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Outline

• RS strings

• Jet substructure: discovering the buried Higgs.

• Thoughts on MC4BSM.
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RS and strings.

M. Reece and LTW, arXiv:1003.5669
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Confining Strings in RS

• I will be discussing Randall-Sundrum constructions with 
at least the SM electroweak gauge fields in the bulk

• This is dual to gauging global symmetries of some 
confining, technicolor/compositeHiggs -like theory

• KK modes are typically considered in RS models. 

• Such a theory should have confining strings

• How heavy are they? Should they be part of the low-
energy effective theory?
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Ggauge ⊃ SU(2)L × U(1)Y

zUV zIR

GglobalE

mKK

MPl

Basic setup and result.
4D CFTRS

large N, strongly coupledweakly coupled
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• Light string states ~ TeV

• Higher spin, Regge-like. 

• Studied examples: 

Ggauge ⊃ SU(2)L × U(1)Y

zUV zIR

GglobalE

mKK

MPl

Basic setup and result.

spin 2 excitations of SM gauge boson:  Perelstein & Spray, arXiv:0907.3496
spin 3/2 excitations the top quark:   Hassanain, March-Russell, and Rosa, arXiv:0904.4108

4D CFTRS

large N, strongly coupledweakly coupled
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The Short Version of this work

• Two known arguments -- avoiding a Landau pole and 
completing the confining phase transition -- imply a bound 
of loosely N < 10.

• In AdS5 × S5, the AdS curvature radius scales as R4 = 
4πgsNls4, so the bound on N bounds (Strassler; Hassanain et 
al; Perelstein & Spray)

• Our goal: explain these arguments in detail, extend them to 
various examples.

Not no-go theorem. Arguments for why the light string states should generically present.  
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Avoiding Landau Poles

strongly-interacting sector is a pure CFT, then we would have (exactly in the CFT,

and at leading order in the SM gauge coupling):
∫

d4x e−iq·x 〈Jµ(0)Jν(x)〉CFT = −bCFT

16π2

(
q2gµν − qµqν

)
log q2, (2.1)

8π2

g2(Q2)
=

8π2

g2(Λ2
X)

+ (bSM + bCFT ) log
ΛX

Q
(2.2)

If the strongly-interacting sector is not conformal, then in general the current-current

correlator involves a function Π(q2) and the running of the gauge coupling induced by

the strong sector is not precisely logarithmic. For our purposes, this subtlety is not

important; we can imagine that above a threshold set by the scale of the mass gap in

a confining strong sector, the running is logarithmic to good approximation.

Now the key argument we would like to make is that bCFT should not be too large,

or the Standard Model gauge interactions will very rapidly become strongly interacting

above the scale of the lightest states in the strong sector. We wish to avoid hitting a

Landau pole at scales that are just above the weak scale, and possibly even far above

the weak scale. Such a Landau pole would be problematic for multiple reasons. For one,

it would imply that the SM gauge interactions are not really a weak perturbation of

the strong sector, so that there is a complicated theory of multiple strongly-interacting

gauge groups with dynamics that we cannot solve. For another, it would suggest that

the SM gauge bosons should probably be thought of as composites, as in Seiberg duality.

This is a perfectly reasonable possibility to consider [13, 14, 15], but it would lead us

to theories that are conceptually very different from technicolor. Now, the precise

conclusion that we draw from this depends on which scale we decide a Landau pole is

acceptable at. If we suppose that the threshold at which the strongly interacting sector

begins is at 1 TeV, and we wish to explain a large hierarchy, up to say 1015 GeV, then

to avoid a Landau pole for SU(2)L we have a bound of approximately:

bCFT ≤
8π2

g2(MZ)

1

log 1012
+

10

3
≈ 10. (2.3)

The 10/3 is from b2 = −10/3 in the Standard Model, after subtracting the Higgs

contribution of +1/6, since its role is replaced by the technicolor sector. If some of the

Standard Model states are composites, or if there is still an elementary Higgs field, the

computation changes appropriately, but the bound remains O(10).

In Figure 1 we show the bound on bCFT as a function of the scale below which

we forbid a Landau pole. The bound weakens in the “little Randall-Sundrum” sce-

nario that gives up on explaining the large hierarchy and aims only to address a little

hierarchy, with flavor bounds in mind [16]. The bound is saying that because the

– 4 –

The two-point function of the global symmetry
current computes its contribution to the running
of SU(2)L in the SM:

In most examples, bCFT ~ N (from fields in
the bifundamental of color and flavor). 

Set by bCFT = 8π2 R/g52 in 5D theory.
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Figure 1: Bound on bCFT as a function of the scale Λ below which we forbid a Landau pole.

measured coupling is not very small, we can conclude that there are not very many

SU(2)L-charged particles driving its renormalization group flow toward small values.

The measured QCD coupling is larger, but for technicolor-like theories we need not as-

sume that the strong interaction gauges a global symmetry of the technicolor sector, so

the most generic constraint is the one from SU(2)L. (On the other hand, most Randall-

Sundrum models in the literature do assume that the full Standard Model gauge group

is a subgroup of the global symmetry group of the technicolor sector, because it gives

a nice way of dealing with flavor. In these models, there is a constraint on bCFT for the

SU(3)c currents as well.)

Naively, if the technicolor sector is some large-N gauge theory, we expect that

bCFT arises from matter that is charged under the SU(N) symmetry and under a global

symmetry. If that matter is in the fundamental of SU(N), then bCFT ∼ N , and in other

representations bCFT scales even faster with N . Thus, naively, and up to order-one

factors, the bound we have discussed (in the case of a large hierarchy) implies that

N <∼ 10. However, there are cases where bCFT is O(1) rather than O(N) or larger [17].

We will revisit this point below, but first we turn to an independent phenomenological

bound which applies to the total number of degrees of freedom.

