RS strings, Jet substructure and thoughts on MC4BSM

Lian-Tao Wang Princeton University

Outline

- RS strings
- Jet substructure: discovering the buried Higgs.
- Thoughts on MC4BSM.

RS and strings.

M. Reece and LTW, arXiv:1003.5669

Confining Strings in RS

- I will be discussing Randall-Sundrum constructions with at least the SM electroweak gauge fields in the bulk
- This is dual to gauging global symmetries of some confining, technicolor/compositeHiggs -like theory
- KK modes are typically considered in RS models.
- Such a theory should have confining strings
- How heavy are they? Should they be part of the lowenergy effective theory?

Basic setup and result.

Basic setup and result.

- Light string states ~ TeV
 - Higher spin, Regge-like.
 - Studied examples:

spin 2 excitations of SM gauge boson: Perelstein & Spray, arXiv:0907.3496 spin 3/2 excitations the top quark: Hassanain, March-Russell, and Rosa, arXiv:0904.4108

The Short Version of this work

- Two known arguments -- avoiding a Landau pole and completing the confining phase transition -- imply a bound of loosely N < 10.
- In AdS₅ × S⁵, the AdS curvature radius scales as $R^4 = 4\pi g_s N I_s^4$, so the bound on N bounds (Strassler; Hassanain et al; Perelstein & Spray)

$$\frac{m_{\rm str}}{m_{\rm KK}} = \frac{R_{\rm AdS}}{l_s} \le N^{1/4} \sim 10^{1/4}$$

• Our goal: explain these arguments in detail, extend them to various examples.

Not no-go theorem. Arguments for why the light string states should generically present.

Avoiding Landau Poles

The two-point function of the global symmetry current computes its contribution to the running of $SU(2)_{L}$ in the SM:

$$\int d^4x \ e^{-iq \cdot x} \left\langle J_{\mu}(0) J_{\nu}(x) \right\rangle_{CFT} = -\frac{b_{CFT}}{16\pi^2} \left(q^2 g_{\mu\nu} - q_{\mu} q_{\nu} \right) \log q^2,$$
$$\frac{8\pi^2}{g^2(Q^2)} = \frac{8\pi^2}{g^2(\Lambda_X^2)} + (b_{SM} + b_{CFT}) \log \frac{\Lambda_X}{Q}$$

In most examples, $b_{CFT} \sim N$ (from fields in the bifundamental of color and flavor).

Set by $b_{CFT} = 8\pi^2 R/g_5^2$ in 5D theory.

Figure 1: Bound on b_{CFT} as a function of the scale Λ below which we forbid a Landau pole.

GUT-scale hierarchy:

$$b_{CFT} \leq \frac{8\pi^2}{g^2(M_Z)} \frac{1}{\log 10^{12}} + \frac{10}{3} \approx 10. \longrightarrow \mathbf{N} < \mathbf{O}(10)$$

- If the SM gauge bosons are composite -- e.g. emerging from Seiberg duality at the bottom of some cascade -such bounds do not apply. (Interpret Landau pole as hint of duality.) Different scenario.
- If b_{CFT} is order-one, as in some M5 brane models (Gaiotto-Maldacena), this bound does not apply.

semi-realistic model?

Cosmology

- If RS is a good description, expect the confinement/ deconfinement transition to be of Hawking-Page type.
- $T > T_c$: thermal plasma, dual to AdS-Schwarzschild.
- $T < T_c$: hadronization, dual to AdS on thermal circle
- Phase transition is first-order.

Cosmology

- Critical temperature: $T_c \sim 2^{1/4}/(\pi z_{\rm IR})$. (Herzog) Scale of KK modes, not string modes. $m_{\rm KK} \simeq z_{\rm IR}^{-1}$
- Entropy density $O(N^2)$ at high temperatures and O(I) at low temperatures.
 - The phase transition is slow (Creminelli et al.; Randall & Servant; Kaplan, Schuster, & Toro)
- Similarly: change in vacuum energy $O(N^2)$

$$\Delta E_{vac} = \frac{16M_5^3 R_{AdS}^3}{z_{IR}^4} = \frac{8}{\pi^2} c \frac{1}{z_{IR}^4}$$

Cosmology

- The danger is the "empty universe problem," explained clearly in this context by Kaplan, Schuster, and Toro.
- Rate of bubble nucleation:

$$\Gamma \sim \frac{1}{z_{\rm IR}^4} e^{-\mathcal{O}(N^2)}$$

• If $\Gamma < H^4$, bubbles never meet, and the transition never completes.

