

SPAATIND 2020- 26TH NORDIC PARTICLE PHYSICS MEETING

SKEIKAMPEN 2–7 JANUARY 2020

Neutrinos - Part II

Francesca Di Lodovico King's College London

OUTLINE

≻ Part I

- What we know about neutrinos
- Matter Antimatter Asymmetry & the role of Neutrinos
- Study of Neutrinos using Long Baseline Neutrino Experiments
- ► Part II
 - Study of Neutrinos using Reactor Experiments
 - How we can measure the neutrino mass?
 - What is the nature of neutrinos? Dirac or Majorana?
 - Astrophysical neutrinos
 - Sterile neutrinos

REACTOR NEUTRINO FLUX

- > Pure electron antineutrinos $\overline{\nu}_e$
- ► 2 × 10²⁰ $\overline{\nu}_e$ /second/GW_{th}
- Produced by fission products from four major isotopes: ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu
- ► ~6 $\overline{\nu}_e$ per fission
- ► Detect neutrino via an inverse beta decay

 $^{235}_{92}U + n \rightarrow X_1 + X_2 + 2n$

DAYA BAY, RENO AND DOUBLE CHOOZ FOR θ_{13}

Daya

2x20t near l

2x20t near II

1380 n

4x20t far

1650 m

► No dependence on CP phase and θ_{23}

REACTOR EXPERIMENTS – CURRENT RESULTS

0.05

0.1

0.15

0.2

 $\sin^2 2\theta_{13}$

- Best precision at Daya Bay
- Still dominated by statistics
- ➤ Great success and rapid improvement on the precision: 20%→3.4% from 2012 to 2019
- More data taking
- Ultimate precision: 3% from Daya Bay

REACTOR NEUTRINO OSCILLATIONS FOR MASS ORDERING

► Interference effects between Δm_{12}^2 and Δm_{32}^2 driven oscillations can be used by reactor experiments to infer the neutrino mass hierarchy ⇒ made possible by "large value" of θ_{13}

MASS ORDERING WITH JUNO

REACTOR NEUTRINO ANOMALIES

➤ Reactor Antineutrino Anomaly (RAA) ⇒ Institut Laue–Langevin (ILL) spectra agree w/ data; 2011, Huber-Mueller spectra higher than data by 6%; Sterile neutrino? Inaccurate prediction?

Summation (Ab initio): Nuclear database, Σ fragments, Σ chains, Σ branches à 10% uncertainty (e.g. Vogel et al., PRC24, 1543 (1981)).

> Conversion: ILL measured the β -spectra and convert to neutrino spectra

- ILL spectra: Use spectra of 30 virtual (allowed) decays, fit amplitude and endpoints (ILL-Vogel spectra)
- Mueller: 90% ab initio + 10% fit à rate anomaly
- Huber: fit w/ improved nuclear effects (Huber-Mueller spectra, 2-3%)

FUEL EVOLUTION

Near/far relative measurements in oscillation cancel the flux uncertainty.

- The observed number of IBD events in near detectors yields absolute measurement of neutrino flux.
- Uncertainty dominated by detection efficiency.
- Both Daya Bay and RENO confirmed the deficit in RAA Daya Bay: Data/Huber-Mueller = 0.952 ±0.014(exp.)±0.023 (model)

- ► Daya Bay new measurement (arXiv:1904.07812):
 - $^{235}U: 0.920 \pm 0.023(exp) \pm 0.021(mod)$
 - 239 Pu: 0.990 ± 0.057 (exp) ± 0.025 (mod)

> Further work ongoing both experimentally and theoretically to explain the RAA.

REACTOR NEUTRINO ANOMALIES

Spectrum excess (4-6 MeV bump)

Latest results from Daya Bay

- 6.3σ in 4-6 MeV range disagree w/ H-M model,
 5.3σ for whole spectrum
- First decomposition spectra for U235 and Pu239 (or Pu239+Pu241). 7% (9%) excess for the U235 (Pu239First measurement of ²³⁵U spectrum in commercial reactors
- Excess of events in the bump is proportional to reactor flux (fuel evolution irrelevant)
- Summation spectrum also has similar structure (ongoing)

JUNO-TAO

- Taishan Antineutrino Observatory (TAO), a ton-level, high energy resolution Liquid Scintillator detector at 30 m from the core, a satellite exp. of JUNO.
- ► Measure reactor neutrino spectrum w/ sub-percent E resolution.
 - model-independent reference spectrum for JUNO
 - a benchmark for investigation of the nuclear database
- Provide reference spectrum for JUNO, to remove model dependence by measuring fine structures
- ► Provide a benchmark to examine nuclear database, measuring fine structures

