-angle 

projection in figure 7 together with the relative exposure as indicated by the distribu- 
tion of the random events (to avoid crowding, only one in 10 of the random events 
used in the numerical analysis is displayed). Evidently some of the nonuniformity in 
the celestial distribution of sky events merely reflects the nonuniformity of the exposure. 

Fig. 7.—Summary maps of the distributions of (a) the real and (b) one-tenth of the artificial 
events over the sky in galactic coordinates. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

Status of Neutrino Astronomy

13

Orbiting Solar Observatory (OSO-3) (Clark & Kraushaar’67)

1967
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2.3. Localization

The position of each source was determined by maximizing
the likelihood starting from the seed position, using gtfindsrc.
We used gtfindsrc rather than pointlike (used in 3FGL) in order
to benefit from the full power of PSF event types introduced
in Pass 8. The gtfindsrc tool works in unbinned mode,
automatically selecting the appropriate PSF for each event as a
function of its event type and off-axis angle (the PSF broadens
at large off-axis angles). The gtfindsrc run was integrated into
the main iterative procedure (Section 2.4), starting with the
brightest sources. This ensures that the surrounding sources
were correctly represented. The main drawback is that gtfindsrc
provides only a symmetric (circular) error radius, assuming a
Gaussian distribution, not the full TS map and an ellipse as
pointlike does. There is no reason to believe that this is a
serious limitation. For example, in 3FGL the average ratio
between the two axes of the error ellipses was 1.20, so most
ellipses were close to circular. At higher energies (1FHL) this
ratio was even smaller, 1.12.

The systematic uncertainties associated with localization
were not calibrated on 3FHL itself, but on the larger (and more
precise) preliminary source list derived from an analysis over
all energies greater than 100MeV. The absolute precision at the
95% confidence level was found to be 0°.0075 (it was 0°.005 in
3FGL, but the statistical precision on localization was not
good enough to constrain the absolute precision well). The
systematic factor was found to be 1.05, as in 3FGL. We
checked that the 3FHL localizations were consistent with the
same values. Consequently, we multiplied all error estimates by
1.05 and added 0°.0075 in quadrature.

2.4. Significance and Spectral Characterization

The framework for this stage of the analysis was inherited
from the 3FGL catalog analysis pipeline (Acero et al. 2015). It
splits the sky into regions of interest (RoIs), each with typically

half a dozen sources whose parameters are simultaneously
optimized. The global best fit is reached iteratively, by
including sources in the outer parts of the RoI from the
neighboring RoIs at the previous step. Above 10 GeV the PSF
is narrow, so the cross-talk is small and the iteration converges
rapidly. The diffuse emission model had exactly one free
normalization parameter per RoI (see the Appendix for details).
We used unbinned likelihood with PSF event types over the
full energy range, neglecting energy dispersion. Extended
sources (Section 2.5) were treated just as point sources, except
for their spatial templates. Whenever possible, we applied the
new RadialDisk and RadialGaussian analytic spatial templates
for the likelihood calculation. They are not pixelized and hence
are more precise than the map-based templates used in 3FGL.
Sources were modeled by default with a power-law (PL)

spectrum (two free parameters, a normalization and a spectral
photon index). At the end of the iteration, we kept only sources
with TS> 25 with the PL model, corresponding to a
significance of just over 4σ evaluated from the χ2 distribution
with 4 degrees of freedom (position and spectral parameters,
Mattox et al. 1996). We also enforced a minimum number of
model-predicted events Npred� 4 (only two sources were
rejected because of this limit, and only two have Npred< 5).
We ended up with 1556 sources with TS> 25, including 48
extended sources.
The alternative curved LogParabola (LP) spectral shape

dN
dE

K
E
E

1
E E

0

log 0

=
a b- -⎛

⎝⎜
⎞
⎠⎟ ( )

( )

was systematically tested, and adopted when
Signif_Curve= 2 ln LP PL 3L L >( ( ) ( )) , corresp-
onding to 3-σ evidence in favor of the curved model (the
threshold was 4σ in 3FGL). Among 1556 sources, only 6 were
found to be significantly curved at the 4σ level. Lowering the
threshold to 3σ added 26 curved sources, whereas an average

Figure 1. Adaptively smoothed Fermi-LAT counts map in the 10 GeV–2 TeV band represented in Galactic coordinates and Hammer–Aitoff projection. The image has
been smoothed with a Gaussian kernel whose size was varied to achieve a minimum signal-to-noise ratio under the kernel of 2.3. The color scale is logarithmic and the
units are counts per (0.1 deg)2 pixel.

4

The Astrophysical Journal Supplement Series, 232:18 (23pp), 2017 October Ajello et al.

Status of Neutrino Astronomy

14

2017

Fermi-LAT gamma-ray count map
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10 M. G. Aartsen et al.

2013b), the optical efficiency of Cherenkov light pro-
duction yield and detection in the DOMs (Abbasi et al.
2010), and different photo-nuclear interaction mod-
els (Bugaev & Shlepin 2003a,b; Abramowicz et al. 1991;
Abramowicz & Levy 1997). All systematic effects are
propagated through the entire likelihood analysis de-
scribed in Section 3 to obtain the uncertainties on the
fluxes using dφ/dEν ∝ E−2 spectra. The biggest impact
on the fluxes comes from varying the optical efficiency by
±10%, resulting in a flux uncertainty of 7.5%. Increas-
ing the absorption or scattering of photons in ice by 10%
affects the flux by 5.6%. Uncertainties in the photo-
nuclear cross-sections (Bugaev & Shlepin 2003a,b) re-
sult in an flux uncertainty of similar size with 5.9%.
Adding these values in quadrature yields a total sys-
tematic uncertainty of 11% on νµ + ν̄µ fluxes quoted in
the following.
For all locations tested, only the maximal likelihood

values of n̂S and γ̂ are reported. Because of small event
statistics at the position of the likelihood maximization
and limited energy resolution of the neutrino energy
(compare Section 2.2), uncertainties on the spectral in-
dex are of the order ±1 and reduce to ±0.5 for values of
nS of ∼ 15 and ∼ 50, respectively (Braun et al. 2008).
Hence, the impact of systematic uncertainties in the en-
ergy reconstruction is small compared to the statistical
limitations.
Albeit not a systematic uncertainty per se, so far

only fluxes of νµ + ν̄µ were considered. This is a con-
servative estimate, because track-like events can also
originate in other cases that are discussed in the fol-
lowing. Firstly, tau-leptons created in charged-current
ντ + ν̄τ interactions decay into muons with 17% branch-
ing ratio (Jeong & Reno 2010; Olive et al. 2014), re-
sulting in a muon track with lower energy due to the
three-body decay τ → µνµντ . This decay is impor-
tant for up-going events, because secondary neutrinos
are produced in τ -neutrino regeneration during prop-
agation. Secondly, interactions of ν̄e + e− → W− at
the Glashow-resonance (Glashow 1960) at 6.3 PeV pro-
duce tracks (ν̄e + e− → ν̄µ + µ−) at 10.6% branching
ratio (Olive et al. 2014). Lastly, at the highest ener-
gies above PeV, τ -neutrino induced double bangs are
well-reconstructable and further increase the number of
τ -flavored events in the sample. Accounting for these
fluxes assuming an equal flavor ratio at Earth reduces
the per-flavor flux necessary for detection by 5% assum-
ing an unbroken E−2 spectrum. For harder spectra, the
sensitivity gain due to regeneration effects in the north-
ern sky becomes stronger. For example, a spectrum of
dφ/dEν ∝ E−1 has an 30% improved sensitivity com-
pared to only considering muon neutrinos. This greatly
increases the sensitivity with respect to models that pre-
dict very hard neutrino energy spectra peaking above
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Figure 6. All-sky result of the unbinned likelihood maxi-
mization shown in equatorial coordinates (J2000). Shown is
the negative logarithm of the pre-trial p-value, − log10 p, as-
suming no clustering as null-hypothesis. The Galactic Plane
is shown as black line.

PeV energies (Petropoulou et al. 2015; Reimer 2015).

4. RESULTS AND IMPLICATIONS

In the unbinned likelihood analysis using seven years
of IceCube livetime, no significant excess of astrophys-
ical neutrino sources was found. In the following, the
results of the three tests introduced in the previous sec-
tions are discussed and 90% upper-limits on neutrino
source fluxes are calculated. Finally, implications with
respect to neutrino models of γ-ray sources and the ob-
served diffuse neutrino flux are presented.

4.1. All sky scan

Figure 6 depicts the pre-trial p-value − log10 p of all
points in the sky in equatorial coordinates (J2000) with
respect to the null-hypothesis of no observed clustering.
In the northern sky, the most significant position was

at α = 32.2◦, δ = 62.1◦ at an accuracy of 0.35◦ (0.5◦)
for 1σ (90%) contours using Wilks’ theorem with two
degrees of freedom. The best fit parameters at the lo-
cation are n̂S = 32.6 and γ̂ = 2.8, yielding a pre-trial
p-value of 1.82 × 10−6. Looking at each of the com-
bined seasons individually reveals that for each season
clustering is observed, providing no indication of time-
dependence that could suggest additional evidence for
an astrophysical origin.
In the southern sky, the most significant point is at

α = 174.6◦, δ = −39.3◦. The best fit point is at n̂S =
15.4, with spectral index γ̂ = 2.9. The uncertainty of
the location amounts to 0.22◦ (0.32◦) for 1σ (90%). The
pre-trial p-value is 0.93× 10−6; most of the significance
at this location is shared by the newly added data of
through-going and starting tracks. Indeed, one starting
track is within 0.9◦ distance to the location which is
wihtin 1σ of its reconstruction uncertainty.
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2013b), the optical efficiency of Cherenkov light pro-
duction yield and detection in the DOMs (Abbasi et al.
2010), and different photo-nuclear interaction mod-
els (Bugaev & Shlepin 2003a,b; Abramowicz et al. 1991;
Abramowicz & Levy 1997). All systematic effects are
propagated through the entire likelihood analysis de-
scribed in Section 3 to obtain the uncertainties on the
fluxes using dφ/dEν ∝ E−2 spectra. The biggest impact
on the fluxes comes from varying the optical efficiency by
±10%, resulting in a flux uncertainty of 7.5%. Increas-
ing the absorption or scattering of photons in ice by 10%
affects the flux by 5.6%. Uncertainties in the photo-
nuclear cross-sections (Bugaev & Shlepin 2003a,b) re-
sult in an flux uncertainty of similar size with 5.9%.
Adding these values in quadrature yields a total sys-
tematic uncertainty of 11% on νµ + ν̄µ fluxes quoted in
the following.
For all locations tested, only the maximal likelihood

values of n̂S and γ̂ are reported. Because of small event
statistics at the position of the likelihood maximization
and limited energy resolution of the neutrino energy
(compare Section 2.2), uncertainties on the spectral in-
dex are of the order ±1 and reduce to ±0.5 for values of
nS of ∼ 15 and ∼ 50, respectively (Braun et al. 2008).
Hence, the impact of systematic uncertainties in the en-
ergy reconstruction is small compared to the statistical
limitations.
Albeit not a systematic uncertainty per se, so far

only fluxes of νµ + ν̄µ were considered. This is a con-
servative estimate, because track-like events can also
originate in other cases that are discussed in the fol-
lowing. Firstly, tau-leptons created in charged-current
ντ + ν̄τ interactions decay into muons with 17% branch-
ing ratio (Jeong & Reno 2010; Olive et al. 2014), re-
sulting in a muon track with lower energy due to the
three-body decay τ → µνµντ . This decay is impor-
tant for up-going events, because secondary neutrinos
are produced in τ -neutrino regeneration during prop-
agation. Secondly, interactions of ν̄e + e− → W− at
the Glashow-resonance (Glashow 1960) at 6.3 PeV pro-
duce tracks (ν̄e + e− → ν̄µ + µ−) at 10.6% branching
ratio (Olive et al. 2014). Lastly, at the highest ener-
gies above PeV, τ -neutrino induced double bangs are
well-reconstructable and further increase the number of
τ -flavored events in the sample. Accounting for these
fluxes assuming an equal flavor ratio at Earth reduces
the per-flavor flux necessary for detection by 5% assum-
ing an unbroken E−2 spectrum. For harder spectra, the
sensitivity gain due to regeneration effects in the north-
ern sky becomes stronger. For example, a spectrum of
dφ/dEν ∝ E−1 has an 30% improved sensitivity com-
pared to only considering muon neutrinos. This greatly
increases the sensitivity with respect to models that pre-
dict very hard neutrino energy spectra peaking above
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Figure 6. All-sky result of the unbinned likelihood maxi-
mization shown in equatorial coordinates (J2000). Shown is
the negative logarithm of the pre-trial p-value, − log10 p, as-
suming no clustering as null-hypothesis. The Galactic Plane
is shown as black line.