The Bound

- We can't calculate the bounce action that takes us from thermal AdS to AdS-Schwarzschild. (Approximations exist for Goldberger-Wise stabilization.)
- In general, N^2 replaced with central charge c

$$a_0 z_{IR}^{-4} \exp^{-a_1 c} > c^2 z_{IR}^{-8} M_{Pl}^{-4}$$

• (Unknown order-one numbers a_0, a_1)

$$c \lesssim \frac{1}{a_1} \left(4 \log(M_{Pl} z_{IR}) + \log a_0 - 2 \log c \right)$$

$$c \sim N^2 \le 140$$
, if $a_1 = 1$

Summary of Bounds

- These are two known bounds, comparably strong: $b_{CFT} \sim N < 10$ and $c \sim N^2 < 140$.
- We will see that the string scale is related to these numbers raised to small fractional powers, so is tightly bounded.
- Both of these numbers turn out to be very geometric
- Bound on c is more generic (b_{CFT}~I in M5 examples), but could avoid if the universe has never reheated above a temperature > TeV

4d vs 5d Masses

- We're interested in ratios of masses of 4d states (heavy string modes and light Kaluza-Klein modes)
- Our proxy for this is the ratio of length scales in the bulk theory.

$$\frac{m_{\rm str}}{m_{\rm KK}} \simeq \frac{R_{\rm AdS}}{l_s}$$

 KK masses set by z_{IR}⁻¹, location of the IR wall, "warped down" from RAdS⁻¹. String masses set by warped-down string scale at IR wall.

We went through various examples and arguments of the implications of bCFT bound and cosmology bound on this ratio.

R_{AdS} vs. I_s in N=4 SYM

- Before looking at more examples, let's remind ourselves of AdS₅ × S⁵, where $R_{AdS}^4 = 4\pi g_s N I_s^4$.
- What's happening here can be thought of as moduli stabilization: need to fix the radius of the S⁵ compactification.
- Two terms in potential: curvature ~ 1/R² and flux ~ g_s²N²/Vol(S⁵)², in string units.
- Comparable size at minimum, sets R_{AdS} .

c Bound and Geometry

Assuming we start with 10d string theory, reduce to 5d AdS to obtain a Planck scale:

$$M_5^3 = \frac{1}{(2\pi)^7 g_s^2 l_s^8} \text{Vol}_{M_5}.$$

Read off the central charge from the $\langle TT \rangle$ correlator as $c = 2\pi^2 M_5^3 R_{AdS}^3$:

$$c = \left(\frac{R_{\text{AdS}}^4}{8\pi l_s^4 g_s}\right)^2 \left(\frac{\mathbf{v}_{M_5}}{\pi^3}\right)$$

Here v_{M5} is the volume of M_5 in units of R_{AdS} .

c Bound, Numerically

- We see that c is expressed in terms of (R_{AdS}/I_s) , the number we wish to bound, along with $g_s < I$ (by S-duality) and v_{M5} .
- Smaller size of the internal manifold, i.e., small compared to the AdS space, larger mstr/mkk =RAds/ls.

$$c = \left(\frac{R_{\text{AdS}}^4}{8\pi l_s^4 g_s}\right)^2 \left(\frac{\mathbf{v}_{M_5}}{\pi^3}\right)$$

• Normalize using AdS₅ × S⁵: $V_{S^5} = \pi^3$

$$\frac{m_{\rm str}}{m_{\rm KK}} \lesssim \left(140 \times 64\pi^2 \frac{\pi^3}{v_{M_5}}\right)^{1/8} \approx 4.2 \left(\frac{\pi^3}{v_{M_5}}\right)^{1/8}$$

bCFT Bound and Geometry

For the Landau pole bound on b_{CFT} , we need gauge fields in the bulk. There are different routes to this, but let's focus on D7 branes (Karch-Katz).