2.2 Bounds from First-Order Phase Transition

A second bound on the number of new degrees of freedom near the TeV scale arises

from cosmology. It is somewhat less robust, because it depends on the assumption that
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GUT-scale hierarchy:

strongly-interacting sector is a pure CFT, then we would have (exactly in the CFT,

and at leading order in the SM gauge coupling):
∫

d4x e−iq·x 〈Jµ(0)Jν(x)〉CFT = −bCFT

16π2

(
q2gµν − qµqν

)
log q2, (2.1)

8π2

g2(Q2)
=

8π2

g2(Λ2
X)

+ (bSM + bCFT ) log
ΛX

Q
(2.2)

If the strongly-interacting sector is not conformal, then in general the current-current

correlator involves a function Π(q2) and the running of the gauge coupling induced by

the strong sector is not precisely logarithmic. For our purposes, this subtlety is not

important; we can imagine that above a threshold set by the scale of the mass gap in

a confining strong sector, the running is logarithmic to good approximation.

Now the key argument we would like to make is that bCFT should not be too large,

or the Standard Model gauge interactions will very rapidly become strongly interacting

above the scale of the lightest states in the strong sector. We wish to avoid hitting a

Landau pole at scales that are just above the weak scale, and possibly even far above

the weak scale. Such a Landau pole would be problematic for multiple reasons. For one,

it would imply that the SM gauge interactions are not really a weak perturbation of

the strong sector, so that there is a complicated theory of multiple strongly-interacting

gauge groups with dynamics that we cannot solve. For another, it would suggest that

the SM gauge bosons should probably be thought of as composites, as in Seiberg duality.

This is a perfectly reasonable possibility to consider [13, 14, 15], but it would lead us

to theories that are conceptually very different from technicolor. Now, the precise

conclusion that we draw from this depends on which scale we decide a Landau pole is

acceptable at. If we suppose that the threshold at which the strongly interacting sector

begins is at 1 TeV, and we wish to explain a large hierarchy, up to say 1015 GeV, then

to avoid a Landau pole for SU(2)L we have a bound of approximately:

bCFT ≤
8π2

g2(MZ)

1

log 1012
+

10

3
≈ 10. (2.3)

The 10/3 is from b2 = −10/3 in the Standard Model, after subtracting the Higgs

contribution of +1/6, since its role is replaced by the technicolor sector. If some of the

Standard Model states are composites, or if there is still an elementary Higgs field, the

computation changes appropriately, but the bound remains O(10).

In Figure 1 we show the bound on bCFT as a function of the scale below which

we forbid a Landau pole. The bound weakens in the “little Randall-Sundrum” sce-

nario that gives up on explaining the large hierarchy and aims only to address a little

hierarchy, with flavor bounds in mind [16]. The bound is saying that because the
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N < O(10)
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Ways out?

• If the SM gauge bosons are composite -- e.g. emerging 
from Seiberg duality at the bottom of some cascade -- 
such bounds do not apply. (Interpret Landau pole as hint 
of duality.) Different scenario. 

• If bCFT is order-one, as in some M5 brane models 
(Gaiotto-Maldacena), this bound does not apply.

semi-realistic model?
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Cosmology

• If RS is a good description, expect the confinement/
deconfinement transition to be of Hawking-Page type.

• T > Tc: thermal plasma, dual to AdS-Schwarzschild.

• T < Tc: hadronization, dual to AdS on thermal circle

• Phase transition is first-order.
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Cosmology

• Critical temperature: Tc ~ 21/4/(πzIR). (Herzog) Scale of KK 
modes, not string modes.

• Entropy density O(N2) at high temperatures and O(1) at 
low temperatures.

• The phase transition is slow (Creminelli et al.; Randall & 
Servant; Kaplan, Schuster, & Toro)

• Similarly: change in vacuum energy O(N2)

The change in vacuum energy scales as O(N2)z−4
IR . In particular, for the hard-wall

model, one can calculate the change in vacuum energy at the transition using E =

− ∂
∂β log Z = ∂

∂β I5D (where Z is the partition function and I5D the 5D action evaluated

on a classical solution compactified on a thermal circle of radius β) [25]:

∆Evac =
16M3

5 R3
AdS

z4
IR

=
8

π2
c

1

z4
IR

. (2.5)

Here c is the central charge of the CFT dual to our AdS background. We have a bubble

nucleation rate Γ ∼ z−4
IRe−O(N2) and a Hubble scale set by H2M2

Pl = ∆V ∼ N2z−4
IR .

Unfortunately, we can’t analytically calculate the bounce action for the instanton that

creates bubbles of the confined phase within the deconfined plasma, so we can at best

give a bound up to an order-one number. The bound set by requiring that bubbles

collide is Γ >∼H4, i.e.

a0z
−4
IR exp−a1c > c2z−8

IRM−4
Pl , (2.6)

with a0, a1 unknown order-one numbers. That is, as a bound on the central charge:

c <∼
1

a1
(4 log(MPlzIR) + log a0 − 2 log c) . (2.7)

For convenience, we will simply quote this as a bound at a0 = a1 = 1 and MPlzIR =

1016:

c <∼ 140, (2.8)

with the understanding that this is subject to uncertainties and unknown order-one

dependence on details of the background. For typical string backgrounds, bCFT ∼ N

and c ∼ N2, so the two bounds 2.3 and 2.8 are comparably strong.

Our discussion has focused on the case of hard-wall models, and we have not asked

how the geometry is stabilized. The electroweak phase transition in Randall-Sundrum

theories stabilized by the Goldberger-Wise mechanism was considered in detail in Refs.

[21] and [22], and turns out to have some subtleties. Such theories have a radion

parametrically lighter than other modes, and its effective potential can be analyzed,

leading to some surprises. In particular, the scaling of various quantities with N is not

always as expected from simple field theory considerations. We expect that the hard

wall estimate above is a very good guide to theories where a mass scale is introduced

explicitly through relevant operators. For theories with logarithmic running leading to

confinement, e.g. Klebanov-Strassler [14], we also expect the estimates above to be a

better guide than GW-like models. Luckily, an explicit calculation has been carried out

– 7 –
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Cosmology

• The danger is the “empty universe problem,” explained 
clearly in this context by Kaplan, Schuster, and Toro.

• Rate of bubble nucleation:

• If Γ < H4, bubbles never meet, and the transition never 
completes.
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The Bound

• We can’t calculate the bounce action that takes us from 
thermal AdS to AdS-Schwarzschild. (Approximations exist 
for Goldberger-Wise stabilization.)

