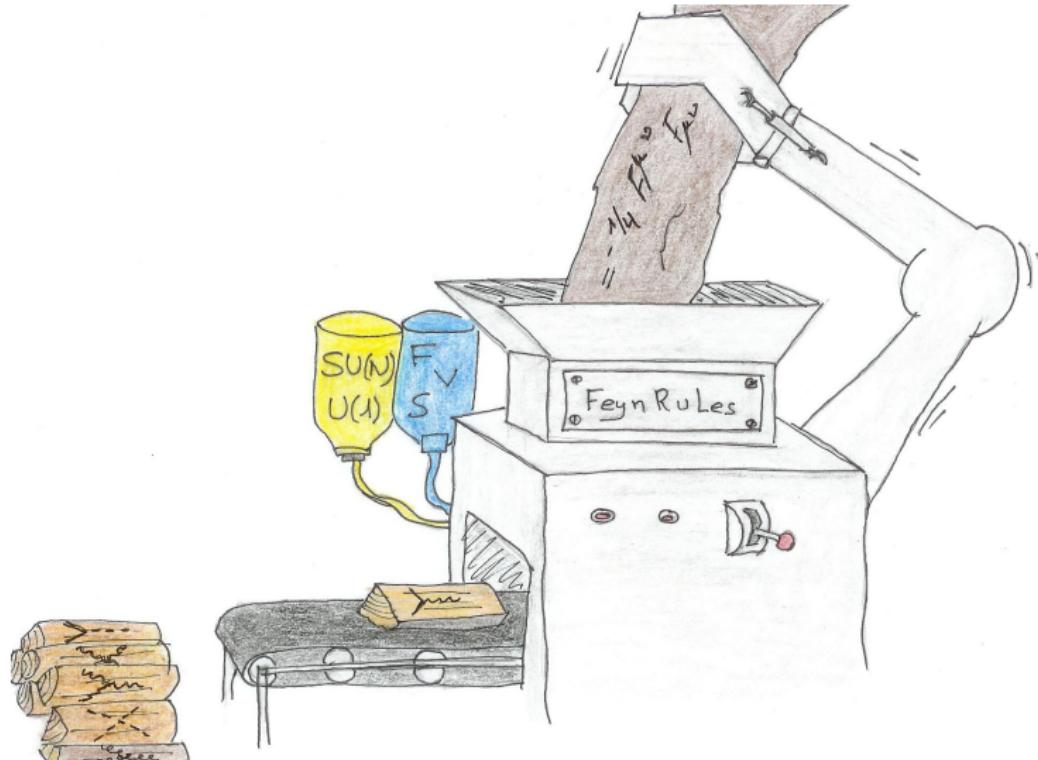


The new FeynRules interface : an automation of the effective theories implementation in FeynArts

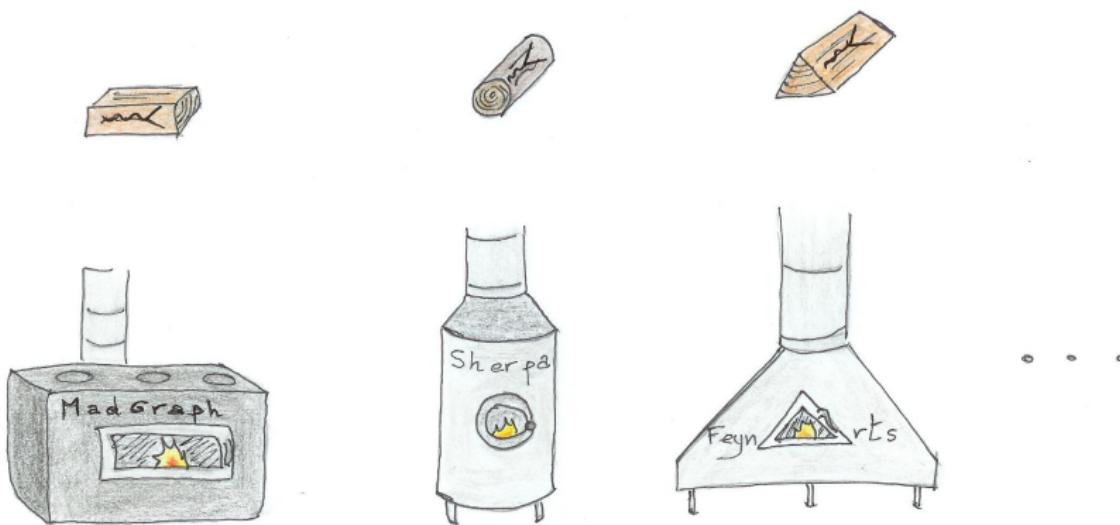
C. Degrande

Centre for Particle Physics and Phenomenology (CP3)
Université catholique de Louvain

