Future circular colliders

Michelangelo L. Mangano Theory Department, CERN, Geneva

Lect 3,4

Spåtind 2020 Nordic conference on Particle Physics 2-7 Jan 2020

		Z	WW	ZH	t	ī
Circumference	[km]			97.756		
Bending radius	[km]			10.760		
Free length to IP ℓ^*	[m]			2.2		
Solenoid field at IP	[T]			2.0		
Full crossing angle at IP θ	[mrad]			30		
SR power / beam	[MW]			50		
Beam energy	[GeV]	45.6	80	120	175	182.5
Beam current	[mA]	1390	147	29	6.4	5.4
Bunches / beam		16640	2000	328	59	48
Average bunch spacing	[ns]	19.6	163	994	2763 ^{<i>a</i>}	3396??
Bunch population	$[10^{11}]$	1.7	1.5	1.8	2.2	2.3
Horizontal emittance ε_x	[nm]	0.27	0.84	0.63	1.34	1.46
Vertical emittance ε_y	[pm]	1.0	1.7	1.3	2.7	2.9
Arc cell phase advances	[deg]	60,	/60		90/90	
Momentum compaction α_p	$[10^{-6}]$	14	14.8 7.3			
Arc sextupole families		20)8		292	
Horizontal β_x^*	[m]	0.15	0.2	0.3	1	.0
Vertical β_y^*	[mm]	0.8	1.0	1.0	1	.6
Horizontal size at IP σ_x^*	[µm]	6.4	13.0	13.7	36.7	38.2
Vertical size at IP σ_y^*	[nm]	28	41	36	66	68
Energy spread (SR/BS) σ_{δ}	[%]	0.038/0.132	0.066/0.131	0.099/0.165	0.144/0.186	0.150/0.192
Bunch length (SR/BS) σ_z	[mm]	3.5/12.1	3.0/6.0	3.15/5.3	2.01/2.62	1.97/2.54
Piwinski angle (SR/BS) ϕ		8.2/28.5	3.5/7.0	3.4/5.8	0.8/1.1	0.8/1.0
Length of interaction area L_i	[mm]	0.42	0.85	0.90	1.8	1.8
Hourglass factor $R_{\rm HG}$		0.95	0.89	0.88	0.84	0.84
Crab sextupole strength ^b	[%]	97	87	80	40	40
Energy loss / turn	[GeV]	0.036	0.34	1.72	7.8	9.2
RF frequency	[MHz]		400		400 /	/ 800
RF voltage	[GV]	0.1	0.75	2.0	4.0/5.4	4.0/6.9
Synchrotron tune Q_s		0.0250	0.0506	0.0358	0.0818	0.0872
Longitudinal damping time	[turns]	1273	236	70.3	23.1	20.4
RF bucket height	[%]	1.9	3.5	2.3	3.36	3.36
Energy acceptance (DA)	[%]	±1.3	±1.3	±1.7	-2.8	+2.4
Polarisation time t_p	[min]	15000	900	120	18.0	14.6
Luminosity / IP	$[10^{34}/\text{cm}^2\text{s}]$	230	28	8.5	1.8	1.55
Horizontal tune Q_x		269.139	269.124	389.129	389	.108
Vertical tune Q_y		269.219	269.199	389.199	389	.175
Beam-beam ξ_x/ξ_y		0.004/0.133	0.010/0.113	0.016/0.118	0.097/0.128	0.099/0.126
Allowable e^+e^- charge asymmetry	[%]	±5		±	-3	
Lifetime by rad. Bhabha scattering	[min]	68	59	38	40	39
Actual lifetime due to beamstrahlung	[min]	> 200	> 200	18	24	18

Table 2.1: Machine parameters of the FCC-ee for different beam energies.

FCC-ee run plan

phase	Run duration (yrs)	√s (GeV)	L _{int} (ab ⁻¹)	Event stats	
ee→Z	4	88-95	150	3x10 ¹² had Z decays	
ee→WW	2	158-192	12	3x10 ⁸ WW	
ee→ZH	3	240	5	10 ⁶ ZH	
machine modification for RF installation and rearrangement: 1 year					
ee→tt	5	345-365	1.5	10 ⁶ tt + 4x10 ⁴ Hvv	
ee→H	(3)	(125)	(21)	(H resonance)	

Total programme duration: 14 years (including machine modifications) plus optional 3years @ H resonance

Hadron collider parameters (pp)

parameter	FC	CC-hh	HE-LHC	(HL) LHC
collision energy cms [TeV]		100	27	14
dipole field [T]		16	16	8.3
circumference [km]		100	27	27
beam current [A]	0.5		1.12	(1.12) 0.58
bunch intensity [1011]	1 (0.5)		2.2	(2.2) 1.15
bunch spacing [ns]	25 (12.5)		25 (12.5)	25
norm. emittance γε _{x,y} [μm]	2.	2 (1.1)	2.5 (1.25)	(2.5) 3.75
ΙΡ β [*] _{x,y} [m]	1.1	0.3	0.25	(0.15) 0.55
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	28	(5) 1
peak #events / bunch Xing	170	1000 (500)	800 (400)	(135) 27
stored energy / beam [GJ]		8.4	1.4	(0.7) 0.36
SR power / beam [kW]		2400	100	(7.3) 3.6
transv. emit. damping time [h]		1.1	3.6	25.8
initial proton burn off time [h]	17.0	3.4	3.0	(15) 40