OUTLINE

≻ Part I

- What we know about neutrinos
- Matter Antimatter Asymmetry & the role of Neutrinos
- Study of Neutrinos using Long Baseline Neutrino Experiments

► Part II

- Study of Neutrinos using Reactor Experiments
- How we can measure the neutrino mass?
- What is the nature of neutrinos? Dirac or Majorana?
- Astrophysical neutrinos
- Sterile neutrinos

MEASURING NEUTRINO MASSES

Mass ordering via neutrino oscillation in matter in long baseline neutrino experiments (NOvA, DUNE), atmospheric neutrinos (Hyper-K) or in vacuum (JUNO). Measurement expected this decade.

DIRECT MEASUREMENT OF THE ELECTRON NEUTRINO MASS

> Measurement of ν_e mass from kinematics of β decay.

$$\frac{d\Gamma_{i}}{dE} = C p(E+m_{e})(E_{0}-E)\sqrt{(E_{0}-E)^{2}-(m_{v}^{2})^{2}}F(E)\theta(E_{0}-E-m_{v})$$

Observable is m_{ν}^2

Requirements:

- # electrons close to the endpoint should be large
- Good (and well-understood) electron energy resolution.
- No (or minimal) electron energy loss within the source
- Minimal atomic and nuclear final state effects, of excited transitions

TECHNIQUES

				beta energy
	³ H 18.5 keV τ _{1/2} 12.3 yrs	Electromagnetic/ Frequency	>	Frequency-Based (Cyclotron
		KATRIN - Project 8		Resonance Emission Spectroscopy)
HOT WIN HOT WI	¹⁶³ Ho 2.83 keV	Calorimetric	>	Electromagnetic filtering of electron
164.93	τ _{1/2} 4570 yrs	ECHO - HOLMES	≻	Electromagnetic
TROY OUT 6 8 9999 0061	¹⁸⁷ Re 2.5 keV	MARE (ended)		collimation (MAC-E Filter)
	τ _{1/2} 4.5 Gyrs		>	Electron transfers all of its energy to the
INDIUM	¹¹⁵ In 155 eV	No experiment yet		absorbing medium.
20.000	τ _{1/2} 4.1x10 ²⁰ yrs			Calorimetric (Cryogenic
Formaggio			Τ.	Bolomers)

Formaggio

► Use photon emission

from magnetic field

interaction to infer

CURRENT EXPERIMENTS

KATRIN: first neutrino mass result $m_{\nu} < 1.1 \text{ eV} (90 \% \text{ CL})$ 3 cycles / year

ECHo: goal m_{ν} <20 eV in 2020

HOLMES: significant R&D progress

Project8: first tritium CRESS spectrum

KATRIN

The MAC-E filter

- Measure integral spectrum with moving threshold
- Magnetic Adiabatic
 Collimation + Electrostatic
 filter

• Expected m_{ν} sensitivity in 5 calendar years:

0.2 eV at 90% confidence

- ► Magnetic field range 3 G 60,000 G
- Source activity: 10^{11} decays every second
- ► 95% tritium purity
- ► Main spectrometer volume: 1240 m³

KATRIN RESULTS

Well-understood systematics budget σ_{syst} (with $\sigma_{syst} < \sigma_{stat}$)

- ► total statistical uncertainty budget $\sigma_{stat} = 0.97 \text{ eV}^2$
- ► total systematic uncertainty budget $\sigma_{syst} = 0.32 \text{ eV}^2$

$$m_{\nu}^2 = (-1.0^{+0.9}_{-1.1}) \text{ eV}^2$$

 $m_{\nu} < 1.1 \text{ eV} (90\% \text{ C.L})$

PROJECT8

- A novel spectroscopic approach
- Cyclotron Radiation Emission Spectroscopy (CRES)
 - CRES of *trapped* electrons from tritium β -decay in homogeneous strong magnetic field B

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{e \cdot B}{m_e + E_{e,kin}}$$

Precise measurement of ω yields electron kinetic energy $E_{e,kin}$

B.Monreal, J. Formaggio

B=1T,
$$E_{e,kin} = 18.57$$
 keV, $f_0 = \omega_0/2\pi \sim 27 GHz$

 $\Delta \omega \sim 1/t_s \Rightarrow$ sampling time $t_s \sim$ several μs (magnetic bottle)