These must wrap a 3-manifold $M_3 \subset M_5$.

$$S_{\rm DBI} = -\tau_7 \int d^8 \sigma \, {\rm tr} \sqrt{-\det(G_{\alpha\beta} + 2\pi\alpha' F_{\alpha\beta})}$$

$$\Rightarrow \quad \frac{R_{\text{AdS}}}{g_5^2} = R_{\text{AdS}} \times \frac{\text{Vol}_{M_3}}{g_7^2} = \frac{v_{M_3}}{2\pi^2} \frac{2\pi^2}{2g_s(2\pi)^5} \left(\frac{R_{\text{AdS}}}{l_s}\right)^4$$

bCFT Bound, Numerically

The bulk gauge coupling determines the coefficient in the $\langle J J \rangle$ correlator and hence b_{CFT} :

$$b_{CFT} = 8\pi^2 \frac{R_{\text{AdS}}}{g_5^2} = \frac{v_{M_3}}{2\pi^2} \left(\frac{R_{\text{AdS}}}{l_s}\right)^4 \frac{1}{4\pi g_s}$$

Similarly to what we found for c, we have expressed b_{CFT} in terms (R_{AdS}/I_s), the number we wish to bound, along with $g_s < I$ and v_{M3} .

$$\frac{m_{\rm str}}{m_{\rm KK}} \lesssim \left(4\pi g_s \frac{2\pi^2}{v_{M_3}} \left(\frac{8\pi^2}{g^2(m_Z^2)} \frac{1}{\log(\Lambda_{UV}/\Lambda_{TC})} + \frac{10}{3}\right)\right)^{1/4} \lesssim 3.3 \left(g_s \frac{2\pi^2}{v_{M_3}}\right)^{1/4}$$

Orbifolds

- One way to reduce the volume of the internal geometry is to orbifold it.
- S⁵ can be thought of as a circle fibered over CP²; mod out by Z_k subgroup
- Doesn't change AdS₅ part of geometry: same R_{Ads}/I_s, but b_{CFT}, c lower by factor of k.
- Heavier strings at no cost?

Orbifolds

- However, run into a limit: size of the fiber shrinks from R to R/k, becomes I_s eventually
- Bound: $k < N^{1/4}$.
- Our bound on N was strict enough that this gives us only a small improvement.

The Weak Gravity Conjecture

- Interesting argument from weak gravity: add UV brane, go on branch with one D3 brane a distance R_{AdS} in the bulk, apply bound $m_W < g M_{Pl}$ (Arkani-Hamed, Motl, Nicolis, Vafa '06)
- Find that this means a bound on size of internal space, Vol_d > $g_s R_{AdS} I_s^{d-1}$
- Examples with fluxes generically have a stronger Vol_d > $g_s N R_{AdS} I_s^{d-1}$.

Weak-Gravity Saturation

- Suppose we knew a construction that saturates the weak-gravity bound $Vol_d > g_s R_{AdS} I_s^{d-1}$ (we don't)
- It would have $c_{sat} \sim (R_{AdS}/I_s)^4$. (Contrast $(R_{AdS}/I_s)^8$ in AdS₅ × S⁵) Similarly for b_{CFT}
- Would be intrinsically interesting, plus the best route to decoupling strings. Does it exist?

Precision Electroweak

- One advantage of an RS description of a stronglycoupled sector is that quantities are calculable, e.g. the S, T, U parameters.
- Light strings could give O(I) corrections, but probably don't change conclusions about viability.
 - E.g., custodial symmetry still protects T.
- It could give additional contributions to S-parameter comparable from those of the KK-mode.
 - Change preferred model parameters.

Stringy States

- What sort of states do we expect?
- Higher-spin W and Z bosons.
- Fermions model-dependent; possibly spin-3/2 top, bottom, etc.
- KK modes on internal directions.
- Higher-spin "KK gravitons" (closed strings)
- A whole zoo; challenging spectroscopy.

Jet substructure

Jet substructure.

- On very general grounds, we expect the TeV new physics states to have significant coupling to the W, Z, and top quark.
- When produced at TeV-scale energies, they have a large boost.

Hiding Higgs.

• Alternative decay channels can dramatically change Higgs search strategy.

