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NEUTRINO SOURCES
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OUTLINE

➤ Part I 
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WHAT DO WE KNOW ABOUT NEUTRINOS?

Standard Model
➤ Neutrinos interact through the 

weak interaction
➤ The lepton flavour is strictly 

conserved
➤ Neutrinos have zero mass

Neutrino oscillations
➤ Indicate massive neutrinos
➤ Mix flavour and mass 

eigenstates (PMNS matrix)
➤ Beyond Standard Model
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PMNS matrixFlavour Mass



NEUTRINO OSCILLATION FRAMEWORK
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“Solar” “Reactors”/Long baseline “Atmospherics”

➤ Free parameters usually written in terms of three rotation angles and 1 
complex phase: θ12, θ23, θ13, δCP 

Neutrino oscillations 
➤ In the two-flavour approximation:  
➤ Δm2ij = |m2 i-m2 j| [eV2] - L=distance to source - E=neutrino energy 
➤ Flavour change doesn't alter total neutrino flux 
➤ If Δm 2 = 0 then neutrinos don't oscillate  

➤ If there is no mixing (if 
 
= 0) neutrinos don't oscillateUα,j

AtmosphericsSolar Accelerator/Reactor

!"# = sin( 2θ sin( 1.27Δ/( 01( 2 3/
4 501



NEUTRINO OSCILLATIONS

➤ Starting with 
 
either see if they disappear 

(disappearance) or look for 
 
(appearance)  

➤  measured comparing neutrinos and 
antineutrinos

να

νβ

δCP
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NEUTRINO MASSES

Normal Ordering (NO) Inverted Ordering (IO)
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➤  from solar 
neutrinos - sign known 

➤  from 
atmospheric neutrinos 
- sign not known 

➤ Matter interaction 
needed to solve 
ambiguity

Δm2
12

|Δm2
32 |

➤  <<  implies at least 3 massive neutrinosΔm2
12 Δm2

32



NEUTRINO MASSES
There are three limiting cases: 
➤ Normal Hierarchical spectrum (NH): requires Normal Ordering 

(NO) and m1~0  

➤ Inverted Hierarchical spectrum (IH):  requires Inverted 
Ordering (IO) and m3~0  

➤ Quasi Degenerate spectrum (QD): for m1>0.1eV 

Measuring the masses requires: 
➤ The mass scale: mmin 
➤ The mass ordering, i.e. either NO or IO
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OSCILLATIONS

Global 6-parameter fit (2019) 
Best determined: 

➤  
‣  
‣  

Pending issues: 
•  maximality/octant 
• Mass ordering 
• CP phase: > ?

θ12, θ13, Δm2
21, |Δm2

3l |
|Δm2

3l = Δm2
31 > 0(NO)

Δm2
3l = Δm2

32 < 0(IO) |

θ23

π



NEUTRINOS - WHERE WE STAND
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Neutrino have masses and mix!
Current knowledge of neutrino properties:
➤ 2 neutrino mass squared differences
➤ 3 sizeable mixing angles
➤ some hints of CP violation in favour of NO
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A TINY PARTICLE FOR A BIG MYSTERY
➤ The current Universe is matter-dominated. 

➤ Evidence from several sources (non-observation of gamma ray emission, 
direct searches for antimatter, CMB anisotropy, LSS and nucleosynthesis, 
etc. 

➤ The modern perspective is that the excess of matter developed 
dynamically through a processes called “baryogenesis.” 

➤ There are three conditions that any model of Baryogenesis must satisfy: 
Sakharov’s conditions 

- Baryon number violation  

- C- and CP-violation  

- Out-of-equilibrium 

➤ Leptogenesis: Generation of baryon asymmetry from lepton 
asymmetry
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➤ Leptogenesis takes place in the context of see-saw models 
➤ The minimal seesaw mechanism is Type-I. 

- Introduce a right handed neutrino N 
- Couples to the Higgs and has a Majorana mass (  = C ) 

➤ The mass of the light Majorana neutrinos is predicted correctly 
if the mass scale of the heavy Majorana neutrino is  GeV.

ν νT

1010

MINIMAL SCENARIO OF LEPTOGENESIS
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➤ See-saw type I models can be embedded in GUT and explain the baryon 
asymmetry via leptogenesis. HNL masses can go from eV to GUT scale. 



DIRAC OR MAJORANA?
➤ Massive neutrinos can be Majorana or Dirac particles.  