• In general, N2 replaced with central charge c

• (Unknown order-one numbers a0, a1)

The change in vacuum energy scales as O(N2)z−4
IR . In particular, for the hard-wall

model, one can calculate the change in vacuum energy at the transition using E =

− ∂
∂β log Z = ∂

∂β I5D (where Z is the partition function and I5D the 5D action evaluated

on a classical solution compactified on a thermal circle of radius β) [25]:

∆Evac =
16M3

5 R3
AdS

z4
IR

=
8

π2
c

1

z4
IR

. (2.5)

Here c is the central charge of the CFT dual to our AdS background. We have a bubble
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IRe−O(N2) and a Hubble scale set by H2M2
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give a bound up to an order-one number. The bound set by requiring that bubbles

collide is Γ >∼H4, i.e.
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1
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c <∼ 140, (2.8)

with the understanding that this is subject to uncertainties and unknown order-one

dependence on details of the background. For typical string backgrounds, bCFT ∼ N

and c ∼ N2, so the two bounds 2.3 and 2.8 are comparably strong.

Our discussion has focused on the case of hard-wall models, and we have not asked

how the geometry is stabilized. The electroweak phase transition in Randall-Sundrum

theories stabilized by the Goldberger-Wise mechanism was considered in detail in Refs.

[21] and [22], and turns out to have some subtleties. Such theories have a radion

parametrically lighter than other modes, and its effective potential can be analyzed,

leading to some surprises. In particular, the scaling of various quantities with N is not

always as expected from simple field theory considerations. We expect that the hard

wall estimate above is a very good guide to theories where a mass scale is introduced

explicitly through relevant operators. For theories with logarithmic running leading to

confinement, e.g. Klebanov-Strassler [14], we also expect the estimates above to be a

better guide than GW-like models. Luckily, an explicit calculation has been carried out
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Summary of Bounds

• These are two known bounds, comparably strong: bCFT ~ 
N < 10 and c ~ N2 < 140.

• We will see that the string scale is related to these 
numbers raised to small fractional powers, so is tightly 
bounded.

• Both of these numbers turn out to be very geometric

• Bound on c is more generic (bCFT~1 in M5 examples), 
but could avoid if the universe has never reheated above 
a  temperature > TeV
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4d vs 5d Masses

• We’re interested in ratios of masses of 4d states (heavy 
string modes and light Kaluza-Klein modes)

• Our proxy for this is the ratio of length scales  in the 
bulk theory.

• KK masses set by zIR-1, location of the IR wall, “warped 
down” from RAdS-1. String masses set by warped-down 
string scale at IR wall.

We went through various examples and arguments of the
implications of bCFT bound and cosmology bound on this ratio.
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RAdS vs. ls in N=4 SYM

• Before looking at more examples, let’s remind ourselves 
of AdS5 × S5, where    RAdS4 = 4πgsNls4.

• What’s happening here can be thought of as moduli 
stabilization: need to fix the radius of the S5 
compactification.

• Two terms in potential: curvature ~ 1/R2 and flux ~ 
gs2N2/Vol(S5)2, in string units.

• Comparable size at minimum, sets RAdS.
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c Bound and Geometry

3.2 Einstein Manifold

We begin with the simplest class of examples with AdS5×M5 where M5 is an Einstein

manifold, which includes the original case M5 = S5. AdS5 is the near horizon limit of

a stack of N D3 branes. There are N units of flux on the internal manifold M5. The

Standard Model matter and gauge fields can be added through including D7 branes

wrapping around a 3-cycle in M5, for example an equatorial S3 ⊂ S5 [28].

Reducing 10d gravity action on M5, we obtain 5d Planck constant as

M3
5 =

1

(2π)7g2
s l

8
s

VolM5 . (3.5)

Consider first the simplest case where M5 = S5 with radius R. In this case, we have

the well-known relation

R4
AdS = R4 = 4πgsNl4s . (3.6)

We can also obtain the same relation by considering the number of degrees of freedom

and using AdS/CFT. We expect Nd.o.f ∝ N2 on the CFT side. Using Eq. 3.2, we have

N2 ∝ R3
AdSM

3
5 ∝

R8
AdS

g2
s l

8
s

, (3.7)

which again implies Eq. 3.6. This relation highlights the condition of having a tractable

effective field theory: string states are parametrically heavier than the supergravity

states, by a factor (gsN)1/4 $ 1.

For a more general Einstein manifold M5, stabilized by N units of flux (arising

from D3 branes at the tip of a cone over M5) we have [31]

R4
AdS = 4πNgsl

4
s

π3

vM5

, (3.8)

where vM5 is the volume of M5 in the unit of RAdS, and vS5 = π3. Therefore, the mass

ratio of string modes and KK modes in this background is

mstr

mKK
=

RAdS

ls
=

(
4πgsN

π3

vM5

)1/4

. (3.9)

As discussed earlier, this ratio can be increased either by increasing N or π3/vM5 , or

both. Typical examples of M5 are: S5 with vS5 = π3; S5/Z2 with vS5/Z2 = π3/2; or

the conifold T 11 with vT 11 = 16π3/27, all of which contribute at most an order 1 factor

to this ratio. S-duality of IIB string theory implies that gs = 1 is the largest sensible

value of the coupling, so we cannot increase mstr/mKK indefinitely by increasing gs.
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For the purpose of setting the cosmological bound, it is more convenient to use a

different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

(
R4

AdS

8πl4sgs

)2 (vM5

π3

)
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
(

140× 64π2 π3

vM5

)1/8

≈ 4.2

(
π3

vM5

)1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to

make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity

of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this

example. We start with the DBI action of the D7 brane

SDBI = −τ7

∫
d8σ tr

√
−det(Gαβ + 2πα′Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

∫
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we

obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

(
RAdS

ls

)4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

(
RAdS

ls

)4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize

to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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Assuming we start with 10d string theory, reduce 
to 5d AdS to obtain a Planck scale:

Read off the central charge from the〈TT〉 

correlator as c = 2π2 M53 RAdS3:

Here vM5 is the volume of M5 in units of RAdS.
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c Bound, Numerically

• We see that c is expressed in terms of (RAdS/ls), the 
number we wish to bound, along with gs < 1 (by S-
duality) and vM5.

