

Dark Jet Resonance Search Status and Outlook

Nordic Conference of Particle Physics, Skeikampen, 2020

<u>Eva Hansen</u> on behalf of the analysis team: Dilia Portillo, Jannik Geisen, Nathan Lalloué, Marie-Hélène Genest, Caterina Doglioni

Motivation: Composite Dark Matter

- Direct and indirect **WIMP searches have come up empty** so far
- Cosmological simulations allow self-interacting dark matter (DM) •
 - E.g. composite DM arising from a hidden sector with confinement ("dark QCD")
- Combined with asymmetric production, composite DM could explain mass and number density of DM and Baryons
- Requires heavy mediator linking hidden sector to visible sector
 - → Perhaps we can produce and detect hidden sector particles at the LHC!

References in

Backup

"Dark QCD"

- Hidden sector with confinement coupled to SM through a heavy mediator
- Showering and hadronisation happens in the dark sector
- The lightest baryon is stable and a DM candidate
- Some mesons might decay back to SM according to specific model

Benchmark Signal Models

- Different realisations can lead to very different detector signatures
- Composition of **visible** and **invisible** partons in the jet dependent on parameter choice:
 - Exotic I: Displaced vertices, emerging jets
 - Exotic II: Semi-visible jets
 - We target SM QCD-like models
 - With s-channel mediator decaying to two dark quarks

- Four models implemented in Pythia Hidden Valley process
 - All have larger confinement scales than SM QCD
 - Based on <u>arXiv:1712.09279</u>

% of Invisibles (in a jet)

Eva Hansen

4

Search strategy

- Dominant background is Standard Model dijet events
 - Invariant mass spectrum is a smoothly falling
- Larger dark $\alpha_{\!_{S}}$ means wider jets with larger particle multiplicity
- Strategy:
 - Reconstruct large-radius jets using Anti-kt algorithm with R=1.0
 - Select signal-like dijet events based on substructure variables
 - Look for a bump in the dijet invariant mass spectrum

arXiv:1712.09279

Signal Selection

- Charged track multiplicity n_{trk} is strongest discriminating variable for a most models
 - But not for Model B!
- Two signal regions:
 - **SR1:** High sensitivity, very pure, based on strict n_{trk} cut
 - SR2: More inclusive, less sensitive based on softer cuts on n_{trk} and EM_{frac}

Signal Region 1: Challenge

- Best sensitivity for a range of models obtained with very strict cut
- Strict n_{trk} cut significantly sculpts the background dijet mass spectrum
- Solution: Decorrelate n_{trk}-cut efficiency from dijet mass!

Signal Region 1: Decorrelation method

- "Fixed-efficiency-regression" decorrelates a discriminating variable from other variables
 - Described and tested in for *W*-tagging in ATL-PHYS-PUB-2017-004

- For each jet, the new decorrelated observable is computed as $n_{trk} = n_{trk} p^{\epsilon=0.5\%}$
- Here n_{trk}^{ϵ} is defined from data in a control region with signal efficiency ~ 0.4 %

Signal Region 1: Results (preliminary)

- Gives a smoothly falling spectrum up to ~5 TeV in MC
- Breaks down at higher mjj because of too low statistics in data sample
- Cut: Leading and sub-leading jet $n_{trk}^{\epsilon} > 0$
 - Background efficiency: 0.03 %
 - Signal efficiency (all tested models): 31 %

Background description

• The background contribution is determined by fitting data with the parametric function:

$$\frac{dn}{dx} = p_1 (1-x)^{p_2 - \xi p_3} x^{-p_3}$$

- Currently validating the fitting strategy on dijet MC samples doing
 - "Signal injection test"
 - "Spurious signal test"