➤ In the SM only neutrinos can be Majorana as neutral particles. 

Majorana condition:  = C  

➤ Dirac particle are distinguished from their antiparticles due to some 
conserved charge (e.g. electron from positron).  

➤ The nature of neutrinos is linked to the conservation of lepton (L) 
number 

➤ This is crucial information to unveil the Physics BSM: with or without L-
conservation?  

➤ Lepton Number Violation (LNV) is a necessary condition for 
Leptogenesis. 

➤ Test of LNV: neutrinoless double beta decay. 

ν νT
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OPEN QUESTIONS IN NEUTRINO PHYSICS
➤ Is there leptonic CP-violation?  

➡ Long baseline neutrino experiments 
➤ What are the precise values of mixing angles?  

➡ Long baseline neutrino experiments, reactor experiments 
➤ What are the values of the masses?  

- Absolute scale  
➡ Direct Neutrino Mass Experiments 

- Mass Ordering  
➡ Long baseline neutrino experiments, reactor experiments, 

neutrino observatories 

➤ What is the nature of neutrinos? 
➡ Neutrinoless Double Beta Decays Experiments

➤ Is the standard picture correct? Are there NSI? Sterile neutrinos? Other 
effects? 
➡  Reactor experiments, short baselines experiments etc.

Very exciting experimental programme now and for the future!!
17
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ACCELERATOR NEUTRINO EXPERIMENTS

➤ On-axis neutrino energy tightly related to hadron energy  
➤ Off-axis, neutrino spectrum is narrow-band and softened. Used by NOvA 

(14 mrad) and T2K (2.5 ) Components of an accelerator neutrino 
experiment 

∘
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➤ Components of an 
accelerator neutrino 
experiment 



FERMILAB NEUTRINO BEAM LINES
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Three neutrino beam lines: 
➤ Booster Neutrino Beam 

(BNB): short baseline 
neutrino program 

➤ NUMI: MINOS+, 
MINERvA, NOvA 

➤ LBNF: DUNE

arXiv:1502.07715v2
arXiv:1709.00146v1

Letter of intent P-1062BNB NuMi LBNF



J-PARC NEUTRINO BEAM LINE
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➤ 30 GeV proton beam from J-
PARC Main Ring extracted onto 
a graphite target 

➤ Detectors 2.5° off the direction 
of the beam centred around 0.6 
GeV. 

➤ Neutrino experiments: 
- T2K 
- Hyper-Kamiokande



TOKAI-2-KAMIOKA (T2K) 
➤ T2K strategy in a nutshell:
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Φνnear(E)⋅σnear(E,Q2)⋅εnear(E) ⇔ 
Φνfar(E,𝜃,𝛥m2,𝛿)⋅σfar(E,Q2)⋅εfar(E)

➤Total proton on target (POT) collected:  
➤Collected 

-  POT in  mode  
- POT in  mode  

➤Analysed 
-  POT in  mode  
- POT in  mode  

➤Beam power 500 kW!

3.29 × 1021

1.63 × 1021 ν
1.65 × 1021 ν

1.51 × 1021 ν
1.65 × 1021 ν



DISAPPEARANCE SAMPLES/PARAMETERS

➤ World-leading constraint on atmospheric 
mixing angle. 

➤  for both mass orderings.  
➤ Consistent with maximal mixing ( )

sin2 θ23 = 0.53+0.03
−0.04

45∘
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APPEARANCE

➤  best fit value and 68% (1σ) C>L. for NO (IO):
( ).  

➤ Statistical uncertainty dominating . 
➤ CP conserving values lie outside the 2𝛔 contour for 

both bayesian and hybrid-frequentist analyses. 

δCP
−1.89+0.70

−0.58 −1.38+0.48
−0.54
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 : 3  EXCLUSIONδCP σ

➤ 2D confidence intervals at the 68.27% 
confidence level for  vs  in the 
normal ordering.  

➤ 2D confidence intervals at the 68.27% and 
99.73% confidence level 
for   vs   from the T2K + Reactors 
fit in the normal ordering. 