Goal: 20-30 ab⁻¹ during the collider lifetime

FCC-he & HE-LHC-ep parameters

parameter	FCC-he	ep at HE-LHC	ep at HL-LHC	LHeC
E_{ρ} [TeV]	50	12.5	7	7
<i>E_e</i> [GeV]	60	60	60	60
\sqrt{s} [TeV]	3.5	1.7	1.3	1.3
bunch spacing [ns]	25	25	25	25
protons / bunch [10 ¹¹]	1	2.5	2.2	1.7
γε _ρ [μm]	2.2	2.5	2.0	3.75
electrons / bunch [10 ⁹]	2.3	2.3	2.3	1.0
electron current [mA]	15	15	15	6.4
IP beta function β_p^* [m]	15	10	7	10
hourglass factor	0.9	0.9	0.9	0.9
pinch factor	1.3	1.3	1.3	1.3
proton-ring filling factor	0.8	0.8	0.8	0.8
luminosity [10 ³³ cm ⁻² s ⁻¹]	11	9	8	1.3

Event rates: examples

FCC-ee	н	Ζ	W	t	т(←Z)	b(←Z)	c(←Z)
	10 ⁶	5 x 10 ¹²	10 ⁸	10 ⁶	3 x 10 ¹¹	1.5 x 10 ¹²	10 ¹²
FCC-hh		н	b	t	W(←t) τ(←W←t)
	2.5	x 10 ¹⁰	10 ¹⁷	10 ¹²	10	12	10 ¹¹
FCC-e	h		н			t	
			2.5 10 ⁶			2 10 ⁷	

Higgs observables: decay BRs

Tree-level couplings

Loop-level couplings

$$H^{0} X X_{SM} = t,b,c X_{BSM} = T, stop, ...?$$

$$H^{0} \xrightarrow{X^{\pm}} X^{\pm} \xrightarrow{X^{\pm}} X_{SM} = t, W^{\pm} X_{BSM} = T, stop, chargino, ...?$$

Higgs observables: production rates

Hadronic collisions

Sensitivity of various Higgs couplings to examples of beyond-the-SM phenomena

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

=> the goal should be (sub)percent precision!

Extracting couplings from measurements

Example

$$\sigma \left(pp/ee \to ZH[\to ZZ^*] \right) \propto g_{HZZ}^2 \times \frac{g_{HZZ}^2}{\Gamma_H}$$
1 measurement 2 parameters!

$$\sigma \left(pp/ee \to ZH[\to b\bar{b}] \right) \propto g_{HZZ}^2 \times \frac{g_{Hbb}^2}{\Gamma_H}$$

new measurement, but
 more parameter...

 $B(H \rightarrow b\bar{b})$

 $B(H \rightarrow ZZ^*)$

... little progress, except we now know

 g_{HZZ}^2 σ_A σ_R

Overall constraint: $\sum_{\mathbf{V}} B(H \to X) = 1$

Therefore:

How can we hope to detect ALL possible decays of the Higgs boson??

If the goal is to test its properties, we cannot make assumptions, and must be open to possible unexpected decays, possibly invisible, like $H \rightarrow dark$ matter...

An $\ell^+\ell^-$ collider provides the solution

 $p(H) = p(e^-e^+) - p(Z)$

=> [p(e⁻e⁺) – p(Z)]² peaks at m²(H)

reconstruct Higgs events independently of the Higgs decay mode!

 $N(ZH) \propto \sigma(ZH) \propto g_{HZZ}^2$

N(ZH[→ZZ]) ∝ σ (ZH) x BR(H→ZZ) ∝ G_{HZZ}^2 × G_{HZZ}^2 / Γ(H)

=> absolute measurement of width and couplings

 $m_{recoil} = \sqrt{[p(e^-e^+) - p(Z)]^2}$

FCC-ee

	FCC-ee 240 GeV	FCC- ee 350 GeV
Total Integrated Luminosity (ab-1)	5	1.5
# Higgs bosons from e⁺e⁻→HZ	1,000,000	200,000
# Higgs bosons form fusion process	25,000	40,000

Higgs couplings: beyond the HL-LHC

Collider	HL-LHC	HL-LHC update	ILC ₂₅₀	CLIC ₃₈₀	LEP3 ₂₄₀	$CEPC_{250}$		FCC-ee ₂₄₀	+365
Lumi (ab^{-1})	3	3	2	0.5	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	25	15	7	6	7	3	+4	
$\delta\Gamma_{ m H}/\Gamma_{ m H}$ (%)	SM	50	3.6	6.3	3.6	2.6	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	3.5	1.5	0.3	0.40	0.32	0.25	0.20	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	3.5	1.7	1.7	0.8	1.7	1.2	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	8.2	3.7	1.7	1.3	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	SM	2.3	4.1	2.3	1.8	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}~(\%)$	3.9	2.5	2.2	2.1	2.1	1.4	1.6	1.01	0.90
$\delta g_{ m HTT}/g_{ m HTT}$ (%)	6.5	1.9	1.9	2.7	1.9	1.4	1.4	0.74	0.67
$\delta g_{ m H}$ $\mu \mu / g_{ m H}$ $\mu \mu (\%)$	5.0	4.3	14.1	n.a.	12	6.2	10.1	9.0	3.8
$\delta g_{ m H}\gamma\gamma/g_{ m H}\gamma\gamma$ (%)	3.6	1.8	6.4	n.a.	6.1	4.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}~(\%)$	4.2	3.4	_	_	_	_	_	_	3.1
BR _{EXO} (%)	SM	SM	< 1.7	< 3.0	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

Table 1: Relative statistical uncertainty on the Higgs boson couplings and total decay width, as expected from the FCC-ee data, and compared to those from HL-LHC and other e^+e^- colliders exploring the 240-to-380 GeV centre-of-mass energy range. All numbers indicate 68% CL intervals, except for the last line which gives the 95% CL sensitivity on the "exotic" branching fraction, accounting for final states that cannot be tagged as SM decays. The FCC-ee accuracies are subdivided in three categories: the first sub-column give the results of the model-independent fit expected with 5 ab^{-1} at 240 GeV, the second sub-column in bold – directly comparable to the other collider fits – includes the additional 1.5 ab^{-1} at $\sqrt{s} = 365$ GeV, and the last sub-column shows the result of the combined fit with HL-LHC. The fit to the HL-LHC projections alone (first column) requires two additional assumptions to be made: here, the branching ratios into $c\bar{c}$ and into exotic particles are set to their SM values.