PeV energies (Petropoulou et al. 2015; Reimer 2015).

4. RESULTS AND IMPLICATIONS

In the unbinned likelihood analysis using seven years
of IceCube livetime, no significant excess of astrophys-
ical neutrino sources was found. In the following, the
results of the three tests introduced in the previous sec-
tions are discussed and 90% upper-limits on neutrino
source fluxes are calculated. Finally, implications with
respect to neutrino models of γ-ray sources and the ob-
served diffuse neutrino flux are presented.

4.1. All sky scan

Figure 6 depicts the pre-trial p-value − log10 p of all
points in the sky in equatorial coordinates (J2000) with
respect to the null-hypothesis of no observed clustering.
In the northern sky, the most significant position was

at α = 32.2◦, δ = 62.1◦ at an accuracy of 0.35◦ (0.5◦)
for 1σ (90%) contours using Wilks’ theorem with two
degrees of freedom. The best fit parameters at the lo-
cation are n̂S = 32.6 and γ̂ = 2.8, yielding a pre-trial
p-value of 1.82 × 10−6. Looking at each of the com-
bined seasons individually reveals that for each season
clustering is observed, providing no indication of time-
dependence that could suggest additional evidence for
an astrophysical origin.
In the southern sky, the most significant point is at

α = 174.6◦, δ = −39.3◦. The best fit point is at n̂S =
15.4, with spectral index γ̂ = 2.9. The uncertainty of
the location amounts to 0.22◦ (0.32◦) for 1σ (90%). The
pre-trial p-value is 0.93× 10−6; most of the significance
at this location is shared by the newly added data of
through-going and starting tracks. Indeed, one starting
track is within 0.9◦ distance to the location which is
wihtin 1σ of its reconstruction uncertainty.

• No significant time-independent 
point sources emission in all-sky 
search. 

• No significant time-independent 
emission from known Galactic and 
extragalactic high-energy sources.

[Aartsen et al., Astrophys.J. 835 (2017) no.2, 151]PoS(ICRC2017)986

ANTARES all-flavor Neutrino Point-like Source Search G. Illuminati

cluster in bands of 1� in declination at a 90% Confidence Level (C.L.) obtained using the Neyman
method [7] are shown in Figure 1. The limits computed in this analysis are set on the total neutrino
flux (Fnµ +Fne +Fnt ), assuming the equipartition at Earth of the three neutrino flavours.
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Figure 1: Upper limits at a 90% C.L. on the total signal flux (sum of the contributions of the three neutrinos
flavours) from the investigated candidates assuming an E�2 spectrum (red circles). The dashed red line
shows the ANTARES sensitivity and the blue dashed line the sensitivity of the seven years point-like source
analysis by the IceCube Collaboration for comparison [8]. The upper-limits obtained in this analysis are
also included (blue dots). The ANTARES 5s pre-trial discovery flux is a factor 2.5 to 2.9 larger than the
sensitivity. The curve for the sensitivity for neutrino energies under 100 TeV is also included (solid red line).
The IceCube curve for energies under 100 TeV (solid blue line) is obtained from the 3 years MESE analysis
[9]. The limits of the most significant cluster obtained in bands of 1� in declination (dark red squares) are
also shown.

4.2 Candidate List Search

In the candidate list search, the directions of a pre-selected list of 106 known astronomical
objects, which are promising neutrinos emitters, are investigated to look for an excess of neutrino
events. The list of the astronomical candidates along with their equatorial coordinates, fitted num-
ber of signal events and upper limits on the flux is shown in Table 1. The most signal-like cluster
is found at the location of HESSJ0632+057 at (a,d ) = (98.24�,5.81�), with a pre-trial p-value
of 0.16%. The post-trial significance of the cluster is 13% or 1.5s (two-sided convention). The
sensitivities and limits calculated with the Neyman method at a 90% C.L. for this search are shown
in Figure 1 as a function of the declination.

A separate candidate list search is performed to investigate the 13 IceCube (IC) HESE clas-
sified as muon tracks [10, 11, 12]. The non-negligible estimated angular error of these events is
accounted for by letting the direction parameters in the likelihood maximisation free to vary around
the position of the IC tracks within a cone twice as large as their estimated angular error. In Table 2
the coordinates of these events together with their angular uncertainty (provided by the IceCube
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[Albert et al., Proceedings of ICRC 2017]
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2013b), the optical efficiency of Cherenkov light pro-
duction yield and detection in the DOMs (Abbasi et al.
2010), and different photo-nuclear interaction mod-
els (Bugaev & Shlepin 2003a,b; Abramowicz et al. 1991;
Abramowicz & Levy 1997). All systematic effects are
propagated through the entire likelihood analysis de-
scribed in Section 3 to obtain the uncertainties on the
fluxes using dφ/dEν ∝ E−2 spectra. The biggest impact
on the fluxes comes from varying the optical efficiency by
±10%, resulting in a flux uncertainty of 7.5%. Increas-
ing the absorption or scattering of photons in ice by 10%
affects the flux by 5.6%. Uncertainties in the photo-
nuclear cross-sections (Bugaev & Shlepin 2003a,b) re-
sult in an flux uncertainty of similar size with 5.9%.
Adding these values in quadrature yields a total sys-
tematic uncertainty of 11% on νµ + ν̄µ fluxes quoted in
the following.
For all locations tested, only the maximal likelihood

values of n̂S and γ̂ are reported. Because of small event
statistics at the position of the likelihood maximization
and limited energy resolution of the neutrino energy
(compare Section 2.2), uncertainties on the spectral in-
dex are of the order ±1 and reduce to ±0.5 for values of
nS of ∼ 15 and ∼ 50, respectively (Braun et al. 2008).
Hence, the impact of systematic uncertainties in the en-
ergy reconstruction is small compared to the statistical
limitations.
Albeit not a systematic uncertainty per se, so far

only fluxes of νµ + ν̄µ were considered. This is a con-
servative estimate, because track-like events can also
originate in other cases that are discussed in the fol-
lowing. Firstly, tau-leptons created in charged-current
ντ + ν̄τ interactions decay into muons with 17% branch-
ing ratio (Jeong & Reno 2010; Olive et al. 2014), re-
sulting in a muon track with lower energy due to the
three-body decay τ → µνµντ . This decay is impor-
tant for up-going events, because secondary neutrinos
are produced in τ -neutrino regeneration during prop-
agation. Secondly, interactions of ν̄e + e− → W− at
the Glashow-resonance (Glashow 1960) at 6.3 PeV pro-
duce tracks (ν̄e + e− → ν̄µ + µ−) at 10.6% branching
ratio (Olive et al. 2014). Lastly, at the highest ener-
gies above PeV, τ -neutrino induced double bangs are
well-reconstructable and further increase the number of
τ -flavored events in the sample. Accounting for these
fluxes assuming an equal flavor ratio at Earth reduces
the per-flavor flux necessary for detection by 5% assum-
ing an unbroken E−2 spectrum. For harder spectra, the
sensitivity gain due to regeneration effects in the north-
ern sky becomes stronger. For example, a spectrum of
dφ/dEν ∝ E−1 has an 30% improved sensitivity com-
pared to only considering muon neutrinos. This greatly
increases the sensitivity with respect to models that pre-
dict very hard neutrino energy spectra peaking above
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Figure 6. All-sky result of the unbinned likelihood maxi-
mization shown in equatorial coordinates (J2000). Shown is
the negative logarithm of the pre-trial p-value, − log10 p, as-
suming no clustering as null-hypothesis. The Galactic Plane
is shown as black line.

PeV energies (Petropoulou et al. 2015; Reimer 2015).

4. RESULTS AND IMPLICATIONS

In the unbinned likelihood analysis using seven years
of IceCube livetime, no significant excess of astrophys-
ical neutrino sources was found. In the following, the
results of the three tests introduced in the previous sec-
tions are discussed and 90% upper-limits on neutrino
source fluxes are calculated. Finally, implications with
respect to neutrino models of γ-ray sources and the ob-
served diffuse neutrino flux are presented.

4.1. All sky scan

Figure 6 depicts the pre-trial p-value − log10 p of all
points in the sky in equatorial coordinates (J2000) with
respect to the null-hypothesis of no observed clustering.
In the northern sky, the most significant position was

at α = 32.2◦, δ = 62.1◦ at an accuracy of 0.35◦ (0.5◦)
for 1σ (90%) contours using Wilks’ theorem with two
degrees of freedom. The best fit parameters at the lo-
cation are n̂S = 32.6 and γ̂ = 2.8, yielding a pre-trial
p-value of 1.82 × 10−6. Looking at each of the com-
bined seasons individually reveals that for each season
clustering is observed, providing no indication of time-
dependence that could suggest additional evidence for
an astrophysical origin.
In the southern sky, the most significant point is at