PROJECT8 – A STAGED APPROACH

- Phase I: 2010-2016 demonstrate CRES technique on ^{83m}Kr monoenergetic electrons. Status: Complete! Technique demonstrated.
- Phase II: 2015 2020 First T2 spectrum. Extract endpoint. Study systematics and backgrounds. Status: Ongoing until beginning of 2020.
- ► Phase III: Provide a first demonstration of CRES technique using tritium. Use a large volume demonstrator based on multiantenna array in MRI tritium spectrum for $m(\nu_e) \sim 2 \text{ eV}$
- Phase IW: Towards an atomic triutium source. Goal: inverted mass hierarchy for m(v_e)

COSMOLOGICAL BOUNDARIES

General Idea:

- Influence on structure growth
- Influence on the expansion rate of the universe

Current probes:

- Cosmic Microwave Background (CMB)
 - ➡ CMB temperature anisotropy
 - ➡ CMS lensing
 - ➡
- Galaxy Surveys:
 - ➡ galaxy clustering
 - ➡ weak lensing at different redshifts
 - ➡ ...

Current limit:

- $\sum m_{.}$ < 230 – 540 meV (Planck)

► Future missions:

- $\sigma \sum m_{.} \sim 50 \text{meV(CMB)}$
- $\sigma \sum m_{.} \sim 20 \text{ meV}$ (CMB + BAO)
- $\sigma \sum m_{i} \sim 10 \text{meV}(\text{CMB}+\text{BAO}+\text{LSS})$

Matter power spectrum P relative to $P(\Sigma m_v = 0 \text{ eV})$

OUTLINE

≻ Part I

- What we know about neutrinos
- Matter Antimatter Asymmetry & the role of Neutrinos
- Study of Neutrinos using Long Baseline Neutrino Experiments

► Part II

- Study of Neutrinos using Reactor Experiments
- How we can measure the neutrino mass?
- What is the nature of neutrinos? Dirac or Majorana?
- Astrophysical neutrinos
- Sterile neutrinos

► Neutrinoless double beta decay, $(A, Z) \rightarrow (A, Z+2) + 2 e$, will test the nature of neutrinos

- ► Massive Majorana neutrinos mediate this process.
- It has a special role in the study of neutrino properties as it probes lepton number violation and the nature of neutrinos and can provide information on neutrino masses.

- The peak in the plot exceeds current limits by ~1 order of magnitude
- Must measure summed electron kinetic energy to distinguish from SM
 2v process

 In some nuclei β decay is forbidden but double beta decay is not

 $(Z,A) \rightarrow (Z+2,A) + 2e^- + 2\overline{\nu}_e$

- Over 40 nuclei can undergo ββ-decay (including β+β+ and 2K-capture)
- ► Only ~9 experimentally **feasible**
- Rarest natural radioactive decay extremely long half-lives
- Experimental signature:

lsotope	Nat. Abundance (%)	Q _{ββ} (MeV)
Ca48	0.187	4.274
Ge76	7.8	2.039
Se82	9.2	2.996
Zr96	2.8	3.348
Mo100	9.6	3.035
Cd116	7.6	2.809
Te130	34.5	2.530
Xe136	8.9	2.462
Nd150	5.6	3.367

- ➤ The peak in the plot exceeds current limits by ~1 order of magnitude
- Must measure summed electron kinetic energy to distinguish from SM
 2v process

 In some nuclei β decay is forbidden but double beta decay is not

 $(Z,A) \rightarrow (Z+2,A) + 2e^- + 2\overline{\nu}_e$

- Over 40 nuclei can undergo ββ-decay (including β+β+ and 2K-capture)
- ► Only ~9 experimentally **feasible**
- Rarest natural radioactive decay extremely long half-lives
- ► Experimental signature:

- Second order process in perturbation theory
- Severe test for nuclear matrix element calculation
- Nuclear structure effects cause variations in the nuclear matrix elements of factors of 10

$$(\overline{\nu}_{L} \quad \overline{N}_{R}) \begin{pmatrix} 0 & m_{D} \\ m_{D} & M_{R} \end{pmatrix} \begin{pmatrix} \nu_{L} \\ N_{R} \end{pmatrix}$$

$$(\overline{\nu} \quad \overline{N}) \begin{pmatrix} m_{D}^{2}/M_{R} & 0 \\ 0 & M_{R} \end{pmatrix} \begin{pmatrix} \nu \\ N \end{pmatrix} \stackrel{\nu = \nu_{L} + \frac{m_{D}}{M_{R}} N_{R}}{N = N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}}$$

$$N = N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$
The rate dependence on
$$T_{1/2}^{-1} \simeq \frac{G_{0\nu}}{m_{e}} |m_{\beta\beta}|^{2} M_{\text{NUCL}}^{2}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$N = N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$N = N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$N = N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} N_{R} + \frac{m_{D}}{M_{R}} \nu_{L}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} \nu_{L} \nu_{L}$$

$$(\overline{\nu} \quad \nu = \nu_{L} + \frac{m_{D}}{M_{R}} \nu_{L} \nu_{L$$

NUCLEAR MASS MATRIX ELEMENTS UNCERTAINTIES

Engel, Menendez, ARRPP 2017

- The computation of Nuclear Mass Elements (NME) relies on nuclear theory
 - **Dependence** on isotope and specific operator
 - Differences between different nuclear models
 - "**the g**_A **problem**" quenching of the axial-vector coupling?
- ► Typically an uncertainty of 2-3 is attributed to NME and affects the extraction of $m_{\beta\beta}$ from T_{1/2}
- Recent developments in terms of ab-initio computations are promising.

► The predictions for $m_{\beta\beta}$ depend on the neutrino masses

IO reach is the minimum simple goal post for future experiments
 Wide experimental program which is ongoing. The next generation is well into planning and R&D for future. A positive signal would indicate L violation!

EXPERIMENTAL SENSITIVITY

EXPERIMENTAL TECHNIQUES

Scintillators (KamLAND-Zen, SNO+, CANDLES)

- Measure energy ($\sigma \sim 3-10\%$) + position from scintillation light; some PID
- ► TPCs (EXO, NEXT, PandaX, AXEL)
 - Collect scintillation + ionization: measure energy (σ ~1-3%) + tracks / position + PID
- Bolometers (CUORE, CUPID, AMORE)
 - Measure energy ($\sigma \sim 0.2\%$) from phonons; granularity gives position info
 - R&D underway for instrumenting with photon detectors for background rejection
- Semiconductors (GERDA. MAJORANA, COBRA, SELENA)
 - Measure energy (~0.1-0.3%) from ionization; some tracking / position sensitivity
- External Trackers (NEMO, SuperNEMO, DCBA)
 - Trackers + calorimeters, measure energy ($\sigma \sim 3-10\%$) + tracks / positions + PID

APPROACHES AND EXPERIMENTS

sour	ce = detector		NOW	MID-TERM	LONG-TERM NE	utrino2018
Scalability Eluid embedded source	Xe-based TPC	EXO-200		nEXO		
		NEXT-10	NEXT-100 PandaX-III	NEXT-2.0 PandaX-III 1t		
	Liquid scintillator as a matrix	KamLAND-Zen 800		KamLAND2-Zen		
		SNO+ pha	se l	SNO+ phase II		
ສ pug gy ug Bh de	Germanium diodes Bolometers	GERDA-II	LEGEND 200	LEGEND 1000		
		MJD				
		AMoRE pilot, l	AMoRE II			
		CUORE CUPID-0, CUPID-N	Мо	CUPID		

The ultimate goal of the next generation of experiments is $m_{\beta\beta} \sim 15-20 \text{meV}$

