The Higgs Width in the SMEFT

Tyler Corbett

Niels Bohr Institute

Largely based on: arXiv: 1906.06949, with Ilaria Brivio (Heidelberg) and Mike Trott (NBI).

ATLAS SM Summary

Standard Model Total Production Cross Section Measurements Status: July 2019

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Old	atus. may 2015						$\int \mathcal{L} dt = ($	3.2 – 139) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ leV}$
_	Model	ℓ,γ	Jets†	E ^{miss} T	∫£ dt[ft	Limit			Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{\text{KK}} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD QBH} \\ \text{ADD BH high } \Sigma \rho_T \\ \text{ADD BH high } \Sigma \rho_T \\ \text{ADD BH multijet} \\ \text{RS1 } G_{\text{KK}} \rightarrow \gamma\gamma \\ \text{Burk RS } G_{\text{KK}} \rightarrow WW/ZZ \\ \text{Burk RS } G_{\text{KK}} \rightarrow WW \rightarrow q \\ \text{Burk RS } g_{\text{KK}} \rightarrow tt \\ \text{QUED } / \text{RPP} \end{array}$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ \gamma \\ multi-chann \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j - 2j $\geq 2j$ $\geq 3j$ - al $\geq 1b, \geq 1J$ $\geq 2b, \geq 3$	Yes - - - 2) Yes j Yes	36.1 36.7 3.2 3.6 36.7 36.1 139 36.1 36.1 36.1	la la la la la la la la la la la la la l	7.2 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 2.3 TeV 1.6 TeV 1.3 TeV	$\begin{array}{l} n=2 \\ n=3 \; \text{HLZ NLO} \\ n=6 \\ n=6, \; M_{O}=3 \; \text{TeV}, \; \text{rot BH} \\ n=6, \; M_{O}=3 \; \text{TeV}, \; \text{rot BH} \\ k/\overline{M}_{H}=0 \; 1 \\ k/\overline{M}_{H}=1.0 \\ k/\overline{M}_{H}=1.0 \\ \Gamma/m=15\% \\ \text{Tiefe}(1,1) \; \text{Se}(4^{1.1}) \to \text{rr})=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1806.02380 ATLAS-CONF-2019-003 1804.10823 1804.3.06678
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to t\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{HVT} V' \to WZ \to qqqq \mbox{ m} \\ \operatorname{HVT} V' \to WH/ZH \mbox{ model} \\ \operatorname{LRSM} W_R \to b \\ \operatorname{LRSM} W_R \to \mu N_R \end{array}$	2 e, μ 2 τ - 1 e, μ 1 e, μ 1 τ odel B 0 e, μ B multi-chann 2 μ	- 2 b ≥ 1 b, ≥ 1J - 2 J el el 1 J	- - - Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	maas maas maas maas maas maas maas maas	5.1 TeV 2.42 TeV 2.1 TeV 3.0 TeV 3.7 TeV 3.5 TeV 2.93 TeV 3.2 TeV 5.0 TeV 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_E) = 0.5$ TeV, $g_L = g_P$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.104.73 1904.12679
Ø	CI qqqq CI tttt	 ≥1 e,μ	2 j 	- - Yes	37.0 36.1 36.1		2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{q_1} = 4\pi$	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac Colored scalar mediator (Di $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac	DM) 0 e, μ rac DM) 0 e, μ 0 e, μ c DM) 0-1 e, μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j 1 b, 0-1 J	Yes Yes Yes	36.1 36.1 3.2 36.1	keed Keed K, 700 GeV K	1.55 TeV 1.67 TeV 3.4 TeV	$\begin{array}{l} g_{q}\!=\!0.25, g_{c}\!=\!1.0, m(\chi)=1 \mathrm{GeV} \\ g\!=\!1.0, m(\chi)=1 \mathrm{GeV} \\ m(\chi)<\!150 \mathrm{GeV} \\ \gamma=0.4, \lambda=0.2, m(\chi)=10 \mathrm{GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
9	Scalar LQ 1 st gen Scalar LQ 2 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	O mass O mass D ^a r mass 1.03 D ^a r mass 970 G	1.4 TeV 1.56 TeV TeV	$\beta = 1$ $\beta = 1$ $\mathcal{B}(LQ_3^* \rightarrow b\tau) = 1$ $\mathcal{B}(LQ_3^* \rightarrow t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
quarks	$\begin{array}{l} VLQ\; TT \rightarrow Ht/Zt/Wb + :\\ VLQ\; BB \rightarrow Wt/Zb + X \\ VLQ\; T_{5/3}\; T_{5/3}\; T_{5/3} \rightarrow Wt \\ VLQ\; Y \rightarrow Wb + X \\ VLQ\; Mb \rightarrow Hb + X \\ VLQ\; QQ \rightarrow WqWq \end{array}$	X multi-chann multi-chann + X 2(SS)/≥3 e, 1 e, μ 0 e,μ, 2 γ 1 e, μ	el el ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	Yes Yes Yes	36.1 36.1 36.1 79.8 20.3	mass mass aga mass mass mass transition mass 690 GeV	1.37 TeV 1.34 TeV 1.64 TeV 1.65 TeV 21 TeV	$\begin{array}{l} SU(2) \mbox{ doublet} \\ SU(2) \mbox{ doublet} \\ g(T_{1\times 2} \rightarrow W 2) = 1, \ c_{N}(T_{N/2}W 2) = 1 \\ g(Y \rightarrow W b) = 1, \ c_{N}(W b) = 1 \\ c_{R} = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2j 1j 1b,1j -	-	139 36.7 36.1 20.3 20.3	r masa masa r masa masa masa	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.5 TeV	anly u^{*} and $d^{*}, \Lambda = m(q^{*})$ anly u^{*} and $d^{*}, \Lambda = m(q^{*})$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{++} \rightarrow \ell\ell$ Higgs triplet $H^{++} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$1 e, \mu 2 \mu 2,3,4 e, \mu (S 3 e, \mu, \tau - - \sqrt{s} = 13 \text{ TeV}$	≥ 2 j 2 j S) - - - - - -	Yes - - - - 3 TeV	79.8 36.1 20.3 36.1 36.1 34.4	# mass 560 GeV # mass 870 GeV ** mass 1. orber/particle mass 1. orber/particle mass 1.	3.2 TeV V 22 TeV 2.37 TeV	$\begin{split} m(W_R) &= 4.1 \text{TeV}, g_L = g_R \\ DY production \\ DY production, S(H_L^{++} \to \ell \tau) = 1 \\ DY production, g = 1 \\ DY production, g = 1 \\ g_D, \text{spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
		partial data	full d	ata		10-*	1 1	^U Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