α = 174.6◦, δ = −39.3◦. The best fit point is at n̂S =
15.4, with spectral index γ̂ = 2.9. The uncertainty of
the location amounts to 0.22◦ (0.32◦) for 1σ (90%). The
pre-trial p-value is 0.93× 10−6; most of the significance
at this location is shared by the newly added data of
through-going and starting tracks. Indeed, one starting
track is within 0.9◦ distance to the location which is
wihtin 1σ of its reconstruction uncertainty.
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2013b), the optical efficiency of Cherenkov light pro-
duction yield and detection in the DOMs (Abbasi et al.
2010), and different photo-nuclear interaction mod-
els (Bugaev & Shlepin 2003a,b; Abramowicz et al. 1991;
Abramowicz & Levy 1997). All systematic effects are
propagated through the entire likelihood analysis de-
scribed in Section 3 to obtain the uncertainties on the
fluxes using dφ/dEν ∝ E−2 spectra. The biggest impact
on the fluxes comes from varying the optical efficiency by
±10%, resulting in a flux uncertainty of 7.5%. Increas-
ing the absorption or scattering of photons in ice by 10%
affects the flux by 5.6%. Uncertainties in the photo-
nuclear cross-sections (Bugaev & Shlepin 2003a,b) re-
sult in an flux uncertainty of similar size with 5.9%.
Adding these values in quadrature yields a total sys-
tematic uncertainty of 11% on νµ + ν̄µ fluxes quoted in
the following.
For all locations tested, only the maximal likelihood

values of n̂S and γ̂ are reported. Because of small event
statistics at the position of the likelihood maximization
and limited energy resolution of the neutrino energy
(compare Section 2.2), uncertainties on the spectral in-
dex are of the order ±1 and reduce to ±0.5 for values of
nS of ∼ 15 and ∼ 50, respectively (Braun et al. 2008).
Hence, the impact of systematic uncertainties in the en-
ergy reconstruction is small compared to the statistical
limitations.
Albeit not a systematic uncertainty per se, so far

only fluxes of νµ + ν̄µ were considered. This is a con-
servative estimate, because track-like events can also
originate in other cases that are discussed in the fol-
lowing. Firstly, tau-leptons created in charged-current
ντ + ν̄τ interactions decay into muons with 17% branch-
ing ratio (Jeong & Reno 2010; Olive et al. 2014), re-
sulting in a muon track with lower energy due to the
three-body decay τ → µνµντ . This decay is impor-
tant for up-going events, because secondary neutrinos
are produced in τ -neutrino regeneration during prop-
agation. Secondly, interactions of ν̄e + e− → W− at
the Glashow-resonance (Glashow 1960) at 6.3 PeV pro-
duce tracks (ν̄e + e− → ν̄µ + µ−) at 10.6% branching
ratio (Olive et al. 2014). Lastly, at the highest ener-
gies above PeV, τ -neutrino induced double bangs are
well-reconstructable and further increase the number of
τ -flavored events in the sample. Accounting for these
fluxes assuming an equal flavor ratio at Earth reduces
the per-flavor flux necessary for detection by 5% assum-
ing an unbroken E−2 spectrum. For harder spectra, the
sensitivity gain due to regeneration effects in the north-
ern sky becomes stronger. For example, a spectrum of
dφ/dEν ∝ E−1 has an 30% improved sensitivity com-
pared to only considering muon neutrinos. This greatly
increases the sensitivity with respect to models that pre-
dict very hard neutrino energy spectra peaking above
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Figure 6. All-sky result of the unbinned likelihood maxi-
mization shown in equatorial coordinates (J2000). Shown is
the negative logarithm of the pre-trial p-value, − log10 p, as-
suming no clustering as null-hypothesis. The Galactic Plane
is shown as black line.

PeV energies (Petropoulou et al. 2015; Reimer 2015).

4. RESULTS AND IMPLICATIONS

In the unbinned likelihood analysis using seven years
of IceCube livetime, no significant excess of astrophys-
ical neutrino sources was found. In the following, the
results of the three tests introduced in the previous sec-
tions are discussed and 90% upper-limits on neutrino
source fluxes are calculated. Finally, implications with
respect to neutrino models of γ-ray sources and the ob-
served diffuse neutrino flux are presented.

4.1. All sky scan

Figure 6 depicts the pre-trial p-value − log10 p of all
points in the sky in equatorial coordinates (J2000) with
respect to the null-hypothesis of no observed clustering.
In the northern sky, the most significant position was

at α = 32.2◦, δ = 62.1◦ at an accuracy of 0.35◦ (0.5◦)
for 1σ (90%) contours using Wilks’ theorem with two
degrees of freedom. The best fit parameters at the lo-
cation are n̂S = 32.6 and γ̂ = 2.8, yielding a pre-trial
p-value of 1.82 × 10−6. Looking at each of the com-
bined seasons individually reveals that for each season
clustering is observed, providing no indication of time-
dependence that could suggest additional evidence for
an astrophysical origin.
In the southern sky, the most significant point is at

α = 174.6◦, δ = −39.3◦. The best fit point is at n̂S =
15.4, with spectral index γ̂ = 2.9. The uncertainty of
the location amounts to 0.22◦ (0.32◦) for 1σ (90%). The
pre-trial p-value is 0.93× 10−6; most of the significance
at this location is shared by the newly added data of
through-going and starting tracks. Indeed, one starting
track is within 0.9◦ distance to the location which is
wihtin 1σ of its reconstruction uncertainty.

• No significant time-independent 
point sources emission in all-sky 
search. 

• No significant time-independent 
emission from known Galactic and 
extragalactic high-energy sources.

[Aartsen et al., Astrophys.J. 835 (2017) no.2, 151]
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with complementary field of views.
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Figure 10: Sensitivity, defined as the median upper limit at 90% confidence level (left), and
discovery flux at 5� (right) for sources with a generic, unbroken neutrino flux proportional
to E�2, as a function of the source declination. An observation time of 6 years is assumed.
For comparison, the corresponding IceCube [69] and ANTARES [66] results are also shown.
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istry of Higher Education, Scientific Research and Professional Training, Mo-
rocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO),
the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758);
National Authority for Scientific Research (ANCS), Romania; Plan Estatal
de Investigación (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)),
Severo Ochoa Centre of Excellence program (MINECO), Red Consolider
MultiDark, (ref. FPA2017-90566-REDC, MINECO) and Prometeo and Grisoĺıa
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IceCube issues realtime neutrino alerts* to  
multi-messenger partner for rapid follow-up. 

[* high-energy muon tracks (likely astrophysical) with good angular resolution (0.5-2deg)]IceCube Alert IC-170922A

lower limit of 183 TeV, depending onlyweakly on
the assumed astrophysical energy spectrum (25).
The vast majority of neutrinos detected by

IceCube arise from cosmic-ray interactions within
Earth’s atmosphere. Although atmospheric neu-
trinos are dominant at energies below 100 TeV,
their spectrum falls steeply with energy, allowing
astrophysical neutrinos to be more easily identi-
fied at higher energies. The muon-neutrino as-

trophysical spectrum, together with simulated
data, was used to calculate the probability that a
neutrino at the observed track energy and zenith
angle in IceCube is of astrophysical origin. This
probability, the so-called signalness of the event
(14), was reported to be 56.5% (17). Although
IceCube can robustly identify astrophysical neu-
trinos at PeV energies, for individual neutrinos
at several hundred TeV, an atmospheric origin

cannot be excluded. Electromagnetic observations
are valuable to assess the possible association of
a single neutrino to an astrophysical source.
Following the alert, IceCube performed a

complete analysis of relevant data prior to
31 October 2017. Although no additional excess
of neutrinoswas found from the direction of TXS
0506+056 near the time of the alert, there are
indications at the 3s level of high-energy neutrino

The IceCube Collaboration et al., Science 361, eaat1378 (2018) 13 July 2018 2 of 8

Fig. 1. Event display for
neutrino event IceCube-
170922A. The time at which a
DOM observed a signal is
reflected in the color of the hit,
with dark blues for earliest hits
and yellow for latest. Times
shown are relative to the first
DOM hit according to the track
reconstruction, and earlier and
later times are shown with the
same colors as the first and
last times, respectively. The
total time the event took to
cross the detector is ~3000 ns.
The size of a colored sphere is
proportional to the logarithm
of the amount of light
observed at the DOM, with
larger spheres corresponding
to larger signals. The total
charge recorded is ~5800 photoelectrons. Inset is an overhead perspective view of the event. The best-fitting track direction is shown as an arrow,

consistent with a zenith angle 5:7þ0:50
"0:30 degrees below the horizon.

Fig. 2. Fermi-LATand MAGIC observations of IceCube-170922A’s
location. Sky position of IceCube-170922A in J2000 equatorial coordinates
overlaying the g-ray counts from Fermi-LAT above 1 GeV (A) and the signal
significance as observed by MAGIC (B) in this region. The tan square
indicates the position reported in the initial alert, and the green square
indicates the final best-fitting position from follow-up reconstructions (18).
Gray and red curves show the 50% and 90% neutrino containment regions,
respectively, including statistical and systematic errors. Fermi-LATdata are
shown as a photon counts map in 9.5 years of data in units of counts per

pixel, using detected photons with energy of 1 to 300 GeV in a 2° by 2°
region around TXS0506+056. The map has a pixel size of 0.02° and was
smoothed with a 0.02°-wide Gaussian kernel. MAGIC data are shown as
signal significance for g-rays above 90 GeV. Also shown are the locations of
a g-ray source observed by Fermi-LAT as given in the Fermi-LAT Third
Source Catalog (3FGL) (23) and the Third Catalog of Hard Fermi-LAT
Sources (3FHL) (24) source catalogs, including the identified positionally
coincident 3FGL object TXS 0506+056. For Fermi-LAT catalog objects,
marker sizes indicate the 95% CL positional uncertainty of the source.
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IceCube EHE (“extremely-high energy”) alert IC-170922A
Up-going muon track (5.7� below horizon) observed on September 22, 2017.

The best-fit neutrino energy for an E�2-spectrum is 311 TeV.
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up-going muon track (5.7o below horizon) observed September 22, 2017 
best-fit neutrino energy is about 300 TeV

IC-170922A 
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• IC-170922A observed in coincident with flaring blazar TXS 0506+056. 

• Chance correlation can be rejected at the 3𝜎-level. 

• TXS 0506+056 is among the most luminous BL Lac objects in gamma-rays.

First Multi-Messenger Blazar: TXS 0506+056

RESEARCH ARTICLE SUMMARY
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NEUTRINO ASTROPHYSICS

Multimessenger observations of a
flaring blazar coincident with
high-energy neutrino IceCube-170922A
The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S.,
INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR,
VERITAS, and VLA/17B-403 teams*†

INTRODUCTION: Neutrinos are tracers of
cosmic-ray acceleration: electrically neutral
and traveling at nearly the speed of light, they
can escape the densest environments andmay
be traced back to their source of origin. High-
energy neutrinos are expected to be produced
in blazars: intense extragalactic radio, optical,
x-ray, and, in somecases, g-ray sources
characterized by relativistic jets of
plasma pointing close to our line of
sight. Blazars are among the most
powerful objects in the Universe and
are widely speculated to be sources
of high-energy cosmic rays. These cos-
mic rays generate high-energy neutri-
nos and g-rays, which are produced
when the cosmic rays accelerated in
the jet interact with nearby gas or
photons. On 22 September 2017, the
cubic-kilometer IceCube Neutrino
Observatory detected a ~290-TeV
neutrino from a direction consistent
with the flaring g-ray blazar TXS
0506+056. We report the details of
this observation and the results of a
multiwavelength follow-up campaign.

RATIONALE:Multimessenger astron-
omy aims for globally coordinated
observations of cosmic rays, neutri-
nos, gravitational waves, and electro-
magnetic radiation across a broad
range of wavelengths. The combi-
nation is expected to yield crucial
information on the mechanisms
energizing the most powerful astro-
physical sources. That the produc-
tion of neutrinos is accompanied by
electromagnetic radiation from the
source favors the chances of a multi-
wavelength identification. In par-
ticular, a measured association of
high-energy neutrinos with a flaring
source of g-rays would elucidate the
mechanisms and conditions for ac-
celeration of the highest-energy cos-

mic rays. The discovery of an extraterrestrial
diffuse flux of high-energy neutrinos, announced
by IceCube in 2013, has characteristic prop-
erties that hint at contributions from extra-
galactic sources, although the individual sources
remain as yet unidentified. Continuously mon-
itoring the entire sky for astrophysical neu-

trinos, IceCube provides real-time triggers for
observatories around the world measuring
g-rays, x-rays, optical, radio, and gravitational
waves, allowing for the potential identification
of even rapidly fading sources.