EXPERIMENTS

R&D

mass Collaboration Technique Status Isotope $(0v\beta\beta isotope)$ **CANDLES** ⁴⁸Ca 305 kg CaF2 crystals - liq. scint 0.3 kg Operating R&D CARVEL ⁴⁸Ca ⁴⁸CaWO₄ crystal scint. 16 kg ⁷⁶Ge **GERDA I** Ge diodes in LAr 15 kg Complete **GERDA II** ⁷⁶Ge Point contact Ge in active LAr 44 kg Operating 30 kg MAJORANA DEMONSTRATOR ⁷⁶Ge Point contact Ge in Lead Operating LEGEND 200 ⁷⁶Ge Point contact Ge in active LAr 200 kg Construction ⁷⁶Ge LEGEND 1000 Point contact Ge in active LAr R&D 1 tonne ¹⁰⁰Mo/⁸²Se NEMO3 Foils with tracking 6.9 kg/0.9 kg Complete SuperNEMO Demonstrator ⁸²Se Foils with tracking Construction 7 kg Se CCDs R&D **SELENA** ⁸²Se <1 kg **NvDEx** ⁸²Se SeF6 high pressure gas TPC 50 kg R&D AMoRE ¹⁰⁰Mo CaMoO4 bolometers (+ scint.) 5 kg Construction CUPID 100**Mo** Scintillating Bolometers R&D 250 kg ¹¹⁶Cd/¹³⁰Te Operating **COBRA** CdZnTe detectors 10 kg CUORE-0 130Te Complete TeO₂ Bolometer 11 kg 130**Te CUORE** TeO₂ Bolometer 206 kg Operating SNO+ 130**Te** 0.3% natTe in liquid scint. 800 kg Construction SNO+ Phase II 130Te 3% natTe in liquid scint. 8 tonnes R&D 2.7% in liquid scint. 370 kg Complete KamLAND-Zen 400 136Xe KamLAND-Zen 800 136**Xe** 750 kg Operating 2.7% in liquid scint. 136Xe 2.7% in liquid scint. KamLAND2-ZEN R&D ~tonne Xe liquid TPC 160 kg EXO-200 136Xe Complete nEXO ¹³⁶Xe Xe liquid TPC 5 tonnes R&D NEXT-WHITE 136**Xe** High pressure GXe TPC Operating $\sim 5 \text{ kg}$ 136Xe High pressure GXe TPC 100 kg Construction **NEXT-100** 136Xe High pressure GXe TPC PandaX R&D ~tonne DARWIN 136Xe Xe liquid TPC 3.5 tonnes R&D High pressure GXe TPC AXEL 136Xe R&D ~tonne DCBA 150Nd Nd foils & tracking chambers 30 kg R&D

Construction

Operating

Complete

J. Wilkinson

DISCOVERY SENSITIVITY COMPARISONS

Agostini, Benato, Detwiler, Menendez, Vissani

OUTLINE

≻ Part I

- What we know about neutrinos
- Matter Antimatter Asymmetry & the role of Neutrinos
- Study of Neutrinos using Long Baseline Neutrino Experiments

► Part II

- Study of Neutrinos using Reactor Experiments
- How we can measure the neutrino mass?
- What is the nature of neutrinos? Dirac or Majorana?
- Astrophysical neutrinos
- Sterile neutrinos

CURRENT AND FUTURE LARGE SCALE DETECTORS

Water Cherenkov

Super-Kamiokande

SNO+

Liquid Scintillator

JUNO

Jinping

Liquid Ar

Future

SOLAR NEUTRINOS

- Intense neutrinos from nuclear fusion in the Sun's core.
- Majority (99%) of flux from the pp-chain.
 Subdominant contribution (<1%) from the CNO-cycle

Interplay solar and reactor experiments

THE Δm_{12}^2 TENSION

- Super-K data best constrains Δm^{2}_{21}
- SNO data best constrains $\sin^2\theta_{12}$
- SNO and Super-K together define global *solar* neutrino fit
- Agreement with anti-v_e data (KamLAND) for sin²θ₁₂
- > 2σ tension in for Δm^{2}_{21}
- ► Tension driven by:
 - Relatively large Day/Night asymmetry
 - MSW in Earth would regenerate v_e in Night time solar flux, expected asymmetry ≈1%
 - Flatteness of the survival probability of the observed ⁸B spectrum

Oscillation parameters: Solar and KamLAND

- > A 2σ tension with the MSW upturn for the solar and solar+KamLAND best fit parameters.
- ➤ The Super-K recoil electron spectrum is consistent within~1σ with the MSW upturn for the solar global best fit parameters
- Many beyond-standard models proposed to explain the flatness of the ⁸B neutrino survival probability

METALLICITY PUZZLE

- Metallicity=abundance of volatile heavy elements like N,O,Ne,Ar....Fe
- ► SSM takes initial metallicity as input
- ► Metallicity issue:
 - Old models (98) indicated high metallicity
 - In 2004, observation of the photosphere indicated lower CNO abundance (i.e. lower metallicity)

- CNO flux directly proportional to metallicity in the core
- Also heavily temperature dependentI
- Experimentally limited sensibility to CNO due to ²¹⁰Bi background
- Borexino measurement of 7B/8B ratio ratio favours high-metallicity model though sensitivity limited by theoretical uncertainties.
- Key observation so resolve the situation: CNO neutrinos

SUPERNOVA NEUTRINOS

- Rich science outcomes from observing neutrinos from core-collapse supernovae
 - SN burst model
 - Neutrino property (mass ordering etc)
- ► SN alert (SNEWS etc)
- Observation so far: still only ~20 events from SN1987A

- Precursor signal from Si-burning can also be detectable for nearby SN bursts
- KamLAND warning system have been implemented and running
- SK-Gd will also have sensitivity.