• Smaller size of the internal manifold, i.e., small compared 
to the AdS space, larger mstr/mKK =RAdS/lS .

• Normalize using AdS5 × S5:

For the purpose of setting the cosmological bound, it is more convenient to use a

different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

(
R4

AdS

8πl4sgs

)2 (vM5

π3

)
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK
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(

140× 64π2 π3

vM5

)1/8

≈ 4.2

(
π3

vM5

)1/8

. (3.11)
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AdS. This implies that
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5

=
vM3

2π2

(
RAdS

ls

)4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize

to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

(
R4

AdS

8πl4sgs

)2 (vM5

π3

)
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
(

140× 64π2 π3

vM5

)1/8

≈ 4.2

(
π3

vM5

)1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to

make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity

of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this

example. We start with the DBI action of the D7 brane

SDBI = −τ7

∫
d8σ tr

√
−det(Gαβ + 2πα′Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

∫
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we

obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

(
RAdS

ls

)4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

(
RAdS

ls

)4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize

to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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bCFT Bound and Geometry

For the Landau pole bound on bCFT, we need 
gauge fields in the bulk. There are different routes
to this, but let’s focus on D7 branes (Karch-Katz).

These must wrap a 3-manifold M3 ⊂ M5. 

For the purpose of setting the cosmological bound, it is more convenient to use a

different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

(
R4

AdS

8πl4sgs

)2 (vM5

π3

)
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
(

140× 64π2 π3

vM5

)1/8

≈ 4.2

(
π3

vM5

)1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to

make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity

of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this

example. We start with the DBI action of the D7 brane

SDBI = −τ7

∫
d8σ tr

√
−det(Gαβ + 2πα′Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

∫
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we

obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

(
RAdS

ls

)4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

(
RAdS

ls

)4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize

to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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⇒

For the purpose of setting the cosmological bound, it is more convenient to use a

different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

(
R4

AdS

8πl4sgs

)2 (vM5

π3

)
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
(

140× 64π2 π3

vM5

)1/8

≈ 4.2

(
π3

vM5

)1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to

make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity

of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this

example. We start with the DBI action of the D7 brane

SDBI = −τ7

∫
d8σ tr

√
−det(Gαβ + 2πα′Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

∫
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we

obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

(
RAdS

ls

)4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

(
RAdS

ls

)4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize

to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.
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bCFT Bound, Numerically

For the purpose of setting the cosmological bound, it is more convenient to use a

different, equivalent formulation of equation 3.9, making use of eq. 3.3:

c =

(
R4

AdS

8πl4sgs

)2 (vM5

π3

)
. (3.10)

Then the bound (2.8) from avoiding the empty universe problem gives a constraint:

mstr

mKK

<∼
(

140× 64π2 π3

vM5

)1/8

≈ 4.2

(
π3

vM5

)1/8

. (3.11)

Thus the only way to achieve a large hierarchy given the empty universe bound is to

make the internal space small in units of the AdS radius.

Next we consider the bound from the β-function constraints from perturbativity

of SM gauge couplings beyond TeV scale. We will demonstrate this explicitly in this

example. We start with the DBI action of the D7 brane

SDBI = −τ7

∫
d8σ tr

√
−det(Gαβ + 2πα′Fαβ) (3.12)

where τ7 = 1/(gs(2π)7l8s), which leads to kinetic term1

Lkin = − 1

2g2
7

∫
trF 2, g2

7 = 2gs(2π)5l4s . (3.13)

After integrating over the 3D submanifold M3 which the D7 brane wraps around, we

obtain 5-D gauge coupling

RAdS

g2
5

= RAdS ×
VolM3

g2
7

=
vM3

2π2

2π2

2gs(2π)5

(
RAdS

ls

)4

, (3.14)

where vM3 is the volume of M3 in units of R3
AdS. This implies that

bCFT = 8π2RAdS

g2
5

=
vM3

2π2

(
RAdS

ls

)4 1

4πgs
. (3.15)

This is a general result depending only on geometry. Now, using eq. 3.8 to specialize

to the case of N D3-branes on a cone over an Einstein manifold, we find:

bCFT =
vM3

2π2

π3

vM5

N. (3.16)

1Note that because we consider a nonabelian gauge group (namely SU(2)L), there is a factor of 1/2
arising from the trace over gauge indices that is not present in the abelian case.

– 10 –

The bulk gauge coupling determines the 
coefficient in the〈J J〉correlator and hence bCFT:

Similarly to what we found for c, we have expressed 
bCFT in terms (RAdS/ls), the number we wish to bound, 
along with gs < 1 and vM3.

This is consistent with expectations that bCFT ∼ N , since the matter charged under

the global symmetry is a bifundamental of the global symmetry group and the SU(N)

gauge theory dual to our AdS space. In particular, for the Karch-Katz example of D7

branes wrapping an S3 ⊂ S5, we find bCFT = N , as expected for flavor hypermultiplets.

Using Eq. 3.15, we find:

mstr

mKK

<∼
(

4πgs
2π2

vM3

(
8π2

g2(m2
Z)

1

log(ΛUV /ΛTC)
+

10

3

))1/4

<∼ 3.3

(
gs

2π2

vM3

)1/4

, (3.17)

where we have used Eq. 2.3 for numerical concreteness in the last step. Notice that

this bound depends only on the volume of the cycle wrapped by the D7-brane, and not

on vM5 ; indeed, we did not use eq. 3.8 at all. Maybe putting in another plot here

would be useful, just fixed at vM3 = 2π2 for instance?

One possible way of getting a large ratio of mstr/mKK is having vM3 to be para-

metrically smaller than the volume of S3 with radius RAdS.

3.3 The Klebanov-Strassler Cascading Geometry

We have been discussing AdS spaces, imagining that we simply truncate them as in

RS to obtain a “hard wall” model of confinement. Spaces that solve the hierarchy

problem, however, will tend to have geometries that are cut off in a more gentle way,

since we expect that they involve marginal or nearly-marginal operators. The canonical

example of a string construction of such a theory is the Klebanov-Strassler geometry

[14, 34], in which the number of degrees of freedom runs logarithmically with energy

scale until the tip of the throat. The topology of the internal dimensions of KS is

S2×S3, with the S2 shrinking to zero size at the end of the throat. One might wonder

if, because the geometry near the end of the throat resembles a compactification on S3,

the scaling of various quantities will be very different from the AdS5×X5 examples we

have discussed.