RESULTS: A high-energy neutrino-induced
muon trackwas detected on22 September 2017,
automatically generating an alert that was

distributed worldwide
within 1 min of detection
and prompted follow-up
searchesby telescopesover
a broad range of wave-
lengths. On 28 September
2017, theFermiLargeArea

Telescope Collaboration reported that the di-
rection of the neutrino was coincident with a
cataloged g-ray source, 0.1° from the neutrino
direction. The source, a blazar known as TXS
0506+056 at a measured redshift of 0.34, was
in a flaring state at the time with enhanced
g-ray activity in the GeV range. Follow-up ob-
servations by imaging atmospheric Cherenkov
telescopes, notably the Major Atmospheric

Gamma ImagingCherenkov (MAGIC)
telescopes, revealed periods where
the detected g-ray flux from the blazar
reached energies up to 400GeV.Mea-
surements of the source have also
been completed at x-ray, optical, and
radio wavelengths. We have inves-
tigated models associating neutrino
and g-ray production and find that
correlation of the neutrino with the
flare of TXS 0506+056 is statistically
significant at the level of 3 standard
deviations (sigma). On the basis of the
redshift of TXS 0506+056, we derive
constraints for the muon-neutrino
luminosity for this source and find
them to be similar to the luminosity
observed in g-rays.

CONCLUSION: The energies of the
g-rays and the neutrino indicate that
blazar jetsmay accelerate cosmic rays
to at least several PeV. The observed
association of a high-energy neutrino
with a blazar during a period of en-
hanced g-ray emission suggests that
blazarsmay indeed be one of the long-
sought sources of very-high-energy
cosmic rays, andhence responsible for
a sizable fraction of the cosmic neu-
trino flux observed by IceCube.▪
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Multimessenger observations of blazar TXS 0506+056.The
50% and 90% containment regions for the neutrino IceCube-
170922A (dashed red and solid gray contours, respectively),
overlain on a V-band optical image of the sky. Gamma-ray sources
in this region previously detected with the Fermi spacecraft are
shown as blue circles, with sizes representing their 95% positional
uncertainty and labeled with the source names. The IceCube
neutrino is coincident with the blazar TXS 0506+056, whose
optical position is shown by the pink square. The yellow circle
shows the 95% positional uncertainty of very-high-energy g-rays
detected by the MAGIC telescopes during the follow-up campaign.
The inset shows a magnified view of the region around TXS 0506+056
on an R-band optical image of the sky. IM
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NEUTRINO ASTROPHYSICS

Neutrino emission from the direction
of the blazar TXS 0506+056 prior to
the IceCube-170922A alert
IceCube Collaboration*†

A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in
direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by
this association, we investigated 9.5 years of IceCube neutrino observations to search for
excess emission at the position of the blazar. We found an excess of high-energy neutrino
events, with respect to atmospheric backgrounds, at that position between September 2014
and March 2015. Allowing for time-variable flux, this constitutes 3.5s evidence for neutrino
emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring
episode. This suggests that blazars are identifiable sources of the high-energy astrophysical
neutrino flux.

T
he origin of the highest-energy cosmic rays
is believed to be extragalactic (1), but their
acceleration sites remain unidentified. High-
energy neutrinos are expected to be pro-
duced in or near the acceleration sites when

cosmic rays interact with matter and ambient
light, producing charged mesons that decay into
neutrinos and other particles. Unlike cosmic rays,
neutrinos can travel through the Universe un-
impeded by interactions with other particles and
undeflected bymagnetic fields, providing ameans
to identify and study the extreme environments
producing cosmic rays (2). Blazars, a class of active
galactic nuclei with powerful relativistic jets
pointed close to our line of sight (3), are prom-
inent candidate sources of such high-energy
neutrino emission (4–9). The electromagnetic
emission of blazars is observed to be highly var-
iable on time scales from minutes to years (10).
The IceCube Neutrino Observatory (11) is a

high-energy neutrino detector occupying an in-
strumented volume of 1 km3within the Antarctic
ice sheet at the Amundsen-Scott South Pole Sta-
tion. The detector consists of an array of 86
vertical strings, nominally spaced 125 m apart
and descending to a depth of approximately
2450m in the ice. The bottom 1 km of each string
is equipped with 60 optical sensors that record
Cherenkov light emitted by relativistic charged
particles passing through the optically transpar-
ent ice. When high-energy muon neutrinos in-
teract with the ice, they can create relativistic
muons that travel many kilometers, creating a
track-like series of Cherenkov photons recorded
when they pass through the array. This allows the
reconstruction of the original neutrino direction

with a median angular uncertainty of 0.5° for a
neutrino energy of ~30 TeV (or 0.3° at 1 PeV)
(12, 13).
IceCube discovered the existence of a diffuse

flux of high-energy astrophysical neutrinos in
2013 (14, 15). Measurements of the energy spec-
trum have since been refined (16, 17), indicating
that the neutrino spectrum extends above several
PeV. However, analyses of neutrino observations
have not succeeded in identifying individual
sources of high-energy neutrinos (12, 18). This
suggests that the sources are distributed across
the sky and that even the brightest individual
sources contribute only a small fraction of the
total observed flux.
Recently, the detection of a high-energy neutri-

no by IceCube, together with observations in
gamma rays and at other wavelengths, indicates
that a blazar, TXS0506+056, located at right ascen-
sion (RA) 77.3582° anddeclination (Dec) +5.69314°
(J2000 equinox) (19) may be an individually iden-
tifiable source of high-energy neutrinos (20). The
neutrino-candidate event, IceCube-170922A, was
detected on 22 September 2017, selected by the
Extremely High Energy (EHE) online event filter
(21), and reported as a public alert (22). EHE
alerts are currently sent at a rate of about four
per year, and are based on well-reconstructed,
high-energy muon-track events. The selection
threshold is set so that approximately half of
the events are estimated to be astrophysical neu-
trinos, the rest being atmospheric background
events. After the alert was sent, further studies
refined the directional reconstruction, with best-
fitting coordinates of RA 77:43þ0:95

"0:65 and Dec
þ5:72þ0:50

"0:30 (degrees, J2000, 90% containment
region). The most probable neutrino energy was
estimated to be 290 TeV, with a 90% confidence
level lower limit of 183 TeV (20).
It was soon determined that the direction of

IceCube-170922A was consistent with the loca-

tion of TXS 0506+056 and coincident with a
state of enhanced gamma-ray activity observed
since April 2017 (23) by the Large Area Telescope
(LAT) on the Fermi Gamma-ray Space Telescope
(24). Follow-up observations of the blazar led to
the detection of gamma rays with energies up to
400 GeV by the Major Atmospheric Gamma
Imaging Cherenkov (MAGIC) Telescopes (25, 26).
IceCube-170922A and the electromagnetic obser-
vations are described in detail in (20). The sig-
nificance of the spatial and temporal coincidence
of the high-energy neutrino and the blazar flare
is estimated to be at the 3s level (20). On the
basis of this result, we consider the hypothesis
that the blazar TXS 0506+056 has been a source
of high-energy neutrinos beyond that single event.

Searching for neutrino emission

IceCube monitors the whole sky and has main-
tained essentially continuous observations since
5 April 2008. Searches for neutrino point sources
using two model-independent methods, a time-
integrated and a time-dependent unbinned max-
imum likelihood analysis, have previously been
published for the data collected between 2008
and 2015 (12, 18, 27). Here, we analyze the same
7-year data sample supplemented with additional
data collected from May 2015 until October 2017
(21). The data span 9.5 years and consist of six
distinct periods, corresponding to changing detec-
tor configurations, data-taking conditions, and
improved event selections (Table 1).
The northern sky, where TXS 0506+056 is

located, is observed through Earth by IceCube.
Approximately 70,000 neutrino-induced muon
tracks are recorded each year from this hemi-
sphere of the sky after passing the final event
selection criteria. Fewer than 1% of these events
originate from astrophysical neutrinos; the vast
majority are background events caused by neu-
trinos ofmedian energy ~1 TeV created in cosmic
ray interactions in the atmosphere over other
locations on Earth. However, for an astrophysical
muon-neutrino flux where the differential num-
ber of neutrinos with energy E scales as dN/dE ~
E–2, the distribution of muon energies is different
than for the background atmospheric neutrino
flux, which scales as ~E–3.7 (17). This allows for
further discriminating power in point source
searches besides directional-only excesses.
A high-significance point source detection

(12, 18) can require as few as two or three, or as
many as 30, signal events to stand out from the
background, depending on the energy spectrum
and the clustering of events in time. To search
for a neutrino signal at the coordinates of TXS
0506+056, we apply the standard time-integrated
analysis (28) and time-dependent analysis (29)
that have been used in past searches (12, 18, 27).
The time-integrated analysis uses an unbinned
maximum likelihood ratio method to search for
an excess number of events consistent with a
point source at a specified location, given the
angular distance and angular uncertainty of each
event. Energy information is included in the def-
inition of the likelihood, assuming a power-law
energy spectrum E–g , with the spectral index g
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• Independent 3.5𝜎 evidence for 
a neutrino flare (13±5 events) 
in 2014/15. 

• Neutrino luminosity over 158 
days is about four times that of 
gamma-rays (Fermi-LAT).

as a fitted parameter. Themodel parameters are
correlated and are expressed as a pair, (F100, g),
where F100 is the flux normalization at 100 TeV.
The time-dependent analysis uses the same for-
mulation of the likelihood but searches for
clustering in time aswell as space by introducing
an additional time profile. It is performed sep-
arately for two different generic profile shapes: a
Gaussian-shaped timewindow and a box-shaped
time window. Each analysis varies the central
time of the window, T0, and the duration TW
(from seconds to years) of the potential signal to
find the four parameters (F100, g, T0, TW) that
maximize the likelihood ratio, which is defined
as the test statistic TS. (For the Gaussian time
window, TW represents twice the standard de-
viation.) The test statistic includes a factor that
corrects for the look-elsewhere effect arising
from all of the possible time windows that could
be chosen (30).
For each analysis method (time-integrated and

time-dependent), a robust significance estimate is
obtained by performing the identical analysis on
trialswith randomizeddatasets. These areproduced
by randomizing the event times and recalculating

theRAcoordinateswithin eachdata-takingperiod.
The resultant P value is defined as the fraction of
randomized trials yieldinga valueofTSgreater than
or equal to the one obtained for the actual data.
Because the detector configuration and event

selections changed as shown in Table 1, the time-
dependent analysis is performed by operating on
each data-taking period separately. (A flare that
spans a boundary between two periods could be
partially detected in either period, but with re-
duced significance.) An additional look-elsewhere
correction then needs to be applied for a result in
an individual data segment, given by the ratio of
the total 9.5-year observation time to the obser-
vation time of that data segment (30).

