

IceCube: Neutrinos and Multi-Messenger Astronomy

VILLUM FONDEN

Markus Ahlers Annual Meeting of the DFS May 28, 2019

KØBENHAVNS UNIVERSITET

Multi-Messenger Astronomy

Acceleration of charged nuclei (**cosmic rays**) - especially in the aftermath of cataclysmic events, sometimes visible in **gravitational waves**.

Secondary **neutrinos** and **gamma-rays** from pion decays:

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad \pi^{0} \rightarrow \gamma + \gamma$$
$$\downarrow e^{+} + \nu_{e} + \nu_{\mu}$$

Markus Ahlers (NBI)

Multi-Messenger Astronomy

Unique abilities of **cosmic neutrinos**:

no deflection in magnetic fields (unlike cosmic rays)

no absorption in cosmic backgrounds (unlike gamma-rays)

smoking-gun of unknown sources of cosmic rays

coincident with photons and gravitational waves

BUT, very difficult to detect!

Markus Ahlers (NBI)

Detector Requirements

High-energy neutrino collisions with nuclei via **deep-inelastic charged and neutral current interactions.**

back-of-the-envelope ($E_{\nu} \sim 1 \text{PeV} = 10^{15} \text{ eV}$): $\frac{\mathrm{d}^2 N_{\nu}}{\mathrm{d}t \,\mathrm{d}A} \sim \frac{1}{\mathrm{cm}^2 \times 10^5 \mathrm{yr}}$ flux of neutrinos : cross section : $\sigma_{\nu N} \sim 10^{-8} \sigma_{pp} \sim 10^{-33} \text{cm}^2$ $N_N \sim N_A \times V/\mathrm{cm}^3$ targets: rate of events : $\dot{N}_{\nu} \sim N_N \times \sigma_{\nu N} \times \frac{\mathrm{d}^2 N_{\nu}}{\mathrm{d}t \,\mathrm{d}A} \sim \frac{1}{\mathrm{year}} \times \frac{V}{1 \mathrm{km}^3}$

IceCube Observatory

- Giga-ton Cherenkov telescope at the South Pole
- Collaboration of about 300 scientists at 47 intl. institution
- Digital optical modules (DOMs) attached to strings instrumenting
 1 km³ of clear glacial ice
- 7-year construction: 2004–2011
- price: 2 DKK per ton
- NBI member since 2013:
 - tau neutrino appearance
 - non-standard oscillations
 - Iow-energy transients
 - multi-messenger analyses

Detection Methods I

Selecting up-going muon tracks reduces atmospheric muon background:

Detection Methods II

- Outer layer of optical modules used as virtual veto region (gray area)
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- Cosmic neutrino events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Breakthrough in 2013

First observation of high-energy astrophysical neutrinos by IceCube!

"track event" (from ν_{μ} scattering)

"cascade event" (from all flavours)

["Breakthrough of the Year" (Physics World), Science 2013] (neutrino event signature: early to late light detection)

Markus Ahlers (NBI)

Diffuse TeV-PeV Neutrinos

• High-Energy Starting Events (HESE) (7yrs):

- bright events ($E_{
 m th}\gtrsim 30{
 m TeV}$) starting inside IceCube
- efficient removal of atmospheric backgrounds by veto layer

• Up-going muon-neutrino tracks (8yrs):

- large effective volume due to ranging in tracks
- efficient removal of atmospheric muon backgrounds by Earth-absorption

[Science 342 (2013); work in progress]

[Astrophys.J. 833 (2016); update ICRC 2017]

Diffuse TeV-PeV Neutrinos

• High-Energy Starting Events (HESE) (7yrs):

- bright events ($E_{
 m th}\gtrsim 30{
 m TeV}$) starting inside IceCube
- efficient removal of atmospheric backgrounds by veto layer

• Up-going muon-neutrino tracks (8yrs):

- large effective volume due to ranging in tracks
- efficient removal of atmospheric muon backgrounds by Earth-absorption

[Science 342 (2013); work in progress]

[Astrophys.J. 833 (2016); update ICRC 2017]

Markus Ahlers (NBI) IceCube: Neutrinos and Multi-Messenger Astronomy

Primary Cosmic Rays for PeV Neutrinos

 $1\,\mathrm{PeV}$ neutrino $\leftrightarrow\,20\text{--}30\,\mathrm{PeV}$ cosmic ray nucleon

Markus Ahlers (NBI)

Astrophysical Flavours

JBE HIGH-ENERGY DATA 13 Oscillation of neutrino flavours between source and observatory.

• initial composition: $v_e : v_\mu : v_\tau$ pion & muon decay: 1:2:0muon-damped decay: 0:1:0neutron decay: 1:0:0

Status of Neutrino Astronomy

Most energetic neutrino events (HESE 6yr (magenta) & $v_{\mu} + \overline{v}_{\mu}$ 8yr (red) + public alerts (green))

No significant steady or transient emission from known Galactic and extragalactic high-energy sources (except for one candidate).