➤ 1D confidence intervals on   from the 
T2K + Reactors fit in both the normal 
(NO) and inverted (IO) orderings.  
- CP conserving points,  = 0 and  = 

, are ruled out at 95%C.L. 
- NO  C.L.: [-3.41;-0.03] 
- IO  C.L: [-2.54;-0.32]

δCP sin2 θ13

δCP sin2 θ23

δCP

δCP δCP
π

3σ
3σ
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68% C.L. w/o 
reactor 𝜃︎︎ 
constraint 

68%
3σ w/ reactor 𝜃︎︎ 

constraint 

1910.03887 [hep-ex]



T2K IN THE NEXT DECADE (  T2K-II): UPGRADED BEAM & DETECTORSaka
Running up to when Hyper-Kamiokande starts  
➤ Including more final states in analysis 
➤ Use results from T2K replica target at NA61 
➤ Upgraded near detector suite (installation 2021) 
Goal: reduce systematics to ~4% 
Near detector suite (at 280m):
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Super-Kamiokande 
➤ Gadolinium doping (SK-Gd) 
➤ Gd enhances neutron detection 
➤ It can help with  wrong sign 

background rejection
νe

arXiv:1901.03750 

Beam power schedule



NOVA 
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Sensitivity to mass hierarchy thanks to 
matter effect determine sign of ⇒ Δm2
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➤ Functionally identical near and 
far detector 

➤ Events are classified using a 
Convolutional Neural Network

on the surface 
14 kton (60 m x 

15.6 m x 15.6 m)

underground 
300 ton (14.3 m x 4.1 

m x 4.1 m)

➤ Running at 700 kW since January 2017. 
➤ 78% increase in exposure in 2018-2019



NOVA FAR DETECTOR DATA
sampleνe
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sampleνe sampleνμ

neutrino  beam neutrino  beam

antineutrino  beam antineutrino  beam

78% more antineutrino running  
Evidence for  appearance at  νe 4.4σ

[arXiv:1906.04907 for more details]



NOVA OSCILLATION RESULTS
Best fit:  

 
 (NH) 

 
➤ All values of  are allowed at 1.1σ (NH, Upper 

octant). 

➤ IH,  is ruled out > 4σ. 

➤ Inverted Hierarchy is disfavoured at 1.9σ.

sin2θ23 = 0.56+0.04
−0.03

Δm2
32 = + 2.48 × 103eV2

δCP = 0.0+1.3
−0.4π

δCP

δCP =
π
2

29



NOVA OSCILLATION RESULTS

Comparisons:
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Lower octant ( ) disfavoured at 1.6sinθ32 < 0.5 σ



NOVA FUTURE RUNNING
➤ Expected running up to 2025. 
➤ Expected improvements for upcoming analyses: 

- Accelerator beam intensity (50:50 neutrino:antineutrino running) 
- Analysis improvements  
- Test beam (measurements   

are still statistically limited)

31

➤ Projections with current analysis



NEUTRINO-NUCLEON INTERACTIONS
Neutrinos interact with nucleons bound in the nuclei  nuclear effects. 
Nuclear effects also introduce a bias in energy reconstruction.

⇒

32

➤ Neutrino interaction model is 
essential to reduce neutrino 
oscillation systematic uncertainties 

➤ Current measurements are 
statistics limited, but not for long!  

➤ Largest systematics related to 
neutrino-nucleus interactions  

➤ Essential total systematic 
uncertainty <3% for DUNE/HK 

Phys. Rev. D 96, 092006 (2017) 



NEUTRINO-NUCLEON INTERACTIONS
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➤ Ongoing global program of measurements of diverse type of interactions on 
different target materials at various range of neutrino energies and flavours

dσ/dQ2 vs. Eν: QE, single 
nucleon 

(McFarland, Ruterbories)

arXiv:1803.08848 



EXPERIMENTAL XSECTION STATUS
➤ T2K, MINERvA and others have made a wide range of innovative 

cross-section measurements aimed to target the nuclear physics 
most pertinent to future oscillation analyses.  

➤ None of our current simulations are able describe more than the 
lepton kinematics ...  

34S. Dolan, NuPhys2019



WHAT NEXT?

➤ Input from and collaboration between experimentalists and 
theorists is fundamental to overcoming these challenges.  