Neutrinos from the direction of
TXS 0506+056

The results of the time-dependent analysis per-
formed at the coordinates of TXS 0506+056 are
shown in Fig. 1 for each of the six data periods.
One of the data periods, IC86b from2012 to 2015,
contains a significant excess, which is identified
by both time-window shapes. The excess consists
of 13 ± 5 events above the expectation from the
atmospheric background. The significancedepends
on the energies of the events, their proximity to
the coordinates of TXS 0506+056, and their
clustering in time. This is illustrated in Fig. 2,
which shows the time-independent weight of
individual events in the likelihood analysis during
the IC86b data period.
The Gaussian time window is centered at 13

December 2014 [modified Julianday (MJD) 57004]
with an uncertainty of ±21 days and a duration
TW = 110þ35

"24 days. The best-fitting parameters for
the fluence J100 = ∫F100(t)dtand the spectral
index are givenbyE2J100=2:1þ0:9

"0:7 # 10"4 TeVcm–2

at 100 TeV and g = 2.1 ± 0.2, respectively. The
joint uncertainty on these parameters is shown
in Fig. 3 along with a skymap showing the result
of the time-dependent analysis performed at the
location of TXS 0506+056 and in its vicinity
during the IC86b data period.
The box-shaped time window is centered

13 days later with duration TW = 158 days (from
MJD 56937.81 to MJD 57096.21, inclusive of

contributing events at boundary times). For the
box-shaped time window, the uncertainties are
discontinuous and not well defined, but the un-
certainties for the Gaussian window show that it
is consistent with the box-shaped time window
fit. Despite the different window shapes, which
lead to different weightings of the events as a
function of time, bothwindows identify the same
time interval as significant. For the box-shaped
time window, the best-fitting parameters are sim-
ilar to those of the Gaussianwindow, with fluence
at 100 TeV and spectral index given by E2J100 =
2:2þ1:0

"0:8 # 10"4 TeV cm–2 and g = 2.2 ± 0.2. This
fluence corresponds to an average flux over
158 days of F100 = 1:6þ0:7

"0:6 # 10"15 TeV–1 cm–2 s–1.
Whenwe estimate the significance of the time-

dependent result by performing the analysis at
the coordinates of TXS 0506+056 on randomized
datasets, we allow in each trial a new fit for all
the parameters: F100, g, T0, TW. We find that the
fraction of randomized trials that result in a more
significant excess than the real data is 7 × 10–5 for
the box-shaped time window and 3 × 10–5 for the
Gaussian time window. This fraction, once cor-
rected for the ratio of the total observation time
to the IC86b observation time (9.5 years/3 years),
results in P values of 2 × 10–4 and 10–4, respec-
tively, corresponding to 3.5s and 3.7s. Because
there is no a priori reason to prefer one of the
generic timewindows over the other, we take the
more significant one and include a trial factor of
2 for the final significance, which is then 3.5s.
Outside the 2012–2015 time period, the next

most significant excess is found using the Gauss-
ian window in 2017 and includes the IceCube-
170922A event. This time window is centered
at 22 September 2017 with duration TW = 19 days,
g = 1.7 ± 0.6, and fluence E2J100 = 0:2þ0:4

"0:2 # 10"4

TeV cm–2 at 100 TeV. No other event besides the
IceCube-170922A event contributes significantly
to the best fit. As a consequence, the uncertainty
on the best-fitting window location and width
spans the entire IC86c period, because any win-
dow containing IceCube-170922A yields a similar
value of the test statistic. Following the trial cor-
rectionprocedure for different observationperiods
as described above, the significance of this excess
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Table 1. IceCube neutrino data samples.
Six data-taking periods make up the full
9.5-year data sample. Sample numbers
correspond to the number of detector
strings that were operational. During the
first three periods, the detector was still
under construction. The last three periods
correspond to different data-taking
conditions and/or event selections with the
full 86-string detector.

Sample Start End

IC40 5 April 2008 20 May 2009
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC59 20 May 2009 31 May 2010
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC79 31 May 2010 13 May 2011
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC86a 13 May 2011 16 May 2012
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC86b 16 May 2012 18 May 2015
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC86c 18 May 2015 31 October 2017
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

Fig. 1. Time-dependent analysis results. The orange curve corresponds
to the analysis using the Gaussian-shaped time profile. The central time T0

and width TW are plotted for the most significant excess found in each
period, with the P value of that result indicated by the height of the peak.
The blue curve corresponds to the analysis using the box-shaped time
profile. The curve traces the outer edge of the superposition of the best-

fitting time windows (durations TW) over all times T0, with the height
indicating the significance of that window. In each period, the most
significant time window forms a plateau, shaded in blue. The large blue
band centered near 2015 represents the best-fitting 158-day time window
found using the box-shaped time profile. The vertical dotted line in IC86c
indicates the time of the IceCube-170922A event.
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is 1.4s. If the IceCube-170922A event is removed,
no excess remains during this time period. This
agrees with the result of the rapid-response anal-
ysis (31) that is part of the IceCube alert program,
which found no other potential astrophysical
neutrinos from the same region of the sky during
±7 days centered on the time of IceCube-170922A.
We performed a time-integrated analysis at

the coordinates of TXS 0506+056 using the full
9.5-year data sample. The best-fitting parameters
for the flux normalization and the spectral index
areF100 = 0:8þ0:5

"0:4 # 10"16 TeV–1 cm–2 s–1 and g =
2.0 ± 0.3, respectively. The joint uncertainty on
these parameters is shown in Fig. 4A. The P value,
based on repeating the analysis at the same co-
ordinates with randomized datasets, is 0.002%
(4.1s), but this is an a posteriori significance
estimate because it includes the IceCube-170922A
event, whichmotivated performing the analysis at
the coordinates of TXS 0506+056. An unbiased

significance estimate including the event would
need to take into account the look-elsewhere effect
related to all other possible directions in the sky
that could be analyzed. It is expected that there
will be two or three directions somewhere in the
northern sky with this significance or greater,
resulting from the chance alignment of neutri-
nos (12). Here, we are interested in determining
whether there is evidence of time-integrated neu-
trino emission from TXS 0506+056 besides the
IceCube-170922A event.
If we remove the final data period IC86c, which

contains the event, and perform the analysis
again using only the first 7 years of data, we find
best-fitting parameters that are nearly unchanged:
F100 =0:9þ0:6

"0:5 # 10"16 TeV–1 cm–2 s–1 and g = 2.1 ±
0.3, respectively. The joint uncertainty on these
parameters is shown in Fig. 4B. The P value, using
only the first 7 years of data, is 1.6% (2.1s), based
on repeating the analysis at the same coordinates

with randomized datasets. These results indicate
that the time-integrated fit is dominated by the
same excess as found in the time-dependent
analysis above, having similar values for the
spectral index and total fluence (E2J100 = 2.0 ×
10–4 TeV cm–2 at 100 TeV over the 7-year period).
This excess is not significant in the time-integrated
analysis because of the additional background
during the rest of the 7-year period.

Blazars as neutrino sources

The signal identified during the 5-month period
in 2014–2015 consists of an estimated 13 ± 5
muon-neutrino events that are present in addi-
tion to the expected background. The analysis is
unbinned, but the mean background at the dec-
lination of TXS 0506+056 is useful for compar-
ison purposes; it is 5.8 events in a search bin of
radius 1° during a 158-day time window. (We use
the duration of the box-shaped time window re-
sult for convenience to calculate averages during
the flare.) The significance of the excess is due to
both the number of events and their energy
distribution, with higher-energy events increasing
the significance and leading to the best-fitting
spectral index of 2.1, in contrast to the lower-
energy atmospheric neutrino background with
spectral index ~3.7. At this declination in the sky,
the 68% central energy range inwhich IceCube is
most sensitive to point sources with E–2.1 spectra
is between 32 TeV and 3.6 PeV. Assuming that
the muon-neutrino fluence (E2J100 = 2:1þ1:0

"0:7#
10"4 TeV cm–2) is one-third of the total neu-
trino fluence, then the all-flavor neutrino energy
fluence is 4:2þ2:0

"1:4 # 10"3 erg cm–2 over this
energy range. With the recent measurement (32)
of the redshift of TXS 0506+056 as z = 0.3365 ±
0.0010, this energy fluence implies that the iso-
tropic neutrino luminosity is 1:2þ0:6

"0:4 # 1047 erg s–1

averaged over 158 days. This is higher than the
isotropic gamma-ray luminosity during the same
period, which is similar to the long-term luminosity
between 0.1 GeV and 100 GeV of 0.28 × 1047 erg
s–1 averaged over all Fermi-LAT observations of
TXS 0506+056 (20). Gamma rays are expected to
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Fig. 2. Time-independent weight of individual events during the IC86b period. Each vertical line
represents an event observed at the time indicated by calendar year (top) or MJD (bottom).
Overlapping lines are shifted by 1 to 2 days for visibility. The height of each line indicates the event
weight: the product of the event’s spatial term and energy term in the unbinned likelihood analysis
evaluated at the location of TXS 0506+056 and assuming the best-fitting spectral index g = 2.1
(30).The color for each event indicates an approximate value in units of TeVof the reconstructed muon
energy (muon energy proxy), which the analysis compares with expected muon energy distributions
under different hypotheses. [A distribution for the true neutrino energy of a single event can also
be inferred from the event’s muon energy (30).] The dashed curve and the solid bracket indicate the
best-fitting Gaussian and box-shaped time windows, respectively. The distribution of event weights
and times outside of the best-fitting time windows is compatible with background.

Fig. 3. Time-dependent analy-
sis results for the IC86b data
period (2012–2015).
(A) Change in test statistic,
DTS, as a function of the spectral
index parameter g and the fluence
at 100 TeV given by E2J100. The
analysis is performed at the
coordinates of TXS 0506+056,
using the Gaussian-shaped time
window and holding the time
parameters fixed (T0 = 13
December 2014, TW = 110 days).
The white dot indicates the best-
fitting values. The contours at
68% and 95% confidence level
assuming Wilks’ theorem (36) are
shown in order to indicate the statistical uncertainty on the parameter
estimates. Systematic uncertainties are not included. (B) Skymap showing
the P value of the time-dependent analysis performed at the coordinates of
TXS 0506+056 (cross) and at surrounding locations.The analysis is

performed on the IC86b data period, using the Gaussian-shaped time window.
At each point, the full fit for (F, g, T0, TW) is performed.The P value shown
does not include the look-elsewhere effect related to other data periods. An
excess of events is detected, consistent with the position of TXS 0506+056.
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Are Blazars the only Sources?

[Ackermann, MA, Anchordoqui, Bustamante et al., arXiv:1903.04333]
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Rare sources, like blazars or gamma-ray bursts, can not be the 
dominant sources of TeV-PeV neutrino emission (magenta band). 

blazar GRB
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Outlook: IceCube Upgrade
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The IceCube Upgrade - Science

9

Precision atmospheric oscillation measurements

Similar physics program to DeepCore, just better! 
• Oscillations, non-standard interactions, sterile neutrinos, dark matter…

Projected sensitivities do not include reduced ice/OM systematics

O
PE

R
A

 (6
8%

) a
rx

iv
:1

80
4.

04
91

2

• 7 new strings in the DeepCore 
region (~20m inter-string spacing) 
with improved optical modules. 

• New calibration devices, 
incorporating lessons from a decade 
of IceCube calibration efforts. 

• Precision measurement of 
atmospheric neutrino oscillation. 

• Midscale NSF project with an 
estimated total cost of $23M. 

• Additional $9M in capital 
equipment alone from partners 

• Aim: deployment in 2022/23 
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Vision: IceCube-Gen2

22
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IceCube-Gen2
High energy 
• Find (more) neutrino point sources 

• Characterise spectrum, flux, and 
flavour composition of astrophysical 
neutrinos with higher precision 

• GZK neutrinos 

• Continue search for BSM physics

Low energy 
• Precision measurements of 

atmospheric neutrino oscillations: 
     νµ→ντ   
     Neutrino mass ordering 

• Characterise atmospheric flux 
(hadronic interactions) 

• Also continue search for BSM physics

A vision for the future of neutrino astroparticle physics at the South Pole

• Multi-component facility (low- and high-energy & multi-messenger). 

• In-ice high-energy Cherenkov array with 6-10 km3 volume. 

• Under investigation: Surface arrays for in-ice radio (Askaryan) and 
cosmic ray veto (air Cherenkov and/or scintillator panels).

IceCube

DeepCore 
PINGU

High-Energy Array

| IceCube Upgrade and Gen2 | Summer Blot | TeVPA 2018 11

IceCube-Gen2
High energy facility

Surface array

High Energy 
Array

Radio array

In-Ice High Energy Array (HEA) 
• 120 strings with ~240 m spacing and 80 OMs each 
• 6.2 - 9.5 km3 instrumented volume (not yet fixed) 
Surface array 
• Under investigation: Air Cherenkov Telescope (IceAct) vs scintillator panels 
• Prototypes of both systems deployed and operating at the South Pole

PoS (ICRC2017) 991

[Aartsen et al., Proceedings of ICRC 2017]

Surface Array

| IceCube Upgrade and Gen2 | Summer Blot | TeVPA 2018 32

High Energy Array 
Precise measurement of diffuse flux

PoS (ICRC2017) 991
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Summary

23

• The future of high-energy neutrino astronomy is bright: 

• Diffuse TeV-PeV neutrino flux of unknown origin. 