* M. Cepeda, S. Gori, P. J. Ilten, M. Kado, and F. Riva, (conveners), et al, *Higgs Physics at the HL-LHC and HE-LHC*, CERN-LPCC-2018-04, <u>https://cds.cern.ch/record/2650162</u>.

Remarks and key messages

- Updated HL-LHC projections bring the coupling sensitivity to the few-% level. They are obtained by extrapolating current analysis strategies, and are informed by current experience plus robust assumptions about the performance of the phase-2 upgraded detectors in the high pile-up environment
 - Projections will improve as new analyses, allowed by higher statistics, will be considered

- I. To significantly improve the expected HL-LHC results, future facilities must push Higgs couplings' precision to the sub-% level
- 2. Event rates higher than what ee colliders can provide are needed to reach sub-% measurements of couplings such as HYY, Hµµ, HZY, Htt

EW	parameters
(FCC-ee

Observable	present value ± error	FCC-ee stat.	FCC-ee syst.
m_Z (keV)	91186700±2200	5	100
$\Gamma_{\rm Z}$ (keV)	2495200±2300	8	100
R_l^Z (×10 ³)	20767 ± 25	0.06	0.2-1.0
α_{s} (m _Z) (×10 ⁴)	1196±30	0.1	0.4-1.6
R_{b} (×10 ⁶)	216290±660	0.3	<60
$\sigma_{\rm had}^0$ (×10 ³) (nb)	41541±37	0.1	4
N_{ν} (×10 ³)	2991±7	0.005	1
$\sin^2 \theta_{W}^{eff}$ (×10 ⁶)	231480±160	3	2-5
$1/\alpha_{QED}(m_Z)$ (×10 ³)	128952±14	4	Small
$A_{\rm FB}^{b,0}$ (×10 ⁴)	992±16	0.02	1-3
$A_{\rm FB}^{{\rm pol}, \tau}$ (×10 ⁴)	1498±49	0.15	<2
m _W (MeV)	80350±15	0.6	0.3
$\Gamma_{\rm W}$ (MeV)	2085±42	1.5	0.3
$\alpha_s (m_W) (\times 10^4)$	1170 ± 420	3	Small
$N_{\nu}(\times 10^3)$	2920±50	0.8	Small
m _{top} (MeV)	172740±500	20	Small
$\Gamma_{\rm top}$ (MeV)	1410±190	40	Small
$\lambda_{\rm top}/\lambda_{\rm top}^{\rm SM}$	1.2±0.3	0.08	Small
ttZ couplings	±30%	0.5 - 1.5%	Small

On the role of measurement

- Aside from exceptional moments in the development of the field, research is not about proving a theory is right or wrong, it's about finding out how things work
- We do not measure Higgs couplings precisely to find deviations from the SM.We measure them to know them!
- LEP's success was establishing SM's amazing predictive power!
- Precision for the sake of it is not necessarily justified. Improving X10 the precision on m(electron) or m(proton) is not equivalent to improving X10 the Higgs couplings:
 - m(e) => just a parameter; m(p) => just QCD dynamics; Higgs couplings => ???
- ... but who knows how important a given measurement can become, to assess the validity of a future theory?
 - the day some BSM signal is found somewhere, the available precision measurements, will be crucial to establish the nature of the signal, whether they agree or deviate from the SM

Global EFT fits to EW and H observables at FCC-ee

Constraints on the coefficients of various EFT op's from a global fit of (i) EW observables, (ii) Higgs couplings and (iii) EW+Higgs combined. Darker shades of each color indicate the results neglecting all SM theory uncertainties. 19

Remarks and key messages

- Higgs and EW observables are greatly complementary in constraining EFT ops and possibly exposing SM deviations
- An ee Higgs factory needs to operate at the Z pole and WW threshold to maximize the potential of precision measurements of the EW sector
- EW&Higgs precision measurements at future ee colliders could probe scales as large as several 10's of TeV ($c_i \sim 1 \div 4\pi$)
- 2. To directly explore the origin of possible discrepancies, requires collisions in the several 10s of TeV region
- 3. A 100-TeV pp collider is a natural, and likely required, extension of an ee facility

Remark on interpretation of EFT bounds

Example: weak interactions

 $\frac{g}{\sqrt{2}}\overline{\psi}\gamma_{\mu}\psi_{L}$ \sim

At low energy:

$$\frac{c}{\Lambda^2} = \frac{g^2}{2M_W^2} = 2\sqrt{2}G_F = \frac{2}{v^2} = \frac{1}{(174\,\text{GeV})^2}$$
versus

 $M_W = 80 \,\mathrm{GeV}$

The limits on c/Λ^2 are typically larger than the mass scale at which new physics appears