SUPERNOVA NEUTRINO DETECTORS

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(106)	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini-BooNE	Scintillator	USA	0.7	200	(Running)
HALO	Lead	Canada	0.079	20	Running
DayaBay	Scintillator	China	0.33	100	Running
NOvA	Scintillator	USA	15	3000	Running
SNO+	Scintillator	Canada	1	300	Running
MicroBooNE	Liquid argon	USA	0.17	17	Running
DUNE	Liquid argon	USA	34	3000	Planned
Hyper-K	Water	Japan	187	50,000	Planned
JUNO	Scintillator	China	20	6000	Under construction
PINGU	Long string	South pole	(600)	(106)	Proposed

DIFFUSE SUPERNOVA NEUTRINO BACKGROUNDS

- Diffused Supernova Neutrino
 Backgrounds: Neutrinos produced from the past SN bursts and diffused in the current universe.
 - ~ a few SN explosions every second $O(10^{18})$ SNe so far in this universe
- Can study history of SN bursts with neutrinos
- SN rate problem: Observed SN burst rate lower than prediction from cosmic star formation rate
- DSNB signal will help resolving the puzzle
- Reducing backgrounds is the key for the first observation of DSNB
- First observation within reach of SK-Gd and JUNO

5

10

15

20

Measured E [MeV]

25

30

35

OUTLINE

≻ Part I

- What we know about neutrinos
- Matter Antimatter Asymmetry & the role of Neutrinos
- Study of Neutrinos using Long Baseline Neutrino Experiments

► Part II

- Study of Neutrinos using Reactor Experiments
- How we can measure the neutrino mass?
- What is the nature of neutrinos? Dirac or Majorana?
- Astrophysical neutrinos
- Sterile neutrinos

VERY SHORT BASELINE REACTOR EXPERIMENTS

- Different technologies: (Gd, Li, B) (seg.) (movable) (2 det.)
- Most have sensitivity 0.02~0.03 @Δm²
 ~1eV² @90%CL

Disagreements with expectations:

- ► Reactor Antineutrino Anomaly
- LSND anomaly: excess of events in neutrino beam, similar results in MiniBooNE.
- ► Sterile neutrinos?

Experiment	Reactor	Overburden	Detection	Segmentation	Optical	Particle ID
	Power/Fuer	(mwe)	wateria		Readout	Capability
DANSS	3000 MW	~50	Inhomogeneous	2D, ~5mm	WLS fibers.	Topology only
(Russia)	LEU fuel		PS & Gd sheets			
NEOS	2800 MW	~20	Homogeneous	none	Direct double	recoil PSD only
(South Korea)	LEU fuel		Gd-doped LS		ended PMT	
nuLat 💉	40 MW	few	Homogeneous	Quasi-3D, 5cm,	Direct PMT	Topology, recoil
(USA)	²³⁵ U fuel		⁶ Li doped PS	3-axis Opt. Latt		& capture PSD
Neutrino4	100 MW	~10	Homogeneous	2D, ~10cm	Direct single	Topology only
(Russia)	²³⁵ U fuel		Gd-doped LS		ended PMT	
PROSPECT	85 MW	few	Homogeneous	2D, 15cm	Direct double	Topology, recoil
(USA)	²³⁵ U fuel		⁶ Li-doped LS		ended PMT	& capture PSD
SoLid	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm	WLS fibers	topology,
(UK Fr Bel US)	²³⁵ U fuel		°LiZnS & PS	multiplex		capture PSD
Chandler	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm,	Direct PMT/	topology,
(USA)	²³⁵ U fuel		°LiZnS & PS	2-axis Opt. Latt	WLS Scint.	capture PSD
Stereo	57 MW	~15	Homogeneous	1D, 25cm	Direct single	recoil PSD
(France)	²³⁵ U fuel		Gd-doped LS		ended PMT	

LIMITS ON STERILE NEUTRINOS

10-

 10^{-2}

 10^{-1}

 $\sin^2 2\theta_{14}$

NEUTRINO-4 EXCLUSION, >30

NEUTRINO-4 ACCEPTED, 30 NEUTRINO-4 ACCEPTED, 20 NEUTRINO-4 ACCEPTED, 10

RAA AND GALLIUM ANOMALY

10⁻¹ sin²(2θ₁₄) ► Parameters incompatible with Data Bay & RENO results

►Data taking continues...