The K-S geometry is dual to an N = 1 SU(N + M)×SU(N) gauge theory with

bifundamentals A1,2, antibifundamentals B1,2, and a superpotential λ detr,u(ArBu) pre-

serving an SU(2)×SU(2)×U(1) global symmetry. This theory exhibits a sequence of

Seiberg dualities N → N −M which reduce the number of degrees of freedom. Corre-

spondingly on the gravity side there is a running AdS radius:

R4(r) =
81

8
(gsM)2α′2 log(r/rs). (3.18)

There are M units of 3-form flux on the S3, which is constant throughout the geometry,

while the amount of 5-form flux and of B-field flux on the S2 scale as log(r/rs). Relative

to the theory on AdS5 × S5, the main change in scaling relations is that N has been

– 11 –
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Orbifolds

• One way to reduce the volume of the internal geometry 
is to orbifold it.

• S5 can be thought of as a circle fibered over CP2; mod 
out by Zk subgroup

• Doesn’t change AdS5 part of geometry: same RAdS/ls, but 
bCFT, c lower by factor of k.

• Heavier strings at no cost?
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Orbifolds

• However, run into a limit: size of the fiber shrinks from R 
to R/k, becomes ls eventually

• Bound: k < N1/4.

• Our bound on N was strict enough that this gives us 
only a small improvement.
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The Weak Gravity Conjecture

• Interesting argument from weak gravity: add UV brane, 
go on branch with one D3 brane a distance RAdS in the 
bulk, apply bound   mW < g MPl  (Arkani-Hamed, Motl, Nicolis, 
Vafa ’06)

• Find that this means a bound on size of internal space, 
Vold > gs RAdS lsd-1

• Examples with fluxes generically have a stronger Vold > 
gs N RAdS lsd-1 .
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Weak-Gravity Saturation

• Suppose we knew a construction that saturates the 
weak-gravity bound            Vold > gs RAdS lsd-1 (we don’t)

• It would have csat ~ (RAdS/ls)4. (Contrast (RAdS/ls)8 in AdS5 
× S5) Similarly for bCFT

• Would be intrinsically interesting, plus the best route to 
decoupling strings. Does it exist?
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Precision Electroweak

• One advantage of an RS description of a strongly-
coupled sector is that quantities are calculable, e.g. the 
S, T, U parameters.

• Light strings could give O(1) corrections, but probably 
don’t change conclusions about viability.

• E.g., custodial symmetry still protects T.

• It could give additional contributions to S-parameter 
comparable from those of the KK-mode. 

• Change preferred model parameters. 
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Stringy States

• What sort of states do we expect?

• Higher-spin W and Z bosons.

• Fermions model-dependent; possibly spin-3/2 top, 
bottom, etc.

• KK modes on internal directions.

• Higher-spin “KK gravitons” (closed strings)

• A whole zoo; challenging spectroscopy.
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Spectrum

Gauge boson Graviton

W±, Z, γ, g, ...

WKK, ZKK, ...

W±
str, Zstr, ...

t, b, s, ...

qKK

qstr

Fermion

gµν, ...

gµν, KK...

gµν, str...

(4)

(3)

(2)

(5)

(1)

(1)

(1)

(7/2)

(5/2)

(3/2)

(9/2)

(2)

(2)

(2)

(1/2)

(1/2)

(1/2)M
as

s

zero and KK modes string states (1), (2), ... : spin

(8)

(6)

(4)

(10)
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Jet substructure
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Jet substructure. 

• On very general grounds, we expect the TeV new 
physics states to have significant coupling to the W, Z, 
and top quark.

• When produced at TeV-scale energies, they have a large 
boost.

q, ...

q′, ...
W±

q, ...

q̄, ...

Z

q ...

q′...

W±
q, ...

q̄, ...

Z

q, ...

q′, ...
W±

q, ...

q̄, ...

Z

q ...

q′...

W±
q, ...

q̄, ...

Z

q

q′

top

q ...

q′...

W±

top

b

b

Jets with substructure. 

Challenge: distinguishing them from QCD jets (q and g).

Boost
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Hiding Higgs.

• Alternative decay channels can dramatically change 
Higgs search strategy.

• Why can new jet technology help?

h

Less radiation 
outside this cone

Higgs Jet

Jet substructure

For example:
B.  Bellazzini, C. Csaki, A. Falkowski, A. Weiler, 
arXiv:0910.3210, arXiv:0906.3026

For example: 
P. Graham, A. Pierce, J. Wacker, hep-ph/0605162
M. Carena, T. Han, G. Huang, C. Wagner, arXiv:0712.2466

Boosted Higgs, studied in the context of
 SM-like Higgs by
J. Butterworth, A. Davidson, M. Rubin, G. 
Salam, arXiv:0802.2470
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Usefulness of the variables.

hist
Entries  4171
Mean   0.02005
RMS    0.02273

 Ratio Rad. Outside subjets 
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Entries  1134
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hist
Entries  1134
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hist
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hist
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Entries  1134
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hist
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Entries  1134
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Soft/Hard ratio of subjet inv. masses(R=0.3 subjets,Pt_Min=10 GeV)

Higgs + Z signal Z+jet background

A. Falkowski, D. Krohn,  J. Shelton,  A.  Thalapillil, and LTW, in progress.
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Encouraging results.

jet mass

radiation pattern

(rates in fb)
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1. Introduction

Why we care about the buried higgs...

1.1 Simulation notes

2. Jet Substructure Methods

Recent work in jet substructure [?, ?] has shown it to be a powerful tool in Higgs physics,
opening up channels previously thought to be out of reach at the LHC. The basic idea be-
hind these methods is that in looking at boosted objects one restricts the kinematical phase
space available to background processes by far more than one does for signal processes.

2.1 V + (h→ bb̄)

Review Gavin’s h→ bb̄ paper

2.2 V + (h→ 4g)

Here we will study a scenario similar to that discussed in Sec. 2.1, except with a four-gluon
final state. Our kinematical cuts will therefore be similar to those of Ref. [?], but we must
find something to replace b-tagging. We will therefore make use of the fact that

• For our process, h→ 2η → 4g, the requirement that mη ! 8 GeV means we will see
two smaller subjets of equal mass inside our fat jet.