The unique contributions of a 100 TeV pp collider to Higgs physics

- <u>Huge Higgs production rates:</u>
 - access (very) rare decay modes
 - push to %-level Higgs self-coupling measurement
 - new opportunities to reduce syst uncertainties (TH & EXP) and push precision
- Large dynamic range for H production (in pTH, m(H+X), ...):
 - new opportunities for reduction of syst uncertainties (TH and EXP)
 - different hierarchy of production processes
 - \bullet develop indirect sensitivity to BSM effects at large Q^2 , complementary to that emerging from precision studies (eg decay BRs) at Q~m_H
- <u>High energy reach</u>
 - direct probes of BSM extensions of Higgs sector
 - SUSY Higgses
 - Higgs decays of heavy resonances
 - Higgs probes of the nature of EW phase transition

^{• . . .}

SM Higgs: event rates in pp@100 TeV

	gg→H	VBF	WH	ZH	ttH	HH
N100	24 x 10 ⁹	2.1 x 10 ⁹	4.6 x 10 ⁸	3.3 x 10 ⁸	9.6 x 10 ⁸	3.6 x 10 ⁷
N100/N14	180	170	100	110	530	390

 $N_{100} = \sigma_{100 \text{ TeV}} \times 30 \text{ ab}^{-1}$ $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

H at large рт

Hierarchy of production channels changes at large p_T(H):

- $\sigma(ttH) > \sigma(gg \rightarrow H)$ above 800 GeV
- $\sigma(VBF) > \sigma(gg \rightarrow H)$ above 1800 GeV

$gg \rightarrow H \rightarrow \gamma \gamma$ at large p_T

	р _{т,min} (GeV)	δ _{stat}
At LHC, S/B in the $H \rightarrow \gamma \gamma$ channel is O(few %)	100	0.2%
At FCC, for $p_T(H) > 300$ GeV, S/B~I	400	0.5%
Potentially accurate probe of the H pt spectrum	600	1%
up to large pt	1600	10%

$gg \rightarrow H \rightarrow ZZ^* \rightarrow 4I$ at large p_T

- S/B ~ I for inclusive production at LHC
- Practically bg-free at large pT at 100 TeV, maintaining large rates

р _{т,min} (GeV)	δ _{stat}
100	0.3%
300	1%
1000	10%

Top Yukawa coupling from $\sigma(ttH)/\sigma(ttZ)$

To the extent that the qqbar \rightarrow tt Z/H contributions are subdominant:

- Identical production dynamics:

o correlated QCD corrections, correlated scale dependence o correlated α_s systematics

- $m_Z \sim m_H \Rightarrow$ almost identical kinematic boundaries:
 - o correlated PDF systematics
 - o correlated m_{top} systematics

For a given y_{top} , we expect $\sigma(ttH)/\sigma(ttZ)$ to be predicted with great precision ²⁹ At 100 TeV, $gg \rightarrow tt X$ is indeed dominant

NB: At lower p_T values, gg fraction is slightly larger for ttZ than for ttH, since $m_Z < m_H$

Cross section ratio stability

	$\sigma(tar{t}H)[{ m pb}]$	$\sigma(tar{t}Z)[ext{pb}]$	$rac{\sigma(tar{t}H)}{\sigma(tar{t}Z)}$
$13 { m TeV}$	$0.475^{+5.79\%+3.33\%}_{-9.04\%-3.08\%}$	$0.785^{+9.81\%+3.27\%}_{-11.2\%-3.12\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$
$100 { m TeV}$	$33.9^{+7.06\%+2.17\%}_{-8.29\%-2.18\%}$	$57.9^{+8.93\%+2.24\%}_{-9.46\%-2.43\%}$	$0.585^{+1.29\%+0.314\%}_{-2.02\%-0.147\%}$
	-		↑ ↑

scale PDF

Production kinematics ratio stability

arXiv:1507.08169

Top fat C/A jet(s) with R = 1.2, |y| < 2.5, and $p_{T,j} > 200 \text{ GeV}$

- δy_t (stat + syst TH) ~ 1%

- great potential to reduce to similar levels $\delta_{\text{exp syst}}$

- consider other decay modes, e.g. 2l2nu

$H \to 4\ell$	$H\to\gamma\gamma$	$H \to 2\ell 2\nu$	$H \rightarrow b \bar{b}$
$2.6\cdot 10^4$	$4.6\cdot 10^5$	$2.0\cdot 10^6$	$1.2\cdot 10^8$

Events/20ab⁻¹, with $tt \rightarrow \ell \nu + jets$

 \Rightarrow huge rates, exploit

boosted topologies

BR(H \rightarrow **inv) in H+X production at large p_T(H)**

Constrain bg pt spectrum from $Z \rightarrow vv$ to the % level using NNLO QCD/EW to relate to measured $Z \rightarrow ee$, W and Y spectra

SM sensitivity with lab⁻¹, can reach few x 10⁻⁴ with 30ab⁻¹

Higgs couplings (κ fit): HL-LHC → FCC-ee → hh

	HL-LHC ^(§)	FCC-ee	FCC-hh
δΓΗ / ΓΗ (%)	SM ^(§§)	1.3	tbd
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17	tbd
δднww / днww (%)	1.7	0.43	tbd
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61	tbd
δg _{Hcc} / g _{Hcc} (%)	~70	1.21	tbd
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01	tbd
δg _{Ηττ} / g _{Ηττ} (%)	1.9	0.74	tbd
δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0	0.65 (*)
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9	0.4 (*)
δg _{Htt} / g _{Htt} (%)	3.4	—	0.95 (**)
δg _{HZγ} / g _{HZγ} (%)	9.8	—	0.9 (*)
δдннн / дннн (%)	50	~30 (indirect)	6.5
BR _{exo} (95%CL)	BR _{inv} < 2.5%	< 1%	BR _{inv} < 0.025%

§ M. Cepeda, S. Gori, P. J. Ilten, M. Kado, and F. Riva, (conveners), et al, Higgs Physics at the HL-LHC and HE-LHC, <u>arXiv:1902.00134</u>

SM width assumed in the global fit. Will be measured to ~20% (68%CL) via off-shell H->4I, to ~5% (95%CL) from global fit of Higgs production cross sections.