 $h \rightarrow aa \rightarrow 4\tau, \ 4b, \ \overline{b}b\overline{\tau}\tau$

For example: P. Graham, A. Pierce, J. Wacker, hep-ph/0605162 M. Carena, T. Han, G. Huang, C. Wagner, arXiv:0712.2466

 $h \to aa \to c\bar{c}c\bar{c}$, "charming"? $h \to aa \to gggg$, "buried"! For example: B. Bellazzini, C. Csaki, A. Falkowski, A. Weiler, arXiv:0910.3210, arXiv:0906.3026

• Why can new jet technology help?

Usefulness of the variables.

A. Falkowski, D. Krohn, J. Shelton, A. Thalapillil, and LTW, in progress.

Encouraging results.

(rates in fb)

jet mass	\rightarrow

Cut	Range	S [fb]	B[fb]	S/B	$S/\sqrt{B} @ 100 {\rm ~fb^{-1}}$
p_T	$> 200 { m GeV}$	$1.7 \cdot 10^{1}$	$3.3 \cdot 10^4$	$5.1 \cdot 10^{-4}$	0.9
m_j	$90 \leftrightarrow 110 { m ~GeV}$	$1.0\cdot 10^1$	$1.1 \cdot 10^{3}$	$9.5\cdot10^{-3}$	3.1
α	> 0.7	$5.1 \cdot 10^0$	$2.7 \cdot 10^{2}$	$1.9\cdot 10^{-2}$	3.1
β	$< 5 \cdot 10^{-3}$	$8.2 \cdot 10^{-1}$	$3.1 \cdot 10^{0}$	$2.7\cdot 10^{-1}$	4.7

Table 2: $m_H = 100 \text{ GeV}, R = 1.0$

2 subjets

$$\alpha = \min\left[\frac{m(j_1)}{m(j_2)}, \frac{m(j_2)}{m(j_1)}\right]$$

radiation pattern

$$\beta = \frac{p_T(j_3)}{p_T(j)}.$$

Top jet substructure, 2-finding:

Jet clustering history is approximately the inverse of parton shower.

Tuesday, July 28, 2009

Top jets vs QCD jets

J. Thaler and LTW, arXiv:0806.0023.

Related studies: D. Kaplan, K. Reherman, M. Schwartz, B. Tweedie, arXiv: 0806.0848. L. Almeida, S. Lee, G. Perez, G. Sterman, I. Sung, J. Virzi, arXiv:0807.0243 Gustaaf H. Brooijmans, arXiv:0802.3715; CMS, CMS PAS JME-09-001

Friday, April 16, 2010

Top jets vs QCD jets

J. Thaler and LTW, arXiv:0806.0023.

 Combined cuts on jet mass and z can enhance further the signal with respect to the background. O(100) enhancement of the signal.

Related studies: D. Kaplan, K. Reherman, M. Schwartz, B. Tweedie, arXiv: 0806.0848. L. Almeida, S. Lee, G. Perez, G. Sterman, I. Sung, J. Virzi, arXiv:0807.0243 Gustaaf H. Brooijmans, arXiv:0802.3715; CMS, CMS PAS JME-09-001

Friday, April 16, 2010
More jet shape variables.

- Top decay is more like 3-body. Span a "plane" perpendicular to the jet axis.
 - Transverse sphericity, or "planar flow"

Better reconstruction of the jet shape

- Can be used to further improve top tagging. An additional factor of several possible.
- Interesting to compare with improved QCD calculation, using modern technologies such as SCET.

Thoughts on MC4BSM as a user/theorist.

• Many good developments since MC4BSM-1.

- Many good developments since MC4BSM-1.
- Some (incomplete) examples
 - Madgraph: usrmod, ()-notation, pythia interface, BRIDGE.
 - Sherpa, Whizard, Feynrules + ...

- Many good developments since MC4BSM-1.
- Some (incomplete) examples
 - Madgraph: usrmod, ()-notation, pythia interface, BRIDGE.
 - Sherpa, Whizard, Feynrules + ...
- Madgraph+pythia combo has worked very well for me.

- Many good developments since MC4BSM-1.
- Some (incomplete) examples
 - Madgraph: usrmod, ()-notation, pythia interface, BRIDGE.
 - Sherpa, Whizard, Feynrules + ...
- Madgraph+pythia combo has worked very well for me.
- Many improvements are still possible (earlier talks) .