➤ “Experiments have outstripped the oversimplified models in 
generators”. (K. McFarland, NuInt18) 

➤ U. Mosel, NEUTRINO18.
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DUNE
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Two detector technologies: 
Single Phase                          Double Phase

➤ 1.2 MW initial beam power 
➤ Upgradeable to 2.4 MW

arXiv:1807.10334, 1807.10327, 
1807.10340)

(4x10kt 
fiducial) LAr 
TPCs



DUNE LONG BASELINE OSCILLATION ANALYSIS OVERVIEWS
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LAr TPCMPD3DST-S



DUNE SENSITIVITIES
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CPV sensitivity, Normal Ordering MH sensitivity, Normal Ordering

Width of bands indicates variation in 
possible central values of θ23

 sensitivity for both orderings and 
the full range of 
> 5σ

δCP



PROTODUNE: PROTOTYPING THE DUNE FAR DETECTOR DESIGN
Two prototype detectors located at CERN neutrino platform 

➤ Single phase and dual phase 
➤ Test detector engineering, and demonstrate long-term operational 

stability 
➤ Measurements with beam: 

- towards demonstrating calibration 
- 0.5 — 7 GeV particle beams (e, π, p, K) 
- beam time limited by availability of CERN accelerators 

➤ ProtoDune Single Phase : data taking in August — November 2018 
- Currently taking cosmics 

➤ ProtoDune Double phase: 
- Being filled with Ar.
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September 19 2018:  
first track recorded



HYPER-KAMIOKANDE

Next generation of neutrino observatory in Japan 
➤ Water Cherenkov detector  
➤ Construction 2020-26  
➤ 260 kton water Fid. Volume: ~ 8 x Super-K 
➤ Photocoverage: 40% (x2 SK sensitivity) 
➤ Second staged detector possibly in Korea 

(>200km baseline, second oscillation maximum)

⇒
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HYPER-KAMIOKANDE WITH BEAM ONLY
➤ Aim to reduce systematics down to 3% 
➤ Crucial suite of new detectors 

- New WC detector @ ~750m 
- (Further) refurbished on- and off-axis detectors

41

Expected significance to exclude sin = 0 plotted as a function of true  assuming NHδCP δCP



HYPER-KAMIOKANDE WITH BEAM-ONLY
➤ After CPV is determined, accurate measurement of δCP will be crucial 
➤ Sensitivity is limited by systematics  near detectors⇒

42

➤ The 90% CL allowed regions in the  and 
 plane.  

➤ The true values are  and 
  

sin2θ23
Δm2

23
sin2θ23 = 0.5

Δm2
32 = 2.4 × 10−3eV2



HYPER-KAMIOKANDE WITH BEAM AND ATMOSPHERICS
➤ Expected sensitivity to the mass hierarchy as 

a function of time 
➤ Even if MH not determined at that time, HK-

only can determine the MH at 5  after ≥ 6 
years. 

➤ The sensitivity highly depends on  value.

σ

θ23
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Expected significance to exclude sin = 0 
plotted as a function of true  for beam-only 
and beam+atmospherics atmospheric neutrinos

δCP
δCP

Fraction of CP phase space at which a  
observation of CP violation can be made 
as a function of time for NH and IH

3σ



PROTON DECAYS
➤ Theories as Grand Unification Theories (GUT) suggest that the proton 

decay may exist and be observable. 
➤ Large neutrino detectors are also good detector for proton decay searches!

4410
32

10
33

10
34

Soudan Frejus Kamiokande IMB

o/B (years)
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10
35

n A e- K +

KamLAND

FutureCurrent limits

20 kton



NEXT FACILITIES
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ESS SB 
➤ A design study for an experiment to measure CP 

violation at 2nd neutrino oscillation maximum at ESS.  
➤ Main challenge: modifications to ESS linac to produce 

neutrinos. Aim for a 5MW beam power.

ν

➤ STORM: Physics goals:
✍ %-level electron and muon neutrino cross-sections
✍ Sterile neutrino searches, beyond  SBN 

➤ Technology 
✍ Muon storage ring design that relies on R&D towards future Neutrino Factories. 
✍ Very well known fluxes of , , , and .

ν

νe νe νμ νμ

➤ Enubet: Based on conventional technologies 
➤ Aiming for a 1% precision on the  flux 
protons (K, ) Kaon decays neutrino detector 
➤ Aim: ~1 order of magnitude better  and  cross sections, search for New Phys.