* From BR ratios wrt B(H→4lept) @ FCC-ee

** From pp \rightarrow ttH / pp \rightarrow ttZ, using B(H \rightarrow bb) and ttZ EW coupling @ FCC-ee

Importance of standalone precise "ratios-of-BRs" measurements:

- independent of α_s , m_b , m_c , Γ_{inv} systematics
- sensitive to BSM effects that typically influence BRs in different ways. Eg

```
BR(H \rightarrow \gamma \gamma) / BR(H \rightarrow ZZ^*)
```

loop-level tree-level

BR(H \rightarrow µµ)/**BR(H** \rightarrow **ZZ*)**

2nd gen'n Yukawa

gauge coupling

$BR(H \rightarrow \gamma \gamma) / BR(H \rightarrow Z \gamma)$

different EW charges in the loops of the two procs

BR(H \rightarrow inv)/**BR(H** \rightarrow $\gamma\gamma$)

tree-level neutral

loop-level charged

Extracting Higgs self-coupling from gg→HH at FCC-hh

... these would come into play if we eventually need to decode the origin of a deviation, as possible alternative sources of new physics

Direct measurement of ttH coupling: from $R_t = \sigma(ttH)/\sigma(ttZ)$

FCC-hh can measure R_t with $\Delta R_t/R_t \sim 2\%$

Higgs self-coupling, gg→HH

Figure 10.4: Expected precision on the Higgs self-coupling modifier κ_{λ} with no systematic uncertainties (only statistical), 1% signal uncertainty, 1% signal uncertainty together with 1% uncertainty on the Higgs backgrounds (left) and assuming respectively $\times 1$, $\times 2$, $\times 0.5$ background yields (right).)

Constraints on models with 1st order phase transition: after the HL-LHC

$$\begin{split} V(H,S) &= -\mu^2 \left(H^{\dagger} H \right) + \lambda \left(H^{\dagger} H \right)^2 + \frac{a_1}{2} \left(H^{\dagger} H \right) S \\ &+ \frac{a_2}{2} \left(H^{\dagger} H \right) S^2 + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4. \end{split}$$

Bringing the HL-LHC sensitivity to the ±50% level, makes a big dent in this class of BSM models!

Constraints on models with 1st order phase transition: after the FCC

$$\begin{split} V(H,S) &= -\mu^2 \left(H^{\dagger} H \right) + \lambda \left(H^{\dagger} H \right)^2 + \frac{a_1}{2} \left(H^{\dagger} H \right) S \\ &+ \frac{a_2}{2} \left(H^{\dagger} H \right) S^2 + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4. \end{split}$$

Combined constraints from precision Higgs measurements at FCC-ee and FCC-hh Direct detection of extra Higgs states at FCC-hh

Precision vs sensitivity

- We often talk about "**precise**" Higgs measurements. What we actually aim at is "**sensitive**" tests of the Higgs properties, where *sensitive* refers to the ability to reveal BSM behaviours.
- **Sensitivity** may not require extreme precision
 - Going after "sensitivity", rather than just precision, opens itself new opportunities ...

High-Q² observables : precision vs dynamic reach

$$L = L_{SM} + \frac{1}{\Lambda^2} \sum_k \mathcal{O}_k + \cdots$$

$$O = \left| \left\langle f | L | i \right\rangle \right|^2 = O_{SM} \left[1 + O(\mu^2 / \Lambda^2) + \cdots \right]$$

For H decays, or inclusive production, $\mu \sim O(v, m_H)$

$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2 \Rightarrow \text{precision probes large } \Lambda$$

e.g. $\delta O = 1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV}$

For H production off-shell or with large momentum transfer Q, $\mu \sim O(Q)$

$$\delta O \sim \left(\frac{Q}{\Lambda}\right)^2$$
 \Rightarrow kinematic reach probes large Λ even if precision is "low"

e.g. $\delta O = 10\%$ at Q = 1.5 TeV $\Rightarrow \Lambda \sim 5$ TeV

<u>Complementarity between precise measurements at ee</u> <u>collider and large-Q studies at 100 TeV</u>

Example: high mass $VV \rightarrow HH$

Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the di-lepton pair invariant mass in the $W_L W_L \rightarrow HH$ process.