The background only fit: No signal injected

Conclusion and outlook

- Lots of uncovered phase space in hidden sector models
 - We can probe (a small) part of it by searching for dark jets
 - Fun challenges for jet substructure fans!
- Ongoing task:
 - Complete validation of background estimation
 - Optimise binning
 - Evaluate systematic uncertainties on signal and background
- Long term:
 - Optimise choice of jet definition and pile-up removal
 - Study more features, such as muons in jets and missing Et aligned with a jet
 - Combine efforts with emerging jets and semi-invisible jets searches

• Table of benchmark models

arXiv:1712.09279

	N_d	n_f	$egin{array}{c} \Lambda_d \ ({ m GeV}) \end{array}$	$\widetilde{m}_{q'}$ (GeV)	$\begin{array}{c} m_{\pi_d} \\ (\text{GeV}) \end{array}$	$\begin{array}{c c} m_{\rho_d} \\ (\text{GeV}) \end{array}$	π_d Decay Mode	$ \rho_d $ Decay Mode
A	3	2	15	20	10	50	$\pi_d \to c\bar{c}$	$ ho_d o \pi_d \pi_d$
B	3	6	2	2	2	4.67	$\pi_d \to s\bar{s}$	$ ho_d o \pi_d \pi_d$
C	3	2	15	20	10	50	$ \begin{array}{c} \pi_d \rightarrow \gamma' \gamma' \text{ with} \\ m_{\gamma'} = 4.0 \text{ GeV} \end{array} $	$ \rho_d \to \pi_d \pi_d $
D	3	6	2	2	2	4.67	$\begin{array}{c} \pi_d \rightarrow \gamma' \gamma' \text{ with} \\ m_{\gamma'} = 0.7 \text{ GeV} \end{array}$	$ \rho_d \to \pi_d \pi_d $

In all models, $\angle v \rightarrow qv qv bar (BK \sim 1.)$ and $qv bar nadronize to piv and rnov with rhov <math>\rightarrow$ piv piv (BR=1.)

```
Model A: piv \rightarrow c cbar (BR=1.)
```

```
Model B: piv \rightarrow s sbar (BR=1.)
```

```
Model C: piv \rightarrow gammav gammav (BR=1.)
gammav \rightarrow d dbar (BR=0.22)
u ubar (BR=0.06)
s sbar (BR=0.06)
c cbar (BR=0.22)
e+e- (BR=0.17)
mu+mu- (BR=0.17)
tau+tau- (BR=0.10)
```

```
Model D: : piv \rightarrow gammav gammav (BR=1.)
gammav \rightarrow e+e-(BR=0.15)
mu+mu- (BR=0.15)
pi+pi- (BR=0.70)
```

- 1/3/

- Sensitivity distribution of *ntrk*^{kNN}
- Cut at peak sensitivity does not leave enough background events to fit

Signal Region 1: Decorrelation method

- LUND UNIVERSITY
- "Fixed-efficiency-regression" decorrelates a discriminating variable from other variables
 - Described and tested in for W-tagging in ATL-PHYS-PUB-2017-004

- Principal:
 - Choose a substructure variable with good clissification power (here *ntrk*)
 - Decide on a fixed background single jet efficiency ε (0.5%, giving a signal eff. of 30%)
 - Evaluate the cut value on n_{trk} that gives desired bkg. eff. in bins of p_T and m_{jj}
 - Fit the distribution using the *k-nearest neighbours* (kNN) algorithm
 - For each jet, the new decorrelated observable is computed as $n_{trk} = n_{trk} p^{\epsilon=0.5\%}$
- Here n_{trk}^{ϵ} is defined from data in a control region with signal efficiency ~ 0.4 %

Eva Hansen

- Some Hidden Valley papers
 - https://arxiv.org/abs/0712.2041
 - https://arxiv.org/pdf/1502.05409.pdf
 - https://arxiv.org/pdf/0712.2041.pdf
- Astro papers that investigate self-interacting DM:
 - https://arxiv.org/pdf/1208.3025.pdf
 - https://arxiv.org/pdf/1208.3026.pdf
 - https://arxiv.org/pdf/1201.5892.pdf
 - https://arxiv.org/pdf/1211.6426.pdf