MC4BSM, 14 April 2010


Outline

- 1 Introduction
- 2 From FeynRules to FeynArts so far
 - The FeynArts inputs
 - The old interface
- 3 The new FeynRules interface to FeynArts
 - Motivations
 - How does it work
 - How to use it
 - Validation
- 4 Conclusion


It took a long long long time

Welcome in the FeynRules era

For each tool, the right input

The FeynArts inputs

$$\begin{aligned}
 &= A \times 1 + B p_1 \cdot p_2 + \dots \\
 &= (A \ B \ \dots) \cdot \begin{pmatrix} 1 \\ p_1 \cdot p_2 \\ \dots \end{pmatrix}
 \end{aligned}$$

$$\begin{pmatrix} 1 \\ p_1 \cdot p_2 \\ \dots \end{pmatrix} : \text{Generic coupling} \in \text{generic file}$$

$$(A \ B \ \dots) : \text{Coupling matrix} \in \text{model file}$$

The old interface

Based on `lorentz.gen` (default FeynArts generic file)

⇒ Only the `lorentz` structures of the SM

For example, only $A \times 1$ is transmitted to FeynArts in

$$= A \times 1 + B p_1 \cdot p_2 + \dots$$

$$= (A \ B \ \dots) \cdot \begin{pmatrix} 1 \\ p_1 \cdot p_2 \\ \dots \end{pmatrix}$$

Motivations

- Many (new) models are effective theories : new lorentz structures in their vertices.
- FeynRules can generate these new vertices.
- FeynArts/FormCalc can handle more complicated structures.
- All you need is the generic file.

Motivations

- Many (new) models are effective theories : new lorentz structures in their vertices.
- FeynRules can generate these new vertices.
- FeynArts/FormCalc can handle more complicated structures.
- All you need is the generic file.

Motivations

- Many (new) models are effective theories : new lorentz structures in their vertices.
- FeynRules can generate these new vertices.
- FeynArts/FormCalc can handle more complicated structures.
- All you need is the generic file.

Motivations

- Many (new) models are effective theories : new lorentz structures in their vertices.
- FeynRules can generate these new vertices.
- FeynArts/FormCalc can handle more complicated structures.
- All you need is the generic file.

How does it work

- 1 Extract all the lorentz structures from the Feynman rules to build the generic couplings
- 2 Compute the associated coupling matrices
- 3 Write the generic and model files

$$\begin{aligned} &= A \times 1 + B p_1 \cdot p_2 + \dots \\ &= (A \ B \ \dots) \cdot \begin{pmatrix} 1 \\ p_1 \cdot p_2 \\ \dots \end{pmatrix} \end{aligned}$$

How to use it

- 1 You need the FeynRules model file (lists of parameters, particles and gauge groups and Lagrangian(s))
- 2 You load FeynRules, the model and call
WriteFeynArtsOutput
- 3 It creates a directory with
 - the FeynArts model file
 - the FeynArts generic file
- 4 You put these 2 files in the FeynArts models directory
- 5 You feed FeynArts with these files
InsertFields[topo, $\{P_1, P_2\}$ -> $\{P_3, P_4, \dots\}$, GenericModel
-> "YourModel", Model -> "YourModel"]

How to use it

- 1 You need the FeynRules model file (lists of parameters, particles and gauge groups and Lagrangian(s))
- 2 You load FeynRules, the model and call `WriteFeynArtsOutput`
- 3 It creates a directory with
 - the FeynArts model file
 - the FeynArts generic file
- 4 You put these 2 files in the FeynArts models directory
- 5 You feed FeynArts with these files
`InsertFields[topo, {P1, P2} -> {P3, P4, ...}, GenericModel -> "YourModel", Model -> "YourModel"]`

How to use it

- 1 You need the FeynRules model file (lists of parameters, particles and gauge groups and Lagrangian(s))
- 2 You load FeynRules, the model and call `WriteFeynArtsOutput`
- 3 It creates a directory with
 - the FeynArts model file
 - the FeynArts generic file
- 4 You put these 2 files in the FeynArts models directory
- 5 You feed FeynArts with these files
`InsertFields[topo, {P1, P2} -> {P3, P4, ...}, GenericModel -> "YourModel", Model -> "YourModel"]`