• Intensity comparable to cosmic-ray and gamma-ray observations. 

• First compelling evidence of neutrino emission from blazars. 

• With next-generation telescopes we will go from discovery to astronomy! 

• Many more avenues:  
supernova neutrinos, GZK neutrinos, BSM physics, sterile neutrinos,   
dark matter indirect signals, cosmic rays (spectrum & anisotropy), …

Thank you for your attention!
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IT IS AN ICE HADRONIC SHOWER OF ~6 PEV

19

Resimulation shows good data-MC agreement on time-delays 
if assuming hadronic cascades with leading muon ~40 GeV 

Astrophysical Flavour Studies

25

early muons from 
hadronic cascade

Glashow  
resonance  
candidate

fit of flavor 
composition

tau neutrino 
 candidate

two distinct energy 
depositions seen

>60TeV

MOTIVATION TO DEVELOP NEW TECHNIQUES 
A gift from nature – Glashow resonance at 6.3 PeV

E= M2
W /(2me) = 6.3 PeV

A boost of cross-section by a factor of 300!

At ~68% in hadronic cascade channel 

10

6.3 PeV

energy 
reconstruction
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IceCube-Gen2 Timeline
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| IceCube Upgrade and Gen2 | Summer Blot | TeVPA 2018 16

The IceCube-Gen2 Facility
Preliminary timeline

MeV- to EeV-scale physics

Surface array

High Energy 
Array

Radio array

PINGU

IC86

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 … 2032

Today
Surface air shower

ConstructionR&D Design & Approval

IceCube Upgrade

IceCube Upgrade

Deployment

| IceCube Upgrade and Gen2 | Summer Blot | TeVPA 2018 10

IceCube-Gen2
High energy 
• Find (more) neutrino point sources 

• Characterise spectrum, flux, and 
flavour composition of astrophysical 
neutrinos with higher precision 

• GZK neutrinos 

• Continue search for BSM physics

Low energy 
• Precision measurements of 

atmospheric neutrino oscillations: 
     νµ→ντ   
     Neutrino mass ordering 

• Characterise atmospheric flux 
(hadronic interactions) 

• Also continue search for BSM physics

A vision for the future of neutrino astroparticle physics at the South Pole

IceCube

DeepCore 
PINGU

High-Energy Array

Surface Array Radio Array
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neutrinos. Deviations from the Standard Model cross sec-
tion sSM were fitted by the ratio R = snN/sSM. The anal-
ysis assumes priors on the atmospheric and astrophysical
neutrino flux based on the baseline models in Refs. [94,
30,24]. In practice, the likelihood maximisation uses the
product of the flux and the cross section, keeping the ob-
served number of events as a fixed quantity. Thus, trials
with higher cross sections must assume lower fluxes (or
vice-versa) in order to preserve the total number of events.
The procedure is thus sensitive to neutrino absorption in
the Earth alone, and not to the total number of observed
events. Since the astrophysical flux is still not known to a
high precision, the uncertainties in the normalisation and
spectral index were included as nuisance parameters in
the analysis. Other systematics considered are the Earth
density and core radius as obtained from the Preliminary
Earth Model [95], the effects of temperature variations in
the atmosphere, which impact the neutrino flux during
the year, and detector systematics.

The analysis results in a value of R = 1.30+0.21
�0.19(stat)

+0.39
�0.43(sys). This is compatible with the Standard Model
prediction (R = 1) within uncertainties but, most impor-
tantly, it is the first measurement of the neutrino-nucleon
cross section at an energy range (few TeV to about 1 PeV)
unexplored so far with accelerator experiments [41]. This
is illustrated in Fig. 14 which shows current accelerator
measurements (within the yellow shaded area) and the
results of the IceCube analysis as the light brown shaded
area. The authors of Ref. [96] performed a similar analy-
sis based on six years of high-energy starting event data.
Their results are also consistent with perturbative QCD
predictions of the neutrino-matter cross section.

5.5 Probe of Cosmic Ray Interactions with IceCube

On a slightly different topic, but still related to the prod-
ucts of cosmic ray interactions in the atmosphere, the
high rate of atmospheric muons detected by IceCube can
be used to perform studies of hadronic interactions at
high energies and high momentum transfers. Muons are
created from the decays of pions, kaons and other heavy
hadrons. For primary energies above about 1 TeV, muons
with a high transverse momentum, pt & 2 GeV, can be
produced alongside the many particles created in the for-
ward direction, the “core” of the shower. This will show
up in IceCube as two tracks separated by a few hundred
meters: one track for the main muon bundle following
the core direction, and another track for the high-pt muon.
The muon lateral distribution in cosmic-ray interactions
depends on the composition of the primary flux and de-
tails of the hadronic interactions [97,98]. If the former
is sufficiently well known, the measurement of high-pt
muons can be used to probe hadronic processes involv-
ing nuclei and to calibrate existing Monte-Carlo codes at
energies not accessible with particle accelerators.

The lateral separation, dt, of high pt muons from the
core of the shower is given by dt = ptH/Eµ cos qzen,
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Fig. 14 Charged-current neutrino cross section as a function of
energy. Shown are results from previous accelerator measurements
(yellow shaded area, from [41]), compared with the result from
IceCube for the combined (n + n) + N charged-current cross section.
The blue and green lines represent the Standard Model expectation
for n and n respectively. The dotted red line represents the flux–
weighted average of the two cross sections, which is to be compared
with the IceCube result, the black line. The light brown shaded
area indicates the uncertainty on the IceCube measurement. Figure
from [93].

where H is the interaction height of the primary with
a zenith angle qzen. The initial muon energy Eµ is close
to that at ground level due to minimal energy losses in
the atmosphere. That is, turning the argument around,
the identification of single, laterally separated muons
at a given dt accompanying a muon bundle in IceCube
is a measurement of the transverse momentum of the
muon’s parent particle, and a handle into the physics of
the primary interaction. Given the depth of IceCube, only
muons with an energy above ⇠400 GeV at the surface
can reach the depths of the detector. This, along with
the inter-string separation of 125 m, sets the level for the
minimum pt accessible in IceCube. However, since the
exact interaction height of the primary is unknown and
varies with energy, a universal pt threshold can not be
given. For example, a 1 TeV muon produced at 50 km
height and detected at 125 m from the shower core has a
transverse momentum pt of 2.5 GeV.

Our current understanding of lateral muon produc-
tion in hadronic interactions shows an exponential be-
haviour at low pt, exp(�pt/T), typically below 2 GeV,
due to soft, non-perturbative interactions, and a power-
law behaviour at high pt values, (1 + pt/p0)�n, reflect-
ing the onset of hard processes described by perturbative
QCD. The approach traces back to the QCD inspired
”modified Hagedorn function” [99,100]. The parameters
T, p0 and n can be obtained from fits to proton-proton or
heavy ion collision data [100,101].

This is also the behaviour seen by IceCube. Fig. 15
shows the muon lateral distribution at high momenta
obtained from a selection of events reconstructed with a
two-track hypothesis in the 59-string detector [102], along
with a fit to a compound exponential plus power-law

Neutrino Physics

27

Sterile Neutrinos in IceCube
• mixing with one sterile neutrino state:

|⌫↵i =
3+1X

j=1

eU⇤
↵j|⌫ji .

• sterile neutrino with m4 = O(eV) motivated by
anomalous data of accelerator, reactor, and
radioactive source experiments:
• ⌫µ ! ⌫e & ⌫µ ! ⌫e appearance

(LSND & MiniBooNE)
• ⌫e & ⌫e disappearance

(reactor, GALLEX & SAGE)

• IceCube sensitive to 3+1 sterile neutrinos:
• energy-dependent distortions of

atmospheric neutrino disappearance by
resonant matter-enhanced oscillations

• ��CP effect : P(⌫µ ! ⌫µ) 6= P(⌫µ ! ⌫µ) [IceCube, PRL 117, 071801 (2016)]
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neutrino-nucleon 
cross section

sterile  
neutrino  
search

Inelastic Neutrino Cross Section

• number of atmospheric neutrino events at the location of IceCube scales as

N(✓, E⌫) / �SM(E⌫) exp(��SM(E⌫)X(✓)/mp)

• integrated column depth along the line of sight (n(✓)): X(✓) =

Z
d`⇢�(rIC + `n(✓))
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LETTER RESEARCH

The idea of studying neutrino absorption in the Earth dates back 
to 1974 (ref. 10), although most of the early papers on the subject 
 proposed using absorption to probe the Earth’s interior11. However, the  
density uncertainty12–15 for long paths through the Earth is only 
1%–2%; this leads to less than 1% systematic uncertainty in the 
cross-section measurement, below the total uncertainty of the 
cross-section. Early work on the subject envisioned using accelerator- 
produced  neutrinos for Earth tomography; the idea of using natural 
(astrophysical or atmospheric) neutrinos came later16,17.

Neutrino absorption increases with neutrino energy, so that for 
40-TeV neutrinos, the Earth’s diameter corresponds to one absorption 
length. By observing the change in the angular distribution of Earth-
transiting neutrinos with increasing neutrino energy, one can measure 
the increasing absorption and, from that, determine the cross-section.

This analysis uses data collected with the IceCube detector18, which 
is installed in the Antarctic ice cap at the South Pole. The data were 
acquired during 2009 and 2010, when IceCube consisted of 79 vertical 
strings19, each supporting 60 optical sensors (Digital Optical Modules, 
DOMs20). The strings are arranged in a triangular grid, with 125 m 
between strings. The sensors are deployed at 17-m vertical intervals, at 
depths between 1,450 m and 2,450 m below the surface of the ice cap. 
Six of the strings are installed at the centre of the array, with smaller 
string spacing and with their DOMs clustered between 2,100 m and 
2,450 m deep; this module is called ‘DeepCore’.

The DOMs detect Cherenkov light from the charged particles that 
are produced when neutrinos interact in the ice surrounding IceCube 
and the bedrock below. In this measurement, the 79-string detector 
recorded about 2,000 events per second. About 99.9999% of these were 
downward-going muons produced directly by cosmic-ray air showers 
above the horizon. The events were reconstructed using a series of 
algorithms of increasing accuracy and computational complexity21,22. 
At each stage of processing, a set of conditions was applied to eliminate 
background events. The final sample of 10,784 upward-going (zenith 
angle greater than 90°) events had an estimated background of less than 
0.1%. Almost all of the background consisted of mis-reconstructed 
downward-going muons.

The neutrino zenith angles were determined from the reconstructed 
muon direction. The typical angular resolution was better than 0.6°, 
including the angular difference between the neutrino and muon 
 directions. This small angular uncertainty does not affect the final result. 

The neutrino energies were much less well known than the zenith angles 
because we cannot determine how far from the detector the interaction 
occurred, so we do not know how much energy the muon lost before 
entering the detector. Therefore, this analysis used the muon energy 
as determined from the measured specific energy loss (dE/dx) of the 
muons. To improve the energy resolution, the muon tracks were divided 
into 120-m-long segments. The segments with the highest dE/dx  
values were excluded, and the truncated mean was determined from 
the remaining segments23. The removal of large stochastic losses led to 
better resolution than that obtained with the untruncated mean. The 
muon energy  values were determined to within roughly a factor of 2.