$m_{l^+l^+}$ cut	> 50 GeV	$> 200 { m GeV}$	$> 500 { m ~GeV}$	> 1000 GeV	$\kappa - \frac{g_{HWW}}{g_{HWW}}$
$\kappa_W \in$	[0.98,1.05]	[0.99,1.04]	[0.99,1.03]	[0.98,1.02]	$\kappa_W - \frac{1}{g_{HWW}^{SM}}$

Example: high mass DY

Farina et al, arXiv:1609.08157

Direct discovery reach: the power of 100 TeV

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATLAS SUSY	Searches* - 95% CL Lower Limits
March 2019	

	Model	S	Signatur	e J	£ dt [16-	'l Mas	ss limit					Reference	_
5	$\dot{q}\dot{q}, \dot{q} \rightarrow \dot{q}\tilde{t}_{1}^{0}$	0 e, p mono-jet	2-6 jets 1-3 jets	$E_7^{\rm min}$	36.1 36.1	φ [2x, 8x Degen] φ [1x, 8x Degen]	0.43	0.71	1.5	5	m(č ⁴)−100 GeV m(g)-m(č ⁴)−5 GeV	1712.02352 1711.03301	
Inche	33. 3→qqi ²	0 e.,p	2-6 jets	E7.10	36.1	R R		Forbidden	0.95-1	2.0	m(ℓ_1^2)<200 GeV m(ℓ_1^2)=900 GeV	1712.02932 1712.02932	
e See	$\chi g, \chi \rightarrow_{4} g(\mathcal{U}) \widetilde{T}_{1}^{0}$	З л., р се, рұ	4 jeta 2 jeta	$E_7^{\rm miss}$	S6.1 S6.1	8 3			1.2	1.85	m(i ²) <500 CeV m(j)-m(2 ²)-50 GeV	1756.08781 1855.11381	
ictust ₂	£₿, ₽→qqWZΥ̃ ⁰	0 с. µ 3 с. µ	7-11 jets 4 jets	$E_7^{\rm min}$	36.1 36.1	5 R		0.98		1.8	m(ℓ ²) <000 GeV m(ξ) m(ℓ ²)=200 GeV	1706.02794 1706.03731	
5	gg, g→aR ⁰	0-1 a.,a 3 a.,a	3 <i>b</i> 4 jeta	$E_7^{\rm miss}$	79.8 36.1	8 2			1.25	2.25	m(t ²)<200 CeV m(t ²)-m(t ²)-500 GeV	ATLAS CONF 2016 041 1705.03731	
	$\hat{h}_1 \hat{h}_1, \hat{b}_1 {\rightarrow} b \hat{t}_1^2 / d\hat{t}_1^2$		Multiple Multiple Multiple		38.1 36.1 36.1	$egin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & $	Forbidden Forbidden	0.9 0.58-0.82 0.7		п п(3 ⁴ 1)=	$n(\tilde{t}_{1}^{0})$ =300 GeV, BR (\tilde{t}_{1}^{0}) =1 (\tilde{t}_{1}^{0}) =500 GeV, BR (\tilde{t}_{1}^{0}) =BR (\tilde{t}_{1}^{0}) =0.5 200 GeV, $n(\tilde{t}_{1}^{0})$ =300 GeV, BR (\tilde{t}_{1}^{0}) =1	1708.09296, 1711.03801 1708.08266 1706.08781	-
verke criter	$b_1b_1, b_1 \rightarrow b\hat{x}_2^0 \rightarrow bh\hat{x}_1^0$	$0 e, \mu$	6.6	$E_7^{\rm mix}$	139	δ ₁ Forbidden δ ₁	0.23-0.48		0.23-1.35		$dm(\tilde{r}_{1}^{0}, \tilde{r}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{r}_{1}^{0}) = 100 \text{ GeV}$ $dm(\tilde{r}_{1}^{0}, \tilde{r}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{r}_{1}^{0}) = 0 \text{ GeV}$	SUSY-2018-31 SUSY-2018-31	
No.	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow W h \tilde{\mathcal{K}}_1^{(0)}$ or $\tilde{\mathcal{K}}_1^{(0)}$	$0\text{-}2 < \mu$	0-2 jets/1-2	$b E_7^{\rm miss}$	36.1	ĥ.		1.0	5		$\operatorname{Im}(\mathcal{E}_{1}^{0})=1 \mathrm{GeV}$	1609.00616, 1709.04183, 1711.11620	
5 10	$I_{1}I_{1}$, Well-Tempered LSP $J_{1}I_{1}$, $I_{1} \rightarrow \tilde{\tau}_{1}$ by $\tilde{\tau}_{1} \rightarrow \tau \tilde{t}^{2}$	17+1643	wunipie τ 2 iets/1 λ	In the second	36.1	4 5		0.48-0.84	1.16	n(?])•	-150 GeV, m(t ⁺ ₁)-m(t ⁺ ₁)=5 GeV, ξ ₁ ≂ ξ ₄ m(t ⁺ ₁)=500 GeV	1709.04153, 1711.11520 1809.10178	
Se a	$\hat{\eta}_1 \tilde{\eta}_1, \tilde{\eta}_1 \rightarrow c \hat{\chi}_1^0 / \bar{c} \bar{c}, \bar{c} \rightarrow c \hat{\chi}_1^0$	0 e. p	20	Epin	36.1	ē		0.85			$m(\tilde{t}_1^0) = D \operatorname{Carlv}$	1805.01649	
		0 <,,p	mono-jet	$E_{T}^{\rm miles}$	36.1	4 4	0.46				$m(l_1,l)-m(\tilde{l}_1^0)=50 \text{ GeV}$ $m(l_1,l)-m(\tilde{l}_1^0)=5 \text{ GeV}$	1805.01649	
	$\bar{i}_2 \bar{i}_2, \bar{i}_2 \rightarrow \bar{i}_1 + k$	1-2 ϵ,μ	4.6	$E_I^{\rm mine}$	36.1	ž ₁		0.32-0.88			$m(\tilde{\ell}_1^3)$ =0 GeV, $m(\tilde{\ell}_1)$ - $m(\tilde{\ell}_1^3)$ = 180 GeV	1706.00966	_
	$\mathcal{I}_1^* \mathcal{I}_2^0$ via WZ	2-3 e.µ 16.µµ	21	$\frac{E_{\gamma}}{E_{\gamma}}$	36.1 36.1	$\frac{\chi_1^+/\chi_2^0}{\chi_1^+/\chi_2^0} = 0.17$		0.6			$m(\widehat{\mathcal{E}_1}^*)=0$ $m(\widehat{\mathcal{E}_1})-m(\widehat{\mathcal{E}_1})=10$ GeV	1403.5294, 1506.02293 1712.06119	