How to use it

- ➊ You need the FeynRules model file (lists of parameters, particles and gauge groups and Lagrangian(s))
- ➋ You load FeynRules, the model and call `WriteFeynArtsOutput`
- ➌ It creates a directory with
 - ➎ the FeynArts model file
 - ➎ the FeynArts generic file
- ➍ You put these **2** files in the FeynArts models directory
- ➎ You feed FeynArts with these files
`InsertFields[topo, {P1, P2} -> {P3, P4, ...}, GenericModel -> "YourModel", Model -> "YourModel"]`

How to use it

- 1 You need the FeynRules model file (lists of parameters, particles and gauge groups and Lagrangian(s))
- 2 You load FeynRules, the model and call `WriteFeynArtsOutput`
- 3 It creates a directory with
 - the FeynArts model file
 - the FeynArts generic file
- 4 You put these **2** files in the FeynArts models directory
- 5 You feed FeynArts with these files
`InsertFields[topo, $\{P_1, P_2\}$ -> $\{P_3, P_4, \dots\}$, GenericModel -> "YourModel", Model -> "YourModel"]`

Validation : SILH

- Strongly interacting light Higgs (dimension 6 operators)
G. F. Giudice, C. Grojean, A. Pomarol and
R. Rattazzi, JHEP **0706**, 045 (2007)
- Analytic tests
 - Higgs decay widths at tree-level
K. Hagiwara, R. Szalapski and D. Zeppenfeld, Phys. Lett. B **318**, 155 (1993)
- Using FeynArts and FormCalc
 - VVS ($p_i^\mu p_j^\nu$, $\eta^{\mu\nu} p_i \cdot p_j$)

Validation : Composite top

- Effective theory for a composite top (dimension 6 operators)
C.D., J.-M. Gérard, C. Grojean, F. Maltoni, G. Servant, in preparation
- Analytic tests (Test of new SU(N) structures)
 - top pair production at tree-level
- Using FeynArts and FormCalc
 - FFV ($p^\mu \gamma_\pm, p_i \cdot p_j \gamma^\mu \gamma_\pm, p_i^\mu \not{p}_j \gamma_\pm, \gamma^\mu \not{p}, \gamma_\pm$)
 - FFVV ($\eta^{\mu\nu} \gamma_\pm, p^\nu \gamma^\mu \gamma_\pm, \eta^{\mu,\nu} \not{p} \gamma_\pm, \gamma^\mu \gamma^\nu \gamma_\pm$)

Validation : χ PT

- Effective theory for light pseudoscalar mesons
C. D. and J. M. Gérard, JHEP **0905**, 043 (2009)
- Analytic tests
 - masses, mixing and wave functions renormalization
 - $\eta' \rightarrow \eta\pi\pi$ at tree-level and at one-loop (> 60 diagrams)
- Use FeynArts only (cut-off regularization)
 - SSSS ($p_i \cdot p_j$)
 - SSSSSS ($1, p_i \cdot p_j$)

Conclusion : Status

- A large number of new lorentz structures are already correctly transmitted to FeynArts/FormCalc.
- However, at this stage FormCalc cannot deal with 4-fermion operators (T. Hahn).
- Together with the new interface a new version of FormCalc will be released that allows to deal with 4-fermion operators as well.
- FeynArts/FormCalc, in conjunction with FeynRules, will then be a matrix element generator able to generate **any** matrix element (up to three loops) for **any** model directly from a Lagrangian.

Conclusion : Status

- A large number of new lorentz structures are already correctly transmitted to FeynArts/FormCalc.
- However, at this stage FormCalc cannot deal with 4-fermion operators (T. Hahn).
- Together with the new interface a new version of FormCalc will be released that allows to deal with 4-fermion operators as well.
- FeynArts/FormCalc, in conjunction with FeynRules, will then be a matrix element generator able to generate **any** matrix element (up to three loops) for **any** model directly from a Lagrangian.

Conclusion : Status

- A large number of new lorentz structures are already correctly transmitted to FeynArts/FormCalc.
- However, at this stage FormCalc cannot deal with 4-fermion operators (T. Hahn).
- Together with the new interface a new version of FormCalc will be released that allows to deal with 4-fermion operators as well.
- FeynArts/FormCalc, in conjunction with FeynRules, will then be a matrix element generator able to generate **any** matrix element (up to three loops) for **any** model directly from a Lagrangian.

Conclusion : Status

- A large number of new lorentz structures are already correctly transmitted to FeynArts/FormCalc.
- However, at this stage FormCalc cannot deal with 4-fermion operators (T. Hahn).
- Together with the new interface a new version of FormCalc will be released that allows to deal with 4-fermion operators as well.
- FeynArts/FormCalc, in conjunction with FeynRules, will then be a matrix element generator able to generate **any** matrix element (up to three loops) for **any** model directly from a Lagrangian.