SHORT BASELINE NEUTRINO (SBN) PROGRAMME

NOVA AND OPERA STERILE NEUTRINO SEARCHES

- NOvA: No evidence of neutral current disappearance and limits sets.
- Being updated with increased $\overline{\nu}$ dataset and two-detector joint analysis.

- OPERA: Final results
- ν_τ and ν_e appearance channels were combined for the first time to constrain parameters of the 3 + 1 sterile mixing model.
- ► For $\Delta m_{41}^2 > 0.1 eV^2$, upper limits on $\sin^2 2\theta_{\mu\tau}$ and $\sin^2 2\theta_{\mu e}$ are set to 0.10 and 0.019 for NH and IH. The MiniBooNE best-fit values are excluded with 3.3σ significance.

SHIP

arXiv:1504.04956, JINST 14(2019)03 P03025, CERN-SPSC-2019-010

Dual detector system:

Planned SHIP CDS by 2019

- ➤ Hidden Sector detector (HS) ⇒ search for new, weakly coupled, long lived particles from the Hidden Sector
- ➤ Scattering and Neutrino Detector (SND) ⇒ neutrino physics and Light Dark Matter searches
- SND based on re-development of Opera concepts
- Magnet allows distinguishing between neutrino and anti-neutrino interactions

RPC prototypes built and successfully operated for muon flux and charm production measurement at SPS in 2018

Testbeam at DESY in 2019

CONCLUSIONS PART II

- Reactor neutrinos can helpd in further understanding neutrinos oscillations and complement the long-baseline neutrino results.
- Direct mass searches are the predominant tool to address the measurement of the neutrino mass.
- The nature of neutrinos is a major open question being addressed by neutrinoless double beta decays.
- The current and future experiments will allow to further address the astrophysical neutrinos and investigate sterile neutrinos.

ADDITIONAL SLIDES

• •

.

.

.

¹³⁶Xe

$\mathsf{KAMLAND}-\mathsf{ZEN}\ 400,800 \longrightarrow \mathsf{KAMLAND2}-\mathsf{ZEN}$

- KamLAND-Zen 400 (Kamioka-Japan): data taking completed
 Results: $T_{1/2} > 1.07 \times 10^{26}$ y $m_{\beta\beta} < 45 160$ meV
- ► KamLAND-Zen 800: Similar to KamLAND-400
- Major new points:
 - More isotope 750 Kg ¹³⁶Xe
 - New balloon
- Data taking commenced Jan 22. Initial BG dominated by 2vββ. No sign of ^{110m}Ag.
- TAUP 19 results (133 days): $T_{1/2}(^{136}Xe) > 4 \times 10^{25} \text{ yr}$

Limit sensitivity $\sim 8 \ge 10^{25}$ yr

Projected 5-year limit sensitivity >3x10²⁶ yr. Expect to reach ~5x10²⁶ yr with improved BG rejection

 Future upgrade: KamLAND2-Zen with refurbished detector

GERDA PHASE II

Phase I (Nov 2011- May 2013):

- 18 kg refurbished HdM and
 IGEX + new BEGes
- ► BG \approx 30 cts/(FWHM t yr)
- ► No LAr readout (passive shield)

Phase II (Dec 2015 - ongoing):

- Add new 87% ^{enr}BEGe detectors (20 kg)
- ► LAr active shield: BG ~3 cts/(FWHM t yr)
- Upgrade: new ICPC's + improved LAr readout

Latest Combined Result:
► Exposure: 82.4 kg yr
► T_{1/2}(⁷⁶Ge) > 0.9 x 10²⁶ yr
► Limit sensitivity: 1.1 x 10²⁶ yr

LEGEND

GERDA

Exposure: 59 kg × y Background index: $0.6^{+0.4}_{-0.3}$ c/(keV ton y) $T_{1/2} > 0.9 \times 10^{26}$ y $m_{\beta\beta} < 110 - 260$ meV

Combining the best of GERDA and MAJORANA

LEGEND-200 (LNGS)

- ►Initial phase
- ►~ 200 kg in upgraded existing GERDA infrastructure
- ► Background goal: 0.6 counts/FWHM t yr (3x lower than GERDA)
- ► Data-taking could start as early as 2021