• Since the η is uncolored, there is no color dipole stretching across the jet and inter-
subjet radiation should be minimal.

The first point leads us to define a measure of the subjet masses equality:

α = min
[
m(j1)
m(j2)

,
m(j2)
m(j1)

]
, (2.1)
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2 subjets

for m(j1,2) the mass of the hardest and second hardest subjets, while the second motivates
a measure of the inter-subjet radiation:

β =
pT (j3)
pT (j)

. (2.2)

where pT (j3) and pT (j) are the transverse momenta of the third hardest subjet and entire
jet, respectively.

We have applied these cuts1, along with basic kinematic constraints on the higgs
candidate jet

|mj −mh| < 10 GeV, pT (j) > 200 GeV, (2.3)

to find the results shown in Tables [1,2,3] and Fig. 1. Here we have only included the results
from the channel pp → h + (W → l, ν), for l = e, µ, but as this is the dominant channel
with a leptonically decaying vector particle it should serve as a reasonable measure of the
experimental reach for this analysis. Note that, as we have included events from pile-up, a
jet-cleaning procedure was necessary to obtain a reasonable mass resolution. For this, we
have used the jet trimming procedure of Ref. [?] with Rsub = 0.2 and fcut = 0.03, although
a filtering procedure similar to that used in Ref. [?] should work as well 2. Finally, note
that as the angular size of a jet scales as

∆R ∼ 2m

pT
(2.4)

we have used different radii for the different Higgs samples.

Cut Range S [fb] B[fb] S/B S/
√

B @ 100 fb−1

pT > 200 GeV 1.9 · 101 3.3 · 104 5.9 · 10−4 1.1
mj 70↔ 90 GeV 1.3 · 101 1.9 · 103 6.9 · 10−3 3.0
α > 0.7 6.3 · 100 3.6 · 102 1.7 · 10−2 3.3
β < 5 · 10−3 9.1 · 10−1 4.9 · 100 1.9 · 10−1 4.1

Table 1: mH = 80 GeV, R = 1.0

1We use R = 0.3, anti-kT subjets.
2Note that any sort of jet-cleaning procedure must be applied after a cut on β - otherwise the radiation

used to distinguish the color structure of the decay will be stripped away.
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Cut Range S [fb] B[fb] S/B S/
√

B @ 100 fb−1

pT > 200 GeV 1.7 · 101 3.3 · 104 5.1 · 10−4 0.9
mj 90↔ 110 GeV 1.0 · 101 1.1 · 103 9.5 · 10−3 3.1
α > 0.7 5.1 · 100 2.7 · 102 1.9 · 10−2 3.1
β < 5 · 10−3 8.2 · 10−1 3.1 · 100 2.7 · 10−1 4.7

Table 2: mH = 100 GeV, R = 1.0

Cut Range S [fb] B[fb] S/B S/
√

B @ 100 fb−1

pT > 200 GeV 1.3 · 101 3.3 · 104 4.1 · 10−4 0.7
mj 110↔ 130 GeV 7.6 · 100 5.3 · 102 1.4 · 10−2 3.3
α > 0.7 4.0 · 100 1.6 · 102 2.5 · 10−2 3.1
β < 7 · 10−3 7.8 · 10−1 3.6 · 100 2.2 · 10−1 4.1

Table 3: mH = 120 GeV, R = 1.2
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Figure 1: Invariant mass distributions (after trimming) for models with ! h = 80 " 100 " 120 GeV.
The error bars correspond to the statistical errors one would expect with L = 100 fb−1.
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Top jet substructure, z-finding

• Jet clustering history is approximately the inverse of 
parton shower. 

“Following” the jet formation: !"#$$#%&'()*+,-*.,#%-/*,&.+#/0

• !1'2-/.-)*#3*+,-*4-+*5$6.+-/&'(*,&.+#/07

189:;*<=>?=@AA? B&C'DEC#*FC'( >G

H7*IC+C'&;*J7*K#L.,&+M-/;*97*H-0N#6/;*C'O*P7*F-QQ-/;*R65$7*8,0.7*P*SAT;*>UV*W>??<X

Tuesday, July 28, 2009
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Top jets vs QCD jets
• Top jets vs QCD jets∗

“Following” the branching History
Recursive algorithm, e.g., kT

∗. kT close to an evolution variable.
kT clustering history ∼ inverse branching history.

Rough approximation of finite calorimetry: δη × δφ = 0.1 × 0.1.

QCD soft singularity is in effect regulated.
∗J. Thaler, LW, arxiv:0806.0023
∗S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Nucl. Phys. B 406, 187
(1993).

J. Thaler and LTW, arXiv:0806.0023. 

Related studies: 
D. Kaplan, K. Reherman, M. Schwartz, B. Tweedie, arXiv: 0806.0848.
L. Almeida, S. Lee, G. Perez, G. Sterman, I. Sung, J. Virzi, arXiv:0807.0243 
Gustaaf H. Brooijmans, arXiv:0802.3715;  CMS, CMS PAS JME-09-001 
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• Combined cuts on jet mass and z can enhance further 
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More jet shape variables.

• Top decay is more like 3-body. Span a “plane” 
perpendicular to the jet axis. 

• Transverse sphericity, or “planar flow”

Figure 8: Left: QCD dijet predictions for detS⊥ with a pT cut of 1200 GeV, showing large
variations between different shower evolution variables. Right: detS⊥ after imposing the top
window cut 160 GeV < Qjet < 200 GeV, comparing to a 3 TeV top resonance. While detS⊥

shows promise in separating boosted tops from QCD fat jets, it is difficult to make a firm
conclusion given the large theoretical variance.

3.2 Boost-Invariant Event Shape

While boosted tops might be described theoretically by an M → ABC splitting, one still has
to find an experimental proxy for the A, B, and C subclusters. Instead of using a clustering
algorithm, an alternative strategy is to construct an event shape variable that uses all of the
hadrons in a jet to form an observable that measures the gross energy distribution.