The cross-section was found by a maximum-likelihood fit, which 
compared the data, binned by zenith angle and muon energy, with a 
model that included contributions from atmospheric and astrophysical 
neutrinos. The cross-section entered the fit through the energy- and 
zenith-angle-dependent probability for the neutrinos to be absorbed 
as they pass through the Earth. This absorption probability depends on 
the nucleon density, integrated along the path of the neutrino through 
the Earth. We used the Preliminary Reference Earth Model to deter-
mine the density of the Earth12. Thanks to seismic wave studies and 
tight constraints on the total mass of the Earth, the uncertainties in the 
integrated density were lower than a few per cent.

To account for neutral-current interactions, in which neutrinos lose 
a fraction of their energy, we modelled neutrino transmission through 
the Earth at each zenith angle in two dimensions: the incident  neutrino 
energy and the neutrino energy near IceCube. The fit determined 
R =  σmeas/σSM, where σmeas is the measured cross-section and σSM is the 
standard model cross-section from ref. 3. That calculation used quark 
and gluon densities derived from the Hydrogen Epoch of Reionization 
Array (HERA) data to find the interaction cross-sections of neutrinos 
and antineutrinos with protons and neutrons, treating the Earth as an 
isoscalar target. The estimated uncertainty in the calculation was less than 
5% for the energy range covered by this analysis. Because the calcula-
tion did not include nuclear shadowing, it might overestimate the cross- 
section for heavier elements, such as the iron in the core of the Earth. 
Experiments with 2–22-GeV neutrinos interacting with iron  targets24 
and 20–300-GeV neutrinos interacting with neon25 did not observe 
nuclear shadowing, but it may be present for higher-energy neutrinos26.

The fitted charged-current and neutral-current cross-sections were 
assumed to be the same multiples of their standard model counterparts, 
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Figure 2 | Neutrino absorption in the Earth. a, Neutrino absorption is 
observed by measuring how the neutrino energy spectrum changes with 
the zenith angle. High-energy neutrinos transiting deep through the Earth 
are absorbed, whereas low-energy neutrinos are not. Neutrinos from just 
below the horizon provide a nearly absorption-free baseline at all relevant 
energies. b, Standard model prediction for the transmission probability 

of neutrinos through the Earth as a function of energy and zenith angle. 
Neutral-current interactions, which occur about 1/3 of the time, are 
included. When a neutral-current interaction occurs, a neutrino is 
replaced with one of lower energy. The horizontal white dotted line shows 
the trajectory (and zenith angle) of a neutrino that just passes through the 
core–mantle boundary.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

[IceCube, Nature 551 (2017) 596-600]
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Fig. 7 Left Panel: Event count as a function of reconstructed L/E. The expectation with no–oscillations is shown by the dashed line, while
the best fit to the data (dots) is shown as a the full line. The hatched histograms show the predicted counts given the best-fit values for each
component. suncor

n+µatm represents the uncertainty due to finite Monte Carlo statistics and the data-driven atmospheric muon background
estimate. The bottom panel shows the ratio of the data to the best fit hypothesis. Right Panel: 90% confidence contours in the sin2 q23–Dm2

32
plane compared with results of Super-Kamiokande [70], T2K [71], MINOS [72] and NOvA [73]. A normal mass ordering is assumed.
Figures from Ref. [74]

can be calculated assuming constant energy loss, and
it is proportional to the track length. The energy of the
hadronic particle cascade at the vertex is obtained by
maximising a likelihood function that takes into account
the light distribution in adjacent DOMs. The neutrino
energy is then the sum of the muon and cascade en-
ergies, En = Ecascade + Eµ. The most recent oscillation
analysis from IceCube [74] improves on the mentioned
techniques in several fronts. It is an all-sky analysis and
also incorporates some degree of particle identification
by reconstructing the events under two hypotheses: a nµ

charged-current interaction which includes a muon track,
and a particle-shower only hypothesis at the interaction
vertex. This latter hypothesis includes ne and nt charged-
current interactions, although these two flavours can not
be separately identified. The analysis achieves an energy
resolution of about 25% (30%) at ⇠20 GeV for muon-like
(cascade-like) events and a median angular resolution
of 10° (16°). Full sensitivity to lower neutrino energies,
for example to reach the next oscillation minimum at
⇠6 GeV, can only be achieved with a denser array, like
the proposed PINGU low–energy extension [76].

In order to determine the oscillation parameters, the
data is binned into a two-dimensional histogram where
each bin contains the measured number of events in the
corresponding range of reconstructed energy and arrival
direction. The expected number of events per bin depend
on the mixing angle, q23, and the mass splitting, Dm2

32,
as shown in Fig. 5. This allows to determine the mixing
angle q23 and the mass splitting Dm2

32 as the maximum
of the binned likelihood. The fit also includes the like-
lihood of the track and cascade hypotheses. Systematic
uncertainties and the effect of the Earth density profile are
included as nuisance parameters. In this analysis, a full
three-flavour oscillation scheme is used and the rest of the

oscillation parameters are kept fixed to Dm2
21 = 7.53 ⇥

10�5eV2, sin2 q12 = 3.04 ⇥ 10�1, sin2 q13 = 2.17 ⇥ 10�2

and dCP = 0. The effect of nµ disappearance due to oscil-
lations is clearly visible in the left panel of Fig. 7, which
shows the number of events as a function of the recon-
structed L/En, compared with the expected event distri-
bution, shown as a dotted magenta histogram, if oscilla-
tions were not present. The results of the best fit to the
data are shown in the right panel of Fig. 7. The best-fit
values are Dm2

32 = 2.31+0.11
�0.13 ⇥ 10�3 eV2 and sin2 2q23 =

0.51+0.07
�0.09, assuming a normal mass ordering.

The results of the two analyses mentioned above are
compatible within statistics but, more importantly, they
agree and are compatible in precision with those from
dedicated oscillation experiments.

4.2 Flavour of Astrophysical Neutrinos

The neutrino oscillation phase in equation (7) depends on
the ratio L/En of distance travelled, L, and neutrino en-
ergy, En. For astrophysical neutrinos we have to consider
ultra-long oscillation baselines L corresponding to many
oscillation periods between source and observer. The ini-
tial mixed state of neutrino flavours has to be averaged
over DL, corresponding to the size of individual neutrino
emission zones or the distribution of sources for diffuse
emission. In addition, the observation of neutrinos can
only decipher energies within an experimental energy
resolution DEn. The oscillation phase in (7) has therefore
an absolute uncertainty that is typically much larger than
p for astrophysical neutrinos. As a consequence, only the
oscillation-averaged flavour ratios can be observed.

The flavour-averaged survival and transition proba-
bility of neutrino oscillations in vacuum, can be derived
from Eq. (6) by replacing sin2 Dij ! 1/2 and sin 2Dij ! 0.

atmospheric 
neutrino 

oscillations

[Aartsen et al. PRL 120, 071801]

[Aartsen et al. PRL 117, 071801][Aartsen et al. Nature 551, 596-600]

[Aartsen et al. EPJ C77 146] spin-dependent 
DM-nucleon 
cross section
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Cherenkov Observatories

28
Darren R. Grant

Ice/water Cherenkov neutrino telescopes - global view
Antares IceCube Baikal-GVD KM3NeT/ARCA

Mediterranean South Pole Lake Baikal Mediterranean

2008–2019
fully instrumented 

since 2011
under construction 
(3 out of 8 clusters)

under construction 
(3 out of 230 DUs)

~0.01 km3  ~1 km3 ~0.4 km3 (Phase 1) 
~1km3

~0.1 km3 (Phase 1) 
~1 km3

885 OMs (10’’) 5160 OMs (10’’) 2304 OMs (10’’) 4140 OMs (31x3’’)
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cascade-like events survive. A total of 1192 events from final sample were reconstructed with
energies above 100 TeV. The multiplicity distribution of of hit OMs for these events is shown
in Figure 4 (left). Also shown are the expected event distributions from an astrophysical
flux with an E

�2.46 spectrum and the IceCube normalization, as well as the expected distri-
butions from atmospheric muons and atmospheric neutrinos. The statistics of the generated
atmospheric muon sample correspondes to 72 live days data taking.

Figure 4. Left: Multiplicity distribution of hit OMs for experimental events with reconstructed energy
Erec > 100 TeV (dots). Also shown are the distributions of events expected from astrophysical neutrinos
with an E

�2.46 spectrum and background events from atmospheric muons and neutrinos. Right: The
event observed in October 2015.

All but one experimental events have multiplicities less than 10 hit OMs and are consis-
tent with the expected number of background events from atmospheric muons. One event
with 17 hit OMs was reconstructed as downward moving cascade. For a more precise recon-
struction of cascade parameters, this event was reanalysed including hits with charges lower
1.5 ph.el.. 24 hits are consistent with a cascade hypothesis and the following cascade param-
eters: cascade energy E = 107 TeV, zenith angle ✓ = 56.6� and azimuthal angle � = 130.5� 1,
distance from the array axis ⇢ = 67.7 m. The event is shown in Figure 4 (right panel).

The search for cascades from astrophysical neutrinos has been continued with data col-
lected between April 2016 and January 2017, which corresponds to an e↵ective livetime of
182 days. A data sample of 3.3 ⇥ 108 events was selected after applying causality cuts and
the requirement of N � 3 hit OMs with hit charges �1.5 ph.el. on � 3 strings.

At the next stage of the analysis the cascade reconstruction procedure and a set of quality
cuts have been applied to data. In Table 1 the number of surviving events and the e�ciency
of applied cuts are shown. Here �2

t
- value of the minimizing function after cascade vertex

reconstruction, LA - log likelihood after energy reconstruction, ⌘ - variable which depends
on probabilities of hit OMs to be hit and non-hit OMs not to be hit. Positive values of ⌘
are expected for cascades. Hit multiplicity distributions of events after cuts from Table 1
are shown in Figure 5 (left). In the right panel of Figure 5 the hit multiplicity of events
with Esh > 10 TeV and expected distribution of background events from atmospheric muons
are shown. Finally, 57 events with reconstructed energies Esh > 10 TeV and 5 events with
Esh > 100 TeV have been selected. Four of five events with energies higher than 100 TeV
have hit multiplicities consistent with the expected distribution of background events from

1The reconstructed directional vector ~⌦(✓, �) is opposite to the direction of the cascade development axis in water
and represents the coordinates of a potential neutrino source on the celestial sphere in the array coordinate system.
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• GVD Phase 1: 8 clusters with 8 
strings expected to be completed 
by 2020/21 (~0.4 km3) 

• cluster depth: 735–1260 m 

• 3 clusters deployed 2016–18  

• final goal: 27 clusters (~1.4 km3)

Muon track reconstruction in  
BAIKAL-GVD

Grigory Safronov 
JINR (Dubna), ITEP (Moscow) 

on behalf of BAIKAL-GVD collaboration

VLVNT 2018, 2-4/10/2018, Dubna, Russia

to the baseline configuration of a GVD-cluster, which comprises 288 optical modules at-
tached at 8 strings at depths from 750 m to 1275 m. In 2017 and 2018 the second and the
third GVD-clusters were deployed, increasing the total number of operating optical modules
to 864 OMs. During Phase-1 of Baikal-GVD implementation an array consisting of eight
clusters will be deployed by 2020-2021. Since each GVD-cluster represents a multi-megaton
scale Cherenkov detector, studies of neutrinos of di↵erent origin are allowed with early stages
of construction.

