

Trine Poulsen

Trine Poulsen

Trine Poulsen

Trine Poulsen

Trine Poulsen

Beyond Standard Model Physics

- Looking for a particle decaying into two
 top quarks in the hadronic final state
 X → tt → bqq+bqq
- E.g. Z' mediator
 - Arise from extensions of the electroweak symmetry in many different models
 - Topcolor assisted technicolor
- Looking for a **bump** in the invariant mass spectrum of the decay products of the two top quark candidates

Object and Event Selection

- Single jet trigger with $p_{T} > 460 \text{ GeV}$
- Two large radius anti-kt jets (R=1) with
 - p_{T,J1} > 500 GeV and p_{T,J2} > 350 GeV
 - o dphi(J1,J2) > 1.6 (back-to-back)
 - dy(J1,J2) < 1.8 (remove SM t-channel)</p>
- Leading and subleading large radius jets are top-tagged (DNN top-tagger 80% WP)
- One or both of the leading large radius jets should be matched to a b-tagged variable radius track jet (**DL1 77% WP**)
 - 1b and 2b signal region

TOP TAGGING

- Deep Neural Network (DNN) with input variables
 - Jet kinematics:
 - Energy corr. ratios:
 - N-subjettiness:
 - Splitting measures:
 - Minimum pairwise invariant mass:

m^{comb}, p_T e_3, C_2, D_2 $\tau_1, \tau_2, \tau_3, \tau_{21}, \tau_{32}$ $\sqrt{d_{12}}, \sqrt{d_{23}}$ Q_w

TOP TAGGING

- Deep Neural Network (DNN) with input variables
 - Jet kinematics:
 - Energy corr. ratios:
 - N-subjettiness:
 - Splitting measures:
 - Minimum pairwise invariant mass:
- $m^{comb} = a \cdot m^{calo} + b \cdot m^{TA}$
 - Combined jet mass

TOP TAGGING

- Deep Neural Network (DNN) with input variables
 - Jet kinematics:
 - Energy corr. ratios:
 - N-subjettiness:
 - Splitting measures:
 - Minimum pairwise invariant mass:
- $m^{comb} = a \cdot m^{calo} + b \cdot m^{TA}$
 - Combined jet mass
- $\tau_{32} = \tau_3 / \tau_2$
 - How likely is the jet to have three prongs compared to two

 $\mathbf{m^{comb}}, p_T$ e_3, C_2, D_2 $\tau_1, \tau_2, \tau_3, \tau_{21}, \mathbf{\tau_{32}}$ $\sqrt{d_{12}}, \sqrt{d_{23}}$ Q_w

arXiv:1011.2268v3

Spåtind 2020

TOP TAGGING

- Discriminant cut varied as a function of p_T to always have a signal efficiency of 80%
- The DNN tagger is **2x better** than the simple tagger based on m^{comb} and $\tau_{32}^{}$ cuts
- BDT tagger perform similarly as expected
- This analysis is one of the **first** to use the DNN top tagger
 - $\circ~$ Training DNN at high $p_{_{T}}$
 - Deriving uncertainty

B TAGGING

- B-hadrons have certain characteristics which can be used to tag a jet as coming from a b-quark
 - Impact parameter of tracks
 - Displaced vertices reconstructed in the inner detector
- DL1
 - Deep learning neural network based on distinctive features of b-hadrons

BACKGROUND ESTIMATION

• Fit smoothly falling m_{tt} background with **function**:

 $f(x) = p_0(1-x)^{p_1} x^{p_2+p_3\log x+p_4(\log x)^2+...}$

- Tests were done on **asimov dataset** and pseudo-experiments
- Method used in several Exotics searches in ATLAS
- Pros
 - Does not need huge amount of Monte Carlo simulations
 - Smaller systematic uncertainties
- Cons
 - Is the expected background completely smooth?

Spurious signal test

• Is it affected by a potential signal?

Signal injection test

Not possible to discover a broad signal

Asimov Sample

• **Dijet** samples

- MC: Pythia8 pT-sliced samples
 - Good statistics at high m_{tt}
- Data-driven (DD): ABCD method based on b- and top-tagging
 - Better description of dijet and good statistics at low m₊₊
- **Combined**: DD at low m_{tt} and corrected MC at high m_{tt}
 - Good statistics over full m_{tt} range
 - Stitch at 2410 GeV for 1bSR and 2730 GeV for 2bSR
- **Ttbar** samples
 - MC: All-hadronic tt and non-all-hadronic tt

FITTING PSEUDO-DATA

LIMIT SETTING

- Limit setting machinery in place
 - Expected limit on Z' \rightarrow tt is 4 TeV
 - Calculated with asimov sample

Conclusion And Outlook

- Improvements
 - Better top- and b-tagging
 - Fit instead of MC used for background estimation
 - Compared to previous <u>ttbar analysis</u> the **limit improves** from 3 TeV to 3.4 TeV when scaled to same integrated luminosity (36.1 fb⁻¹)
- Plans
 - Result will be included in Heavy Resonance combination in ATLAS

arXiv:1011.2268v3

N-SUBJETTINESS

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}.$$
(2.1)

Here, k runs over the constituent particles in a given jet, $p_{T,k}$ are their transverse momenta, and $\Delta R_{J,k} = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ is the distance in the rapidity-azimuth plane between a candidate subjet J and a constituent particle k. The normalization factor d_0 is taken as

$$d_0 = \sum_k p_{T,k} R_0, (2.2)$$

where R_0 is the characteristic jet radius used in the original jet clustering algorithm.

Spåtind 2020

arXiv:1011.2268v3

N-SUBJETTINESS