The goal is to build an event shape that probes the fact the top decay products are widely
separated in the top rest frame, so one wants a boost-invariant event shape. Ideally, the event
shape would be invariant under both the boost axis and the boost magnitude. Unfortunately,
building a meaningful event shape that is invariant under choice of boost axis is difficult, because
in the M rest frame, the splitting M → ABC defines a plane. If the boost axis is perpendicular
to this plane then A, B, and C look well-separated, but if the boost axis is parallel to the plane,
then A, B, and C overlap.

We can still form an event shape that is invariant under the boost magnitude, by considering
a variant to the ordinary sphericity tensor [31].8 Taking the z-axis to be the boost direction,
consider a jet with total four vector {Ejet,!0⊥, pz

jet} and constituents pµ
α = {Eα, !p⊥α , pz

α}. The

(linear) jet transverse sphericity tensor S⊥ij is an object that is invariant under boosts along
the z-axis:

S⊥ij =

∑

α∈jet

!p⊥i
α !p⊥j

α

|!p⊥α |
∑

α∈jet

|!p⊥α |
. (10)

There is only one non-trivial eigenvalue of S⊥ since the two eigenvalues sum to 1, so we will take
the determinant of S⊥ to be our boost-invariant event shape. Note that detS⊥ is identically 0

8Strictly speaking, even this event shape is not invariant under boosts given finite calorimetry. Even though
!p⊥ is invariant under boosts, the calorimetry is defined by φ and η, which is invariant only under boosts along
the beam axis and not to boosts along the top momentum axis.

13

J. Thaler and LTW, arXiv:0806.0023. 
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Better reconstruction of the jet shape

• Can be used to further improve top tagging. An 
additional factor of several possible.  

• Interesting to compare with improved QCD calculation, 
using modern technologies such as SCET.
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Thoughts on MC4BSM
as a user/theorist. 
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• But, with the existing ones, and with the experts 
answering my emails, I should be able to survive (more 
or less) already.  
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MC4BSM: 

• Many good developments since MC4BSM-1.

• Some (incomplete) examples

• Madgraph: usrmod, ()-notation, pythia interface, 
BRIDGE.

• Sherpa, Whizard, Feynrules + ...

• Madgraph+pythia combo has worked very well for me. 

• Many improvements are still possible (earlier talks) .

• But, with the existing ones, and with the experts 
answering my emails, I should be able to survive (more 
or less) already.  

• And, I am happy to become a service provider, of course 
for my own models, but also for other models. 
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A wish list.

• Higher spin. 

• A low energy only SUSY spectrum calculator (to LHA). 

• Only a warning if b to s gamma is too large, higgs is 
too light, over-closes the universe, LSP is not neutral, 
some minima breaks charge, etc.

• Allow me to stay at tree level.   

Friday, April 16, 2010



A wish list.

• Higher spin. 

• A low energy only SUSY spectrum calculator (to LHA). 

• Only a warning if b to s gamma is too large, higgs is 
too light, over-closes the universe, LSP is not neutral, 
some minima breaks charge, etc.

• Allow me to stay at tree level.   

• More detailed documentation. 

• Structure of the program, changeable parts. 

Friday, April 16, 2010



A wish list.

• Higher spin. 

• A low energy only SUSY spectrum calculator (to LHA). 

• Only a warning if b to s gamma is too large, higgs is 
too light, over-closes the universe, LSP is not neutral, 
some minima breaks charge, etc.

• Allow me to stay at tree level.   

• More detailed documentation. 

• Structure of the program, changeable parts. 

• Analysis tools. 

Friday, April 16, 2010



A wish list.

• Higher spin. 

• A low energy only SUSY spectrum calculator (to LHA). 

• Only a warning if b to s gamma is too large, higgs is 
too light, over-closes the universe, LSP is not neutral, 
some minima breaks charge, etc.

• Allow me to stay at tree level.   

• More detailed documentation. 

• Structure of the program, changeable parts. 

• Analysis tools. 

• Color flow, long decay chain, higher dimensional 
operator... 
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MC4SM!

• This is really the hard part. 

• Matrix element + parton shower merging, NLO,NLL...

• Better MC efficiency?

• More flexible ways of setting generator level cuts, 
choosing factorization scales. 

Peter’s talk.
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MC4SM!

• This is really the hard part. 

• Matrix element + parton shower merging, NLO,NLL...

• Better MC efficiency?

• More flexible ways of setting generator level cuts, 
choosing factorization scales. 

Peter’s talk.

Thanks.
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Using planar flow to identify top jets.

•            is not very well modeled by parton shower.

• Also affected by contamination from underlying events.

Figure 8: Left: QCD dijet predictions for detS⊥ with a pT cut of 1200 GeV, showing large
variations between different shower evolution variables. Right: detS⊥ after imposing the top
window cut 160 GeV < Qjet < 200 GeV, comparing to a 3 TeV top resonance. While detS⊥

shows promise in separating boosted tops from QCD fat jets, it is difficult to make a firm
conclusion given the large theoretical variance.

3.2 Boost-Invariant Event Shape

While boosted tops might be described theoretically by an M → ABC splitting, one still has
to find an experimental proxy for the A, B, and C subclusters. Instead of using a clustering
algorithm, an alternative strategy is to construct an event shape variable that uses all of the
hadrons in a jet to form an observable that measures the gross energy distribution.

The goal is to build an event shape that probes the fact the top decay products are widely
separated in the top rest frame, so one wants a boost-invariant event shape. Ideally, the event
shape would be invariant under both the boost axis and the boost magnitude. Unfortunately,
building a meaningful event shape that is invariant under choice of boost axis is difficult, because
in the M rest frame, the splitting M → ABC defines a plane. If the boost axis is perpendicular
to this plane then A, B, and C look well-separated, but if the boost axis is parallel to the plane,
then A, B, and C overlap.