	$\mathcal{X}_{\pm}^{+}\mathcal{X}_{\pm}^{\mp}$ via WW	$2 < \mu$		$E_T^{\rm miss}$	139	I_1^{\perp}	0.42				$m(\bar{e}_1^0) = 0$	ATLAS-CONF-SDID-008	
	$\mathcal{X}_1^+ \mathcal{X}_2^+$ via Wk	0-1 e.µ 2	2.0	E ₇	36.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.68			$m(\ell_1^*)=0$	1812.09432	
$\ge \frac{1}{2}$	$\mathcal{X}_1 \mathcal{X}_1$ via $i_{1,1} \mathcal{V}$ $\mathcal{Y}_1^* \mathcal{V}_1^* \mathcal{X}_2^* = \mathcal{X}_2 \cup \mathcal{X}_2^* \mathcal{X}_2^* = \mathcal{X}_2^* \cup \mathcal{X}_2^* \mathcal{X}_2^*$	24,0		ng in	36.1	メ」 注: 7時		0.76	,		$m(\ell, \ell) = 0.26m(\ell_1^{-1}) + m(\ell_1^{-1})$ $m(\ell_1^{-1}) = 0.m(\ell_1^{-1}) + 0.5(m(\ell_1^{-1}) + m(\ell_1^{-1}))$	1708.07875	
비원	$\chi(\chi(y_2,y) \rightarrow (\gamma(y_1,y_2) \rightarrow (\gamma(y_1)))$				0.00	x ¹ ₁ /x ³ ₂ 0.22		0.10		$m(\widehat{t}_1^a){\cdot}m(\widehat{t}_1^a)$	$(r_1, r_2) = 0, m(t, t) = 0.5(m(t_1^{-1}) + m(t_1^{-1}))$ = 100 GeV, $m(t, t) = 0.5(m(t_1^{-1}) + m(t_1^{-1}))$	1708.07875	
	$\tilde{\epsilon}_{L,R}\tilde{\epsilon}_{L,R}, \tilde{\epsilon} \rightarrow c \tilde{\epsilon}_{\perp}^{2}$	$\frac{2}{2} c_{e} \mu$ $2 c_{e} \mu$	Djets ≥ t	E_{γ}^{mino} E_{γ}^{mino}	139 36.1	2 2 0.18		0.7			$m(\tilde{\epsilon}_{\perp}^{3})=0$ $m(\tilde{\epsilon}_{\perp})=6 \text{ GeV}$	ATLAS-CONF-2019-008 1712.00119	
	$\bar{B}\bar{B}_{*}\bar{B} \rightarrow h\bar{G}/2\bar{G}$	0 с.р 4 с.р	≥ 3 è 0 jats	$E_{\gamma}^{\rm miss}$	36.1 36.1	R 0.13-0.23		0.29-0.88			${f BP}(\widehat{k}^3_1 o h\widehat{G})$ =1 ${f BP}(\widehat{k}^3_1 o 2G)$ =1	1606.04000 1824.03602	
Ned Mes	Direct $\mathcal{G}_1^+ \mathcal{G}_1^-$ prod., long-lived \mathcal{G}_1^-	Disapp. trk	t jet	$E_7^{\rm miss}$	36.1	$\frac{\hat{x}_{1}^{*}}{\hat{x}_{1}^{*}} = 0.15$	0.46				Pure Wird Pure Higgsind	1712.02118 ATL-PHYS-PLID-2017-019	-
- due	Stable § R-hadron		Multiple		36.1	8				2.0		1202.01636,1505.04095	
10	Metestable ∦ R-hadron, ∦⊸gg№1		Multiple		36.1	ĝ = (πĝ) =10 ns. 0.2 ns]				2.05 2	.4 m(ℓ_{0}^{2})=100 GeV	1710.04901,1808.04095	_
	$\Box FV pp \rightarrow \bar{v}_{\tau} + X_{\tau} \bar{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	$e\mu_s e\tau_s \mu \tau$			3.2	ν,				1.9	$\lambda'_{111} = 0.11, \lambda_{122/123, 222} = 0.07$	1607.08079	
	$\hat{\chi}_1^+ \hat{\chi}_1^+ \hat{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell vv$	4 c. µ	0 jets 1.5 komp. 2 ir	E ^{rcan}	36.1	$\tilde{x}_{1}^{+} l \tilde{x}_{2}^{+} = [A_{53} \neq 0, A_{126} \neq 0]$		0.82	1.33	1.0	$m(\tilde{e}_0)$ =100 GeV	1004.00502	
>	$gg, g \rightarrow gqaa_1, x_1 \rightarrow qgg$		Multiple	515	36.1	$\frac{y}{x} = [\frac{\pi \omega_1}{\omega_2} = 200 \text{ GeV}, 1100 \text{ GeV}]$ $\frac{y}{x} = [\frac{y}{\omega_2} = 2004, 2005]$		1.0	1.3	2.0	m(\hat{k}_{1}^{0})200 GeV, biro-like	ATLAS CONF 2016-003	
6	$\mathcal{H}, I \rightarrow t \mathcal{K}_{1}^{0}, \mathcal{K}_{1}^{0} \rightarrow t b x$		Multiple		36.1	$\frac{1}{2} = [\lambda_{323}^{\mu} = 20.4, 10.2]$	0.	56 1.0	15		$m(\tilde{v}_{1}^{0})*200$ GeV, bine-like	ATLAS-CONF-2015-003	
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t}_2 r$		2 jets + 2 <i>i</i>	•	36.7	$T_1 = [qq, b]$	0.42	0.61		100 M		1710.07171	
	$I_{1}I_{1}, I_{1} \rightarrow qI_{1}$	2 «,μ 1 μ	2 & DV		36.1 135	$\hat{I}_{1} = [16\cdot10c X]_{co} < 16\cdot0, 26\cdot10c X]_{co}$	<36-8]	1.0	0.4-1.45 1	.6	BD(7,-Hyd)=10055; SA 205	1710.05844 ATLAS-CONF-2019-006	
								_					-
								• • <mark>•</mark> •••		· ·			
"Only	r a selection of the available mas nomena is shown. Many of the li	s limits on Irolts are ba	new state ased on	S OF	1	0-1			1		Mass scale [TeV]		
sim	olified models, c.f. refs. for the as	ssumptions	s made.										
									@1		V		0 / 1 /5
											· •	10	0.4-1.45
												1.0	1
										Constanting of the second s			
											The second secon		
											THE REAL PROPERTY OF THE PARTY		
											A CARGE CONTRACTOR	7	

