T-odd quarks in the Littlest Higgs model

> Giacomo Cacciapaglia IPNL

> > arXiv:0911:4630, with S.Rai Choudhury, A.Deandrea, N.Gaur and M.Klasen

15 April 2010 MC4BSM Niels Bohr Institute, København

The model

- Stabilisation of the EW scale: Higgs as a Pseudo-Goldstone boson
- Global symmetry G broken to subgroup H at a scale f (Λ = 4 π f)
- \odot Higgs part of the coset G/H
- Gauged subgroup contains SM gauge groups
- Quadratic divergences cancelled at one loop by same spin particles!

The model: Littlest Higgs

- \oslash G = SU(5) broken to $\cancel{} = SO(5)$
- Gauged 2X [SU(2) x U(1)] \rightarrow SU(1)_L xU(1)_Y 0
- 24-10=14 Nambu-Goldstone bosons: Heavy gauge bosons (4) + H (4) 0 + heavy triplet φ (6) $\Pi = \begin{pmatrix} 0 & \frac{H}{\sqrt{2}} & \Phi \\ \frac{H^{\dagger}}{\sqrt{2}} & 0 & \frac{H^{T}}{\sqrt{2}} \\ \Phi^{\dagger} & \frac{H^{*}}{\sqrt{2}} & 0 \end{pmatrix}$
- Many new states: AH, WH, ZH, φ; mass O(f) 0
- Tree level corrections to EWPTs: f > few TeV! The naturalness 0 problem is reintroduced!

The model: Littlest Higgs with T-parity

- To avoid EWP bounds, I.Low proposed a discrete parity (T-parity) that exchanges the two SU(2)xU(1) gauged groups
- \otimes W = W₁+W₂ even; W_H = W₁-W₂ odd!
- Requires T-odd partner for all fermions: QH and LH!
- bound (loops) softened to f > 500 GeV!
- \bigcirc A_H plays the role of dark matter candidate.

The model: Littlest Higgs with T-parity

Ø Vector masses:

$$M_{A_H}\simeq {g'f\over\sqrt{5}}, \ \ M_{V_H}\simeq gf,$$

Fermion masses (κ = Yukawa coupling, κ < 3.5 f/TeV, flavour blind and universal):</p>

$$M_{D_{H,i}} \simeq \sqrt{2} \, \kappa_i \, f \;, \qquad M_{U_{H_i}} \simeq \sqrt{2} \, \kappa_i \, f \, \left(1 - rac{v_{
m SM}^2}{8 \, f^2}
ight)$$

Numerically:

$$m_{A_H} \simeq {g'f\over \sqrt{5}} \simeq 0.156 f \ , \quad m_{V_H} \simeq gf \simeq 0.653 f \ , \quad m_{Q_H} \simeq \sqrt{2}\kappa f \simeq 1.414\kappa f \ ,$$

Branching ratios

Chain branching ratio: 12%

Production cross sections

In previous work, i.e. Freitas/Wyler and Choudhuri/Gosh:

- Only strong production from gluons and quark annihilation
- Dominated by s-channel diagrams (fall-off rapidly with s)
- Only opposite sign dilepton signatures

Production cross sections

In our work:

- We consider both strong and weak processes
- Weak t-channel (heavy gauge bosons) give a large contribution in the forward region (exp. at large k)
 Belyaev, Chen, Tobe, Yuan
- We included $\frac{v^2}{f^2}$ corrections to the vertices
- We included NLO k-factors for both signal and background

Opposite sign dilepton $\Rightarrow \begin{array}{c} pp \rightarrow Q_{\mu} \overline{Q}_{\mu} & (QCD+EW) \\ pp \rightarrow U_{\mu} D_{\mu} & (EW) \end{array}$

Same sign dilepton $\Rightarrow pp \rightarrow \overline{U}_{H} D_{H} + U_{H} \overline{D}_{H}$ (EW)

Production cross sections @ 14TeV

RED: only QCD (Choudhuri et al) BLACK: QCD+EW oposite-sign processes BLUE: EW same-sign processes

Note: EW more imp for large ĸ

Our simulation: 3 benchmark points

Model parameters \rightarrow	$f = 1000 { m ~GeV}$	$f=1000~{\rm GeV}$	$f=700~{\rm GeV}$
Particle masses (in GeV) \downarrow	$\kappa = 0.6$	$\kappa = 1$	$\kappa = 1.5$
M_{A_H}	150	150	100
M_{V_H}	648	648	450
M_{U_H}	842	1403	1462
M_{D_H}	848	1414	1484

Signal generated with CalcHEP 2.5.4 + PYTHIA 6.4.21 CalcHEP model files can be found in http://deandrea.home.cern.ch/deandrea/LHTmodl.tgz

Opposite sign leptons: backgrounds

- t tbar, with both tops decaying leptonically and bottoms misidentified for light jets
- WWjj, with both W decaying leptonically
- ZZjj, with one Z decaying leptonically and the other invisible

and cuts:

- ϖ two leptons with pt > 15 GeV and η < 2.5
- ϖ two light jets with pt > 30 GeV and η < 2.5
- MET > 30 GeV
- ø dilepton invariant mass > 15 GeV