νe
→ π → →νe→

νe νμ



CONCLUSIONS - PART I

➤ Increase interest in neutrinos in the last decades. 
➤ Tiny particles that may help to explain the current matter-

antimatter asymmetry of the universe. 
➤ Intense programme worldwide to understand the neutrino 

properties. 
➤ Focus of the long-baseline neutrino experiments is on the 

measurement of the CP phase. 
- CP conserving values excluded at 2  
- Continuous programme running up to ~2025 with the 

current facilities. 
- New facilities starting in ~2026-2027

σ
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ADDITIONAL SLIDES
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PARTICLE BEAMS
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➤ I’ll mainly focus on conventional 
neutrino beams, as described in this 
introduction 

➤ Characteristics: 
‣ Well controlled in energy and timing 
‣ Neutrinos produced in /K/  decays 

➤ Dominant source is pion decay 
 (BR≈100%) 

‣ Simple 2 body decay in CM system  

‣ Neutrino energy:  

➤ Neutrinos boosted in the direction of 
the proton beam.

π μ

π → μ + νμ

Eν ≈
0.43Eπ

1 + γ2θ2



T2K CROSS SECTIONS 2019 HIGHLIGHTS
Three different off-axis angles, energies and detectors

49

CC  cross section on water, hydrocarbon 
and iron

νμ CC  cross section on plastic 
and water

νμ0π0p

G. Christodoulou

CC1 per nucleon π+



T2K ND280 CROSS SECTIONS 2019 HIGHLIGHTS
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NC1  off-axis flux of neutrinosγ
J. Phys. G 46, 08LT01 (2019)

CC0  Water/Plastic ratioπ

CC , CC  inclusive cross section on plasticνe νe



MICROBOONE OVERVIEW
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➤ Past: MiniBooNE
➤ Present: MicroBooNE
➤ Future: SBN Program
➤ Over the next couple of years two additional 

detectors, ICARUS and SBND, will come online 
joining MicroBooNE 

➤ The goal of this program is to definitively 
investigate the LSND allowed space.

BNB
NuMI



MICROBOONE LAR TPC
➤ 85-ton active volume 

Liquid argon TPC. 
➤ 3 planes of sensing 

wires (0o,+/-60o) 
➤ System of 8-inch PMTs
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➤ Sensitive to many detector effects 
➤ Using data to perform direct calibrations of each 
➤ It’s relevant for all LAr programme.  
➤ Some already adopted by ProtoDUNE

JINST 12, P02017 (2017)

➤ Surface detector: 
✍ Main challenge is the cosmic rays 

background 
✍ 99.9% background reduction for 

analyses 
✍ Also source of important samples 

for calibration etc.



MICROBOONE RESULTS
➤ First absolute cross section measurement from MicroBooNE: CC0  
➤ Recent  CC inclusive cross section

π
νμ
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➤ First -Ar double differential 
cross section measurement 

➤ Uncertainty is dominated by: 
✍ Detector model (16.2%) 
✍ Beam flux (12.2%) 
✍ Out-of-FV neutrino 

modelling (10.9%)



MICROBOONE
➤ Many ongoing measurements 
➤ https://microboone.fnal.gov/public-notes/
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CC Np: Important for 
understanding Final 
State Interaction (FSI) 
and nucleon correlations



CERN “ACCELERATOR” NEUTRINO PLATFORM
➤ European Strategy for Particle Physics 2013:“CERN should develop a 

neutrino programme to pave the way for a substantial European role 
in future long-baseline experiments” 

➤ Part of the CERN Medium Term Plan (since 2015). CERN acts as a 
hub for R&D on future technologies (HW and SW) and partner in 
several neutrino “accelerator” research programs 

➤ Current activities:
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✍ ENP01: ICARUS refurbishing and far detector in the SBN FNAL facility (now at FNAL almost ready for 
operation) 

✍ NP02: LAr double phase TPC demonstrator (ProtoDUNE DP) 
✍ NP03: PLAFOND –generic detectors R&D 
✍ NP04: LAr single phase TPC demonstrator (ProtoDUNE SP) 
✍ NP05: Baby Mind muon detector for T2K near (operational) 
✍ NP06: ENUBET project (new in the NP) 
✍ NP07: ND280 T2K near detector upgrade (new) 
✍ + agreed active participation in the construction and exploitation of the LBNF/DUNE and SBN US 

programs 
✍ + collaboration with DarkSide20k experiment



FASER @ LHC

➤ First neutrino project from colliders ! FASERν 
➤ Pilot run in 2018. Preparing for physics run 2021. 
➤ Possible studies with high energy neutrinos at the TeV scale 

✍ Cross-section measurements of all flavours in unexplored energy region 
✍ Search for new physics effects in high-energy neutrino interactions

56

Emulsion detector with 
Tungsten target

arXiv:1708.09389 

T. Ariga