s-channel resonances

FCC-hh reach ~ 6 x HL-LHC reach

SUSY reach at 100 TeV

Early phenomenology studies

Dark Matter

- DM could be explained by BSM models that would leave no signature at any future collider (e.g. axions).
- More in general, no experiment can guarantee an answer to the question "what is DM?"
- Scenarios in which DM is a WIMP are however compelling and theoretically justified
- We would like to understand whether a future collider can answer more specific questions, such as:
 - do WIMPS contribute to DM?
 - can WIMPS, detectable in direct and indirect (DM annihilation) experiments, be discovered at future colliders? Is there sensitivity to the explicit detection of DM-SM mediators?
 - what are the opportunities w.r.t. new DM scenarios (e.g. interacting DM, asymmetric DM,)?

WIMP DM theoretical constraints

For particles held in equilibrium by pair creation and annihilation processes, ($\chi \ \chi \leftrightarrow SM$)

 $\Omega_{\rm DM} h^2 \sim rac{10^9 {\rm GeV}^{-1}}{M_{\rm pl}} rac{1}{\langle \sigma v
angle}$

For a particle annihilating through processes which do not involve any larger mass scales:

 $\langle \sigma v \rangle \sim g_{\rm eff}^4 / M_{\rm DM}^2$

DM reach at 100 TeV

Early phenomenology studies

K. Terashi, R. Sawada, M. Saito, and S. Asai, *Search for WIMPs with disappearing track signatures at the FCC-hh*, (Oct, 2018) . https://cds.cern.ch/record/2642474.

Disappearing charged track analyses (at ~full pileup)

=> coverage beyond the upper limit of the thermal WIMP mass range for both higgsinos and winos !!

MSSM Higgs @ 100 TeV

N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang, J. arXiv: 1605.08744 ar

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu, arXiv: 1504.07617

additional opportunities

• Flavour physics at the Z pole

$Pollo II \qquad 975 975 n/s n/s$		
Defie fi 27.5 27.5 fi/a fi/a	65	45
FCC-ee 400 400 100 100	800	220

Decay mode	$\mathrm{B}^{0} \rightarrow \mathrm{K}^{*}(892)\mathrm{e}^{+}\mathrm{e}^{-}$	$B^0 \to K^*(892)\tau^+\tau^-$	$\mathrm{B}_{\mathrm{s}}(\mathrm{B}^{0}) \to \!$
Belle II	$\sim 2\ 000$	~ 10	n/a (5)
LHCb Run I	150	-	~ 15 (-)
LHCb Upgrade	~ 5000	-	$\sim 500 \ (50)$
FCC-ee	~ 200000	~ 1000	~1000 (100)

- eh collisions
- Heavy ion collisions
- Dedicated detectors for flavour physics (like LHCb)
- Forward physics (LHCf, TOTEM)
- Dedicated detectors for long-lifetime particles (like FASER, Mathusla)

Final remarks

- The study of the SM will not be complete until we clarify the nature of the Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- Unique among the proposed projects for future colliders, the FCC builds on the tried and tested format forged by the LEP-LHC experience, integrating the well-established and complementary qualities of circular e⁺e⁻ and pp colliders within a largely common, and partly existing, infrastructure.
- The sequence of FCC-ee and FCC-hh provides the most complete, detailed and accurate picture of Higgs properties achievable with the currently planned facilities, and gives direct access to the largest mass scales allowed by foreseeable technology
- Flavor factory at the Z pole, heavy ions and ep collisions: extremely diversified program => broad community engagement

FCC-ee + FCC-hh, project timeline

Domain	Cost in MCHF
Stage 1 - Civil Engineering	5,400
Stage 1 - Technical Infrastructure	2,200
Stage 1 - FCC-ee Machine and Injector Complex	4,000
Stage 2 - Civil Engineering complement	600
Stage 2 - Technical Infrastructure adaptation	2,800
Stage 2 - FCC-hh Machine and Injector complex	13,600
TOTAL construction cost for integral FCC project	28,600

Table 5: Summary of capital cost to implement the integral FCC programme (FCC-ee followed by FCC-hh).