 \Leftarrow suppress photons

PYTHIA 6.4.21

Same-sign leptons

Luminosity 100 fb-1

$$H_T = \sum_{j, \ell, E_T} |\vec{p}_T|.$$

ATLFAST

Naveen Gaur

Same-sign leptons

Luminosity 100 fb-1

$$H_T = \sum_{j, \ell, E_T} |\vec{p}_T|.$$

ATLFAST

Naveen Gaur

Parameter set \Rightarrow	f = 1000	f = 1000	f = 700	SM	SM	SM
$Cuts \Downarrow$	$\kappa = 0.6$	$\kappa = 1$	$\kappa = 1.5$	$t\bar{t}$	W^+W^-jj	ZZjj
Production σ (fb)	1039.1 (298)	157.4 (14.8)	412.3 (31.4)			
Preselection cuts	795.7	120.7	262.6	1.54×10^5	$2.29 imes 10^4$	1520.6
$m_{jj} \notin [65, 105]$	755	120.1	261.7	1.26×10^5	1.88×10^4	1227.5
$m_{\ell\ell} \notin [75, 105]$	696.8	111.9	239.4	$9.94 imes 10^4$	$1.5 imes 10^4$	64.5
$E_T > 100$	623.8	108.8	234.5	$2.5 imes 10^4$	4946.4	19.9
$E_T > 200$	441.2	100.5	220.3	2136.4	899.5	3.9
$E_T > 300$	237.3	87.5	200.1	396.1	239	1.3
$E_T > 400$	107.1	71.9	174.6	114.1	69.5	0.7
S	7.2	4.9	11.2			

MET cut very effective to reduce backgrounds!

Discovery for O(100 fb-1)

Parameter set \Rightarrow	f = 1000	f = 1000	f = 700	SM	SM	SM
$Cuts \Downarrow$	$\kappa = 0.6$	$\kappa = 1$	$\kappa = 1.5$	$tar{t}$	W^+W^-jj	ZZjj
Production σ (fb)	1039.1 (298)	157.4 (14.8)	412.3 (31.4)			
Preselection cuts	795.7	120.7	262.6	$1.54 imes 10^5$	$2.29 imes 10^4$	1520.6
$m_{jj} \notin [65, 105]$	755	120.1	261.7	$1.26 imes 10^5$	$1.88 imes 10^4$	1227.5
$m_{\ell\ell} \notin [75, 105]$	696.8	111.9	239.4	$9.94 imes 10^4$	$1.5 imes 10^4$	64.5
$E_T > 100$	623.8	108.8	234.5	$2.5 imes 10^4$	4946.4	19.9
$E_T > 200$	441.2	100.5	220.3	2136.4	899.5	3.9
$E_T > 300$	237.3	87.5	200.1	396.1	239	1.3
$E_T > 400$	107.1	71.9	174.6	114.1	69.5	0.7
S	7.2	4.9	11.2			

MET cut very effective to reduce backgrounds!

Discovery for O(100 fb-1)

Parameter set \Rightarrow	f = 1000	f = 1000	f = 700	SM	SM	SM
$Cuts \Downarrow$	$\kappa = 0.6$	$\kappa = 1$	$\kappa = 1.5$	$t\bar{t}$	W^+W^-jj	ZZjj
Production σ (fb)	1039.1 (298)	157.4 (14.8)	412.3 (31.4)			
Preselection cuts	795.7	120.7	262.6	1.54×10^5	$2.29 imes 10^4$	1520.6
$m_{jj} \notin [65, 105]$	755	120.1	261.7	1.26×10^5	$1.88 imes 10^4$	1227.5
$m_{\ell\ell} \notin [75, 105]$	696.8	111.9	239.4	$9.94 imes 10^4$	$1.5 imes 10^4$	64.5
$E_T > 100$	623.8	108.8	234.5	$2.5 imes 10^4$	4946.4	19.9
$E_T > 200$	441.2	100.5	220.3	2136.4	899.5	3.9
$E_T > 300$	237.3	87.5	200.1	396.1	239	1.3
$E_T > 400$	107.1	71.9	174.6	114.1	69.5	0.7
S	7.2	4.9	11.2			

MET cut very effective to reduce backgrounds!

Discovery for O(100 fb-1)

Opposite-sign leptons

Naveen Gaur

Luminosity 100 fb-1

ATLFAST

Parameter set \Rightarrow	f = 1000	f = 700	f = 1000	SM	SM
$Cuts \Downarrow$	$\kappa = 0.6$	$\kappa = 1.5$	$\kappa = 1$	$W^{\pm}W^{\pm}jj$	$W^{\pm}W^{\pm}W^{\mp}$
Production σ (fb)	235.1	240.7	80.1		
Pre-selection	180.5	140.9	58.5	747.2	59.1
$ m_{jj}-M_W >20~{\rm GeV}$	173.9	140.6	58.5	651.2	20.3
$E_T > 100$	155.7	138.5	56.6	236.1	5.8
S	9.1	8.2	3.5		
$E_T > 200$	108.4	129.4	51.6	57.8	0.9
$E_T > 300$	57.7	117.4	45.1	22.2	0.3
$E_T > 400$	24.9	103	37.5	9.6	0.1
S	6.2	18.6	8.6		