Sensitivity: > 10^{27} y for 1 tonne × y $m_{\beta\beta} < 35 - 75$ meV

LEGEND-1000

- ►Ultimate goal
- ►1000 kg (phased) required to cover neutrino-mass IO
- ► Timeline connected to US DOE down-select process
- ►Background goal: 0.1 counts/FWHM-t-yr
- ►Location TBD

MAJORANA demonstrator

Exposure:26 kg × y Background: 11.9±2 c/(FWHM ton y) $T_{1/2} > 2.7 \times 10^{25}$ y $m_{\beta\beta} < 210 - 440$ meV

¹³⁰**Te**, ¹⁰⁰**Mo**

$\text{CUORE} \rightarrow \text{CUPID}$

CUORE (LNGS) is collecting data successfully

- ► 5 y projected half-life sensitivity: ~ 10^{26} y $m_{\beta\beta}$ < 50 190 meV
 - Background according to expectations: 1.4±0.2×10⁻² c/ (keV·kg·yr)
 - Energy resolution close to expectations
- ► Analysis of ~1000 individual bolometers is feasible

CUPID

- ➤ New detector technology: luminescent bolometers → R&D and demonstrators
- Full CUORE background model + information from demonstrators
- CUPID-0 ZnSn crystals and CUPID-Mo Li₂MoO₄ crystals operated
- ► Excellent α rejection achieved (>99.9%)
- ► Discovery sensitivity for 10 years livetime: $T_{1/2} \sim 10^{27}$ y

CUPID-0

Pavan, schmidt, Casali, TAUP19

SNO+

Reuse existing infrastructure of SNO – Canada SNO+ phase I

- SNO acrylic vessel filled with LAB loaded with 800 kg¹³⁰Te
- ► 5 y sensitivity: $T_{1/2} > 1.9 \times 10^{26} \text{ y m}_{bb} < 35 140 \text{ meV}$
- ► Ran with water May 2017 Fall 2018
 - BG ~free ⁸B solar v: PRD **99**, 012012 (2019)
 - Nucleon decay search: PRD 99, 032008 (2019)
- ► Now filling LS
 - Internal BG measurement, CNO ν, antineutrinos
- ¹³⁰Te loading in 2020

Possible SNO+ phase II (ongoing R&D)

- Increase Te concentration (it does not affect background)
- Increase light yield
- Improve transparency
- Improve light detectors
 Further evolution of this technology
 with new concepts: THEIA project

SOLAR NEUTRINOS

- Over the last few decades of the pioneering experiments, the solar neutrino deficit has been determined to be due to oscillations
- The last decade was dominated by the long-time running Super-K experiment and Borexino.
- Special highlights are the real time measurement of the dominant ppcylce and the whole pp-chain neutrinos by Borexino
- Super-K has seen the day night effect by almost 3 sigma
- Future very large scale detectors in a parasitic way could add more solar measurements in the future.
- The ultimate measurement will be the detection of CNO neutrinos and Borexino is in favourite position

SOLAR NEUTRINOS

- Over the last few decades of the pioneering experiments, the solar neutrino deficit has been determined to be due to oscillations
- The last decade was dominated by the long-time running Super-K experiment and Borexino.
- Special highlights are the real time measurement of the dominant ppcylce and the whole pp-chain neutrinos by Borexino
- Super-K has seen the day night effect by almost 3 sigma
- Future very large scale detectors in a parasitic way could add more solar measurements in the future.
- The ultimate measurement will be the detection of CNO neutrinos and Borexino is in favourite position

MULTIMESSANGER ASTRONOMY

- Unique abilities of cosmic
 neutrinos: no deflection in
 magnetic fields (unlike cosmic rays)
- no absorption in cosmic
 backgrounds (unlike gamma-rays)
- smoking-gun of unknown sources of cosmic rays
- coincident with photons and gravitational waves

...but difficult to detect...

CHERENKOV OBSERVATORIES

Mediterranean	South Pole	Lake Baikal	Mediterranean
2008–2020	fully instrumented since 2011	under construction (5 out of 8 clusters)	under construction (3 out of 230 DUs)
~0.01 km ³	~1 km ³	~0.4 km ³ (Phase 1) ~1km ³	~0.1 km ³ (Phase 1) ~1 km ³
885 OMs (10")	5160 OMs (10")	2304 OMs (10")	4140 OMs (31x3")

- Real time multi-messenger campaigns involving photons, gravitational waves and neutrinos are becoming routine.
- ► With next-generation telescopes we will go from discovery to astronomy.