2 Detector

The detector instruments the deep water of Lake Baikal with optical modules – pressure
resistant glass spheres equipped with photomultiplier tubes (PMT) Hamamatsu R7081-100
with photocathode diameter of 10” and a quantum e�ciency of ⇠35% [2]. The PMTs record
the Cherenkov radiation from secondary particles produced in interactions of high-energy
neutrinos inside or near the instrumented volume. From the arrival times of light at the
PMTs and from the amount of light, direction and energy of the incoming neutrinos are
derived. Baikal-GVD in it’s 2018 design consists of three clusters – each of them with 288
optical modules (see Figure 1). A cluster comprises eight vertical strings attached to the
lake floor: seven side strings on a radius of 60 m around a central one. Each string carries
36 OMs, arranged at depths between 735 and 1260 meters (525 m instrumented length).
The vertical spacing between the OMs along a string is 15 m. The OMs on each string
are functionally combined in 3 sections. A section comprises 12 OMs with data processing
and communication electronics and forms a detection unit (DU) of the array. All analogue
signals from the PMTs are digitized, processed in the sections and sent to shore if certain
trigger conditions (e.g. a minimum number of fired PMTs) are fulfiled [3].

Figure 1. Artist’s view of GVD-2018, compared to the Moscow television tower.

The clusters are connected to shore (⇠3.5 km distance) via a network of cables for elec-
trical power and high-bandwidth data communication. The shore station provides power,
detector control and readout, computing resources and a high-bandwidth internet connection
to the data repositories. The overall design allows for a flexible and cost-e↵ective implemen-
tation of Baikal-GVD. The large detection volume, combined with high angular and energy
resolution and moderate background conditions in the fresh lake water allows for e�cient

Darren R. Grant

Future outlook
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One high-energy cascade event 
observed in the first results of the 
2016/7 data ( 157 TeV reconstructed) 

• Project scope is cubic-km-scale detector deployed in 
Lake Baikal 

• Phase 1 (GVD-1) is 8 clusters instrumenting 0.4 km3 

• 3 clusters operational with 1-2 deployed per season 

• Final goal of 27 clusters = 1.5 km3

See talk Lukas Fajt (Baikal-GVD) Thursday (Neutrinos V)

First Baikal-GVD neutrinos!
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results: cascade 

spectrum / 
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cascade-like events survive. A total of 1192 events from final sample were reconstructed with
energies above 100 TeV. The multiplicity distribution of of hit OMs for these events is shown
in Figure 4 (left). Also shown are the expected event distributions from an astrophysical
flux with an E

�2.46 spectrum and the IceCube normalization, as well as the expected distri-
butions from atmospheric muons and atmospheric neutrinos. The statistics of the generated
atmospheric muon sample correspondes to 72 live days data taking.

Figure 4. Left: Multiplicity distribution of hit OMs for experimental events with reconstructed energy
Erec > 100 TeV (dots). Also shown are the distributions of events expected from astrophysical neutrinos
with an E

�2.46 spectrum and background events from atmospheric muons and neutrinos. Right: The
event observed in October 2015.

All but one experimental events have multiplicities less than 10 hit OMs and are consis-
tent with the expected number of background events from atmospheric muons. One event
with 17 hit OMs was reconstructed as downward moving cascade. For a more precise recon-
struction of cascade parameters, this event was reanalysed including hits with charges lower
1.5 ph.el.. 24 hits are consistent with a cascade hypothesis and the following cascade param-
eters: cascade energy E = 107 TeV, zenith angle ✓ = 56.6� and azimuthal angle � = 130.5� 1,
distance from the array axis ⇢ = 67.7 m. The event is shown in Figure 4 (right panel).

The search for cascades from astrophysical neutrinos has been continued with data col-
lected between April 2016 and January 2017, which corresponds to an e↵ective livetime of
182 days. A data sample of 3.3 ⇥ 108 events was selected after applying causality cuts and
the requirement of N � 3 hit OMs with hit charges �1.5 ph.el. on � 3 strings.

At the next stage of the analysis the cascade reconstruction procedure and a set of quality
cuts have been applied to data. In Table 1 the number of surviving events and the e�ciency
of applied cuts are shown. Here �2

t
- value of the minimizing function after cascade vertex

reconstruction, LA - log likelihood after energy reconstruction, ⌘ - variable which depends
on probabilities of hit OMs to be hit and non-hit OMs not to be hit. Positive values of ⌘
are expected for cascades. Hit multiplicity distributions of events after cuts from Table 1
are shown in Figure 5 (left). In the right panel of Figure 5 the hit multiplicity of events
with Esh > 10 TeV and expected distribution of background events from atmospheric muons
are shown. Finally, 57 events with reconstructed energies Esh > 10 TeV and 5 events with
Esh > 100 TeV have been selected. Four of five events with energies higher than 100 TeV
have hit multiplicities consistent with the expected distribution of background events from

1The reconstructed directional vector ~⌦(✓, �) is opposite to the direction of the cascade development axis in water
and represents the coordinates of a potential neutrino source on the celestial sphere in the array coordinate system.
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KM3NeT 2.0: Letter of Intent for ARCA and ORCA
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Figure 35: Significance as a function of KM3NeT/ARCA (2 building blocks) observation time for the
detection of a diffuse flux of neutrinos corresponding to the signal reported by IceCube (Eq. 3) for the cascade
channel (red line) and muon channel (black line). The black and red bands represent the uncertainties due
to the conventional and prompt component of the neutrino atmospheric flux. The blue line represents the
results of the combined analysis (see text).

�
0

IC
�5�/�0IC

[GeV�1 cm�2 s�1 sr�1] Cascades Tracks

1.2⇥ 10�8 (Eq. 3) 0.95 1.30

4.11⇥ 10�6 (Eq. 4) 0.80 1.20

4.11⇥ 10�6 (Eq. 4 without cutoff) 0.75 0.92

Table 5: Ratios between the flux normalisation needed for a 5� discovery in KM3NeT/ARCA (2 building
blocks) within 1 year with 50% probability and the different parameterisations of the IceCube flux (see text).

5� with 50% probability.
To investigate the sensitivity of these results to the assumed form of the IceCube diffuse flux, both the

cascade and track analyses were repeated for signal fluxes according to Eq. 4 both with and without the
3 PeV cutoff. In each case, the flux normalisation constant, �5�, required for a 5� discovery after 1 year
of observation time, was calculated. The results are reported in Tab. 5 in terms of their ratio to the flux
normalisation reported by IceCube, �0

IC
. Values larger (less) than unity indicate a 5� discovery time of more

(less) than 1 year. The results show that for flux assumptions with a softer spectrum and the same cut-off
the main results of our analysis do not change, and in fact a small improvement (⇡ 10%) is expected.

2.3.2 Diffuse neutrino flux from the Galactic plane

One of the most promising potential source regions of a diffuse astrophysical neutrino flux is the Galactic
Plane (GP). Neutrinos are expected to be produced in the interactions of the galactic cosmic rays with the
interstellar medium and radiation fields, with a potentially significant excess with respect to the expected
extragalactic background. The observation of diffuse TeV �-ray emission from the GP [47, 48], which is
expected to arise from the same hadronic processes that would produce high-energy neutrinos, strongly
supports this hypothesis. Also Fermi-LAT observes, after the subtraction of known point-like emitting
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• ARCA : 2 building blocks of 115 
detection units (DUs)  

• 24 DU funded (Phase-1, ~0.1 km3) 

• 3 DU deployed off the coast of Italy      
(1 DU recovered after shortage) 

• 2 DUs operated until March 2017

• Improved angular resolution for 
water Cherenkov emission. 

• 5σ discovery of diffuse flux with 
full ARCA within one year 

• Complementary field of view ideal 
for the study of point sources.

KM3NeT 2.0: Letter of Intent for ARCA and ORCA

Due to the shorter transmission distance involved in the ORCA configuration power is transferred in
Alternating Current. The power station, dimensioned for a single building block (92 KVA) is located at the
shore end of the main cable near the ’Les Sablettes’ beach. Power is transferred at 3500 VAC. The offshore
junction boxes use a AC transformer to convert this to 400 VAC for transmission along the interlink cables
to the strings. The control room is located at the Institute Michel Pacha, La Seyne-sur-Mer, and hosts the
data acquisition electronics and a commodity PC farm used for data filtering.

In December, 2014, the first main electro-optic cable was successfully deployed by Orange Marine. Once
ANTARES is decommissioned, its main electro-optic cable will be reused for ORCA. The first junction box
was connected in spring 2015.

1.3 Detection string

Figure 8: The detection string (left) and the breakout box and the fixation of the DOM on the two parallel
Dyneema R� ropes (right).

The detection strings [2] (Fig. 8) each host 18 DOMs. For KM3NeT/ARCA, each is about 700 m in
height, with DOMs spaced 36 m apart in the vertical direction, starting about 80 m from the sea floor. For
KM3NeT/ORCA, each string is 200 m in height with DOMs spaced 9 m apart in the vertical direction,
starting about 40 m from the sea floor. Each string comprises two thin (4 mm diameter) parallel Dyneema R�

ropes to which the DOMs are attached via a titanium collar. Additional spacers are added in between the
DOMs to maintain the ropes parallel. Attached to the ropes is the vertical electro-optical cable, a pressure
balanced, oil-filled, plastic tube that contains two copper wires for the power transmission (400 VDC) and 18
optical fibres for the data transmission. At each storey two power conductors and a single fibre are branched
out via the breakout box. The breakout box also contains a DC/DC converter (400 V to 12 V). The power
conductors and optical fibre enter the glass sphere via a penetrator.

Even though the string design minimises drag and itself is buoyant, additional buoyancy is introduced at
the top of the string to reduce the horizontal displacement of the top relative to the base for the case of
large sea currents.
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KM3NeT 2.0: Letter of Intent for ARCA and ORCA

Figure 4: Map of the Mediterranean Sea close to Sicily, Italy. The cable and the location of the KM3NeT-
Italy installation are indicated (left). Layout of the two ARCA building blocks (right).

Figure 5: Photograph of the CTF after deployment on the seabed (left). Photograph of two secondary
junction boxes on the boat prior to deployment (right).

The ARCA installation comprises two KM3NeT building blocks. Fig. 4 right illustrates the layout. The
power/data are transferred to/from the infrastructure via two main electro-optic cables. In addition to the
already operating cable serving the Phase-1 detector a new cable will be installed. This Phase-2 cable will
comprise 48 optical fibres. Close to the underwater installation the cable is split by means of a Branching
Unit (BU) in two branches, each one terminated with a Cable Termination Frame (CTF) (Fig. 5, left). Each
CTF is connected to secondary junction boxes, 12 for the ARCA block 1 and 16 for the ARCA block 2.
Each secondary junction box allows the connection of up to 7 KM3NeT detection strings. The underwater
connection of the strings to the junction boxes is via interlink cables running along the seabed. For the ARCA
configuration, the average horizontal spacing between detection strings is about 95 m. On-shore each main
electro-optic cable is connected to a power feeding equipment located in the shore station at Porto Palo di
Capo Passero. Power is transferred at 10 kVDC and is converted to 375 VDC at the CTF for transmission,
via the secondary junction boxes, along the interlink cables to the strings. The shore station also hosts the
data acquisition electronics and a commodity PC farm used for data filtering.

In December, 2008, the first main electro-optic cable was deployed. A CTF and two secondary junction
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HESE Alert IC-190331A
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• HESE alert on March 31, 2019 

• deposited energy: 5.3 PeV 

• brightest HESE event, so far 

• down-going muon neutrino 

• RA 337.785° +/- 2.240° 

• DEC -21.075° +/- 3.064° 

• Follow-up by Fermi-LAT / AGILE 
(gamma-ray), NuSTAR (X-ray), 
MASTER / SARA (optical)  

• No obvious EM counterpart.

Edep~5.3 PeV