Status of Neutrino Astronomy

Orbiting Solar Observatory (OSO-3) (Clark & Kraushaar'67)

Status of Neutrino Astronomy

Fermi-LAT gamma-ray count map

2017

Markus Ahlers (NBI) IceCube: Neutrinos and Multi-Messenger Astronomy

Search for Neutrino Sources

Search for Neutrino Sources

Markus Ahlers (NBI)

Realtime Neutrino Alerts

IceCube issues realtime neutrino alerts* to multi-messenger partner for rapid follow-up.

[* high-energy muon tracks (likely astrophysical) with good angular resolution (0.5-2deg)]

up-going muon track (5.7° below horizon) observed September 22, 2017 best-fit neutrino energy is about 300 TeV

Markus Ahlers (NBI)

TXS 0506+056

- IC-170922A observed in coincident with flaring blazar TXS 0506+056.
- Chance correlation can be rejected at the 3σ -level.
- TXS 0506+056 is among the most luminous BL Lac objects in gamma-rays.

Markus Ahlers (NBI)

Blazars as Neutrino Factories

Active galaxy powered by accretion onto a supermassive black hole with relativistic jets pointing into our line of sight.

Markus Ahlers (NBI)

Neutrino Flare in 2014/15

- Independent 3.5σ evidence for a neutrino flare (13±5 events) in 2014/15.
- Neutrino luminosity over 158 days is about **four times that of gamma-rays** (Fermi-LAT).

```
neutrino morphology of flare
```

Are Blazars the only Sources?

[Ackermann, MA, Anchordoqui, Bustamante et al., arXiv:1903.04333]

Rare sources, like blazars or gamma-ray bursts, can not be the dominant sources of TeV-PeV neutrino emission (magenta band).

Markus Ahlers (NBI) IceCube: Neutrinos and Multi-Messenger Astronomy

Outlook: IceCube Upgrade

- 7 new strings in the DeepCore region (~20m inter-string spacing) with improved optical modules.
- New calibration devices, incorporating lessons from a decade of IceCube calibration efforts.
- **Precision measurement** of atmospheric neutrino oscillation.
- Midscale NSF project with an estimated total cost of \$23M.
- Additional \$9M in capital equipment alone from partners
- Aim: deployment in 2022/23

Vision: IceCube-Gen2

- Multi-component facility (low- and high-energy & multi-messenger).
- In-ice high-energy Cherenkov array with 6-10 km³ volume.
- Under investigation: Surface arrays for in-ice radio (Askaryan) and cosmic ray veto (air Cherenkov and/or scintillator panels).

Summary

- The future of high-energy neutrino astronomy is bright:
 - Diffuse TeV-PeV neutrino flux of unknown origin.
 - Intensity comparable to cosmic-ray and gamma-ray observations.
 - First compelling evidence of neutrino emission from blazars.
- With next-generation telescopes we will go from discovery to astronomy!
- Many more avenues:

supernova neutrinos, GZK neutrinos, BSM physics, sterile neutrinos, dark matter indirect signals, cosmic rays (spectrum & anisotropy), ...

Thank you for your attention!

Backup Slides

Markus Ahlers (NBI) IceCube: Neutrinos and Multi-Messenger Astronomy

Astrophysical Flavour Studies

Markus Ahlers (NBI)

IceCube-Gen2 Timeline

Preliminary timeline

Markus Ahlers (NBI) IceCube: Neutrinos and Multi-Messenger Astronomy

Neutrino Physics

Markus Ahlers (NBI)

Cherenkov Observatories

Mediterranean	South Pole	Lake Baikal	Mediterranean
2008–2019	fully instrumented since 2011	under construction (3 out of 8 clusters)	under construction (3 out of 230 DUs)
~0.01 km ³	~1 km ³	~0.4 km ³ (Phase 1) ~1km ³	~0.1 km ³ (Phase 1) ~1 km ³
885 OMs (10'')	5160 OMs (10")	2304 OMs (10")	4140 OMs (31x3'')

Markus Ahlers (NBI)

Outlook: Baikal-GVD

present detector outline (2018) **BAIKAL-GVD**

- GVD Phase 1: 8 clusters with 8 • strings expected to be completed by 2020/21 (~0.4 km³)
- cluster depth: 735–1260 m
- 3 clusters deployed 2016–18
- final goal: 27 clusters (~1.4 km³)

Outlook: KM3NeT/ARCA

- ARCA : 2 building blocks of 115 detection units (DUs)
- 24 DU funded (**Phase-1**, ~0.1 km³)
- 3 DU deployed off the coast of Italy (1 DU recovered after shortage)
- 2 DUs operated until March 2017

- Improved angular resolution for water Cherenkov emission.
- 5**σ** discovery of **diffuse flux** with full ARCA within one year
- Complementary field of view ideal for the study of point sources.

Markus Ahlers (NBI)

HESE Alert IC-190331A

- HESE alert on March 31, 2019
- deposited energy: 5.3 PeV
- brightest HESE event, so far
- down-going muon neutrino
- RA 337.785° +/- 2.240°
- DEC -21.075° +/- 3.064°
- Follow-up by Fermi-LAT / AGILE (gamma-ray), NuSTAR (X-ray), MASTER / SARA (optical)
- No obvious EM counterpart.

Markus Ahlers (NBI)