- Many good developments since MC4BSM-1.
- Some (incomplete) examples
 - Madgraph: usrmod, ()-notation, pythia interface, BRIDGE.
 - Sherpa, Whizard, Feynrules + ...
- Madgraph+pythia combo has worked very well for me.
- Many improvements are still possible (earlier talks) .
- But, with the existing ones, and with the experts answering my emails, I should be able to survive (more or less) already.

- Many good developments since MC4BSM-1.
- Some (incomplete) examples
 - Madgraph: usrmod, ()-notation, pythia interface, BRIDGE.
 - Sherpa, Whizard, Feynrules + ...
- Madgraph+pythia combo has worked very well for me.
- Many improvements are still possible (earlier talks) .
- But, with the existing ones, and with the experts answering my emails, I should be able to survive (more or less) already.
- And, I am happy to become a service provider, of course for my own models, but also for other models.

• Higher spin.

- Higher spin.
- A low energy only SUSY spectrum calculator (to LHA).
 - Only a warning if b to s gamma is too large, higgs is too light, over-closes the universe, LSP is not neutral, some minima breaks charge, etc.
 - Allow me to stay at tree level.

- Higher spin.
- A low energy only SUSY spectrum calculator (to LHA).
 - Only a warning if b to s gamma is too large, higgs is too light, over-closes the universe, LSP is not neutral, some minima breaks charge, etc.
 - Allow me to stay at tree level.
- More detailed documentation.
 - Structure of the program, changeable parts.

- Higher spin.
- A low energy only SUSY spectrum calculator (to LHA).
 - Only a warning if b to s gamma is too large, higgs is too light, over-closes the universe, LSP is not neutral, some minima breaks charge, etc.
 - Allow me to stay at tree level.
- More detailed documentation.
 - Structure of the program, changeable parts.
- Analysis tools.

- Higher spin.
- A low energy only SUSY spectrum calculator (to LHA).
 - Only a warning if b to s gamma is too large, higgs is too light, over-closes the universe, LSP is not neutral, some minima breaks charge, etc.
 - Allow me to stay at tree level.
- More detailed documentation.
 - Structure of the program, changeable parts.
- Analysis tools.
- Color flow, long decay chain, higher dimensional operator...

MC4SM!

- This is really the hard part.
- Matrix element + parton shower merging, NLO, NLL...

Peter's talk.

- Better MC efficiency?
- More flexible ways of setting generator level cuts, choosing factorization scales.

MC4SM!

- This is really the hard part.
- Matrix element + parton shower merging, NLO, NLL...

Peter's talk.

- Better MC efficiency?
- More flexible ways of setting generator level cuts, choosing factorization scales.

Thanks.

Using planar flow to identify top jets.

- $1 \rightarrow 3$ is not very well modeled by parton shower.
- Also affected by contamination from underlying events.

Resummation & Concavity: Stringless Argument

- Resumming one-gluon exchanges and extrapolating to large λ gives $-\sqrt{\lambda} / r$ Coulomb potential (Erickson, Semenoff, Zarembo)
- Bachas: static potential is concave
- Long distances: $V(r) \sim \sigma r$ (confinement)
- Assume Coulomb until $r \sim z_{IR}$
- Learn: $m_{\rm str} z_{\rm IR} \sim \sqrt{\sigma} z {\rm IR} < \lambda^{1/4}$

S-Parameter

- One example of a challenge for RS modelbuilding is the S-parameter. Strings will change it by an unknown order-one amount.
- Approaches: either use composite Higgs,
 (ν/Μ_{KK}) small (still viable)
- Or: Higgsless limit, tune fermion profiles ("delocalization") to cancel S: still viable, just different tuning.

4d vs 5d masses

• Another way to see this: for a bulk mass m_5^2 in units of R_{AdS} (for a scalar with Dirichlet b.c., for convenience), 4d masses are zeroes of $J_{V}(m_{4d}z_{IR})$ with

$$\nu = \sqrt{4 + m_5^2 R_{\rm AdS}^2}$$

- The first such zero goes as: $\left(\nu + 1.856\nu^{1/3} + \mathcal{O}(1)\right)$
- Thus $m_{4d} z_{IR} \sim m_{5d} R_{AdS}$ at large m_{5d}