We can still form an event shape that is invariant under the boost magnitude, by considering
a variant to the ordinary sphericity tensor [31].8 Taking the z-axis to be the boost direction,
consider a jet with total four vector {Ejet,!0⊥, pz

jet} and constituents pµ
α = {Eα, !p⊥α , pz

α}. The

(linear) jet transverse sphericity tensor S⊥ij is an object that is invariant under boosts along
the z-axis:

S⊥ij =

∑

α∈jet

!p⊥i
α !p⊥j

α

|!p⊥α |
∑

α∈jet

|!p⊥α |
. (10)

There is only one non-trivial eigenvalue of S⊥ since the two eigenvalues sum to 1, so we will take
the determinant of S⊥ to be our boost-invariant event shape. Note that detS⊥ is identically 0

8Strictly speaking, even this event shape is not invariant under boosts given finite calorimetry. Even though
!p⊥ is invariant under boosts, the calorimetry is defined by φ and η, which is invariant only under boosts along
the beam axis and not to boosts along the top momentum axis.
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Resummation & Concavity: 
Stringless Argument

• Resumming one-gluon exchanges and extrapolating to 
large λ gives -√λ /r Coulomb potential (Erickson, 
Semenoff, Zarembo)

• Bachas: static potential is concave 

• Long distances: V(r)~σr (confinement)

• Assume Coulomb until r ~ zIR

• Learn: mstr zIR ~ √σ zIR < λ1/4
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S-Parameter
• One example of a challenge for RS model-

building is the S-parameter. Strings will 
change it by an unknown order-one 
amount.

• Approaches: either use composite Higgs,   
(v/MKK) small (still viable)

• Or: Higgsless limit, tune fermion profiles 
(“delocalization”) to cancel S: still viable, 
just different tuning.
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4d vs 5d masses
• Another way to see this: for a bulk mass 

m52 in units of RAdS (for a scalar with 
Dirichlet b.c., for convenience), 4d masses 
are zeroes of Jν(m4dzIR) with

• The first such zero goes as:

• Thus m4d zIR ~ m5d RAdS at large m5d
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A. Relating 5D and 4D Masses

We have claimed that the ratio of masses of four-dimensional string and KK mode

states is related to the ratio of the bulk AdS curvature radius and string length:

mstr

mKK
=

RAdS

ls
. (A.1)

In this appendix we review the basic facts about holography that lead to this relation.

In the bulk, masses of states, measured in units of the AdS curvature radius, are related

to the dimensions of operators in the boundary theory. For instance, in AdS5, a scalar

dual to an operator of dimension ∆ has mass-squared m2R2
AdS = ∆(∆−4). Bulk string

states correspond to operators that have very large dimension in the boundary.

To compute masses of 4d resonances, we work with the Randall-Sundrum back-

ground, although the result will be general. We take the metric to be AdS5 truncated

at an IR wall:

ds2 =

(
RAdS

z

2) (
ηµνdxµdxν + dz2

)
, 0 ≤ z ≤ zIR. (A.2)

(We may take a UV boundary condition zUV ≤ z, but for describing just a technicolor

sector not coupled to elementary fields or gravity, we can send zUV → 0.) For a scalar

field of bulk mass m5, we solve for 4D modes with the ansatz φ(x, z) = eiq·xϕ(z):

∂z

((
RAdS

z

)3

∂zϕ(z)

)
+ q2

(
RAdS

z

)3

ϕ(z)−m2
5

(
RAdS

z

)5

ϕ(z) = 0. (A.3)

The normalizable solutions (at z → 0) are ϕ(z) = c0z2Jν(qz) with ν =
√

4 + m2
5R

2
AdS =

|∆− 2|. The masses of modes will be determined by a boundary condition at z = zIR;

for convenience, let us take a Dirichlet boundary condition ϕ(zIR) = 0.

For the states we refer to as “KK modes,” ∆ ∼ O(1) and the bulk mass m5 ∼
O(R−1

AdS). (If we were working with a gauge boson rather than a scalar, for instance, we
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could have a conserved current with ∆ = 3 and m5 = 0, whereas a scalar of dimension

3 has m2
5 = −3R−2

AdS.) When ∆ ∼ O(1), the masses of the light KK modes are of order

z−1
IR ; for instance, if we take ν = 1, then the first zero is at m4d = 3.83z−1

IR .

For string states, however, we have very massive bulk fields, m5RAdS ∼ RAdS
ls
# 1.

In this case, ν # 1 and the smallest root of the Bessel function is [73]:

m4d ≈
(
ν + 1.856ν1/3 +O(1)

)
z−1

IR . (A.4)

Thus we see that for large values of m5RAdS, or equivalently large operator dimensions

∆, the mass of the lightest 4d state created by the operator is of the order ∆ × z−1
IR .

In particular, the ratio of 4d masses of the lightest modes created by two operators

is of the same order as the ratio of bulk masses of the fields corresponding to those

operators. This establishes equation A.1.

It isn’t obvious that solving the two-derivative action for a very heavy field should

be a good approximation to masses of excited string states. However, one can find the

same result by imagining the behavior of a long, semiclassical excited string state in

the bulk. Such a string will fall to the “bottom” of the AdS geometry and hit the wall

at z = zIR, where it will correspond to a 4d state with mass given by the warped-down

string scale at the wall. This scaling also reproduces equation A.1, and the consistency

of the two viewpoints gives us confidence that this scaling is completely generic.

B. Resummation

We briefly review the resummation argument of Ref. [59], the applicability of which to

non-susy, QCD-like theories was recenty discussed in Ref [61]. This argument computes

an approximate strong-coupling potential Vstatic(r) in the short-distance, conformal

regime. We choose Feynman gauge, with a gluon propagator Dµν(x) = ηµν
αs
x2 . We

begin with a Wilson loop giving the static potential between two quarks separated by

a distance L; specifically, we consider a trapezoidal Wilson loop with (Euclidean time)

edges of length T1 and T2, both much greater than L. Call this Wilson loop W (T1, T2; L).

The potential we are interested in is given by Vstatic(L) = − limT→∞
1
T log W (T, T ; L).

Resumming one-gluon exchanges between the two temporal legs gives a simple Dyson

equation for the integral:

W (T1, T2; L) = 1 +

∫ T1

0

dt1

∫ T2

0

dt2W (t1, t2; L)
λ

4π2 (L2 + (t1 − t2)2)
, (B.1)

with boundary conditions W (0, T ; L) = W (T, 0; L) = 1. This integral equation can be

converted into a differential equation ∂T1∂T2W (T1, T2; L) = λ
4π2(L2+(T1−T2)2)W (T1, T2; L).
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