T-odd Leptons: 2 lepton signal

		e e						
	Model parameters \Rightarrow	SM	SM	f = 500	f = 600	f = 700	f = 600	f = 700
	$\mathrm{Cuts}\Downarrow$	ww	ZZ	$\kappa_\ell=0.4$	$\kappa_\ell=0.35$	$\kappa_\ell=0.3$	$\kappa_\ell=0.45$	$\kappa_\ell=0.35$
	σ (fb)			117.6	97.5	97.58	36.27	53.48
00%	Pre-selection cuts	7.67×10^4	9316.8	4738	3918.9	3993.4	1449.5	2142.8
	$\not\!$	1994.1	1672.8	3669	3071.7	3065.5	1247.6	1767.3
	$ m_{\ell\bar\ell}-m_Z >10~{\rm GeV}$	1814.1	233.7	3496.7	2942.1	2869.3	1216.2	1710.7
	$m_T^{2\ell}>200~{\rm GeV}$	1419.2	210.4	3433.6	2890.8	2869.3	1202.9	1687.8
	$S/\sqrt{B}(1~{ m fb}^{-1})$			8.5	7.1	7.1	3	4.2
	$S/\sqrt{B}(3~{ m fb}^{-1})$			14.9	12.4	12.4	5.2	7.3
	$S/\sqrt{B}(10~{ m fb}^{-1})$			26.9	22.6	22.5	9.4	13.2

рр -> lн lн

lн -> Ан I @ 100%

T-odd Leptons: 1 lepton signal

$\fbox{Parameters} \Rightarrow$	SM	SM	f = 700	f = 600	f = 500	f = 600	f = 700
$\mathrm{Cuts}\Downarrow$	on shell	off shell	$\kappa_\ell=0.4$	$\kappa_\ell=0.4$	$\kappa_\ell=0.4$	$\kappa_\ell = 0.45$	$\kappa_\ell=0.35$
σ (fb)			114.8	212.8	433	133.55	195.16
Presel. cuts	1.7×10^9	6.1×10^4	5823.1	11067.9	22882.8	6800.5	10072.7
$p_T^\ell > 100~{\rm GeV}$	4.9×10^{5}	2137.4	4916.4	8656.8	15652.2	5687.9	7852.9
$m_T > 200$	3.16×10^{5}	1818	4849.8	8481.5	15212.2	5604.8	7689
$m_T > 300$	8.17×10^{4}	451	3623.8	5722.9	8887.6	4138.4	5157.2
$m_T > 400$	2.72×10^4	147	2343.7	3335	4593	2664.7	3001.2
$p_T^\ell > 200~{\rm GeV}$	2.82×10^{4}	147.9	2350.1	3351.6	4607.1	2673.1	3011.3
$m_T > 300$	2.82×10^{4}	146.8	2349.2	3350.3	4604.5	2672.2	3009.2
$m_T > 400$	2.72×10^{4}	139.4	2278.7	3238.2	4422	2592	2904.7
$p_T^\ell > 300~{\rm GeV}$	3026.7	26.8	866.2	1074.2	1284.3	966.5	949.6
$m_T > 400$	30.3	0.26	8.7	10.7	12.8	9.7	9.5
$S/\sqrt{B}~(10~{ m fb}^{-1})$	-	-	5	6.2	7.3	5.5	5.4
$S/\sqrt{B}~(100~{ m fb}^{-1})$	-	-	15.6	19.5	23.2	17.5	17.2

рр -> V н lн

 $\nu_{\rm H}/l_{\rm H} \rightarrow A_{\rm H} \nu/l @ 100\%$

Conclusion

- Light quark (and lepton) partner are a necessary ingredient in Little Higgs models with T-parity
- We show that the EW interactions give an important (previously ignored) contribution to the production cross section
- Opposite-sign and same-sign dilepton signatures offer a good discovery channel for quarks at large luminosities (L = 100 fb-1)
- single lepton and dilepton are discovery channels at low luminosity for leptons

Bonus track

The model: Littlest Higgs with T-parity

from Hubitz and Meade

Same sign leptons: backgrounds and cuts

- WWW, with same sign Ws decaying leptonically and the other in jets
- WWjj, with same sign Ws decaying leptonically

Cuts:

- ϖ two same sign leptons with pt > 15 GeV and η < 2.5
- ϖ two light jets with pt > 30 GeV and η < 2.5
- MET > 30 GeV

One lepton: backgrounds and cuts

on-shell W, decaying leptonically

WZ, with W decaying leptonically and Z invisibly (neutrinos)

Cuts:

one isolated lepton with pt > 10 GeV and η < 3

 \oslash jet veto, with pt > 30 GeV and η < 3

Two leptons: backgrounds and cuts

- WW, both decaying leptonically
- ZZ, with one Z decaying leptonically and the other invisibly (neutrinos)

Cuts:

- ϖ two isolated lepton with pt > 10 GeV and η < 3
- ø jet veto, with pt > 30 GeV and η < 3
- MET threshold 30 GeV