+Small-radius (large-radius) jets are denoted by the letter j (J).

The Fermi-theory example

$$\mathcal{M} \sim \frac{g_{\rm W}^2}{2} \frac{(\bar{\nu}_{\mu} \gamma^{\mu} P_L \mu) (\bar{e} \gamma^{\mu} P_L \nu_e)}{k^2 - M_W^2}$$

The Fermi-theory example

The Fermi-theory example

EFTs

SMEFT @ D6

D6 operators from SM field content \Rightarrow SMEFT @ D6

	Type I: X^3	Тур	e II, III: H^6 , H^4D^2	Type V: $\Psi^2 H^3$ + h.c.		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$ H ^6$	Q_{eH}	$ H ^2(\bar{L}eH)$	
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{H\Box}$	$ H ^2 \Box H^2 $	Q_{uH}	$ H ^2(\bar{Q}u\tilde{H})$	
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	Q_{HD}	$(H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D^{\mu}H)$	Q_{dH}	$ H ^2(\bar{Q}dH)$	
$Q_{\tilde{W}}$	$Q_{\tilde{W}} = \epsilon^{IJK} \tilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					
Г	Sype IV: $X^2 \Phi^2$		Type VI: $\Psi^2 H^3$	Type VII: $\Psi^2 H^2 D$		
Q_{HG}	$ H ^2 G^A_{\mu\nu} G^{A\mu\nu}$	Q_{eW}	$(\bar{L}\sigma^{\mu\nu}e)\tau^{I}HW^{I}_{\mu\nu}$	$Q_{HL}^{(1)}$	$(H^{\dagger}i\vec{D}_{\mu}H)(\bar{L}\gamma^{\mu}L)$	
$Q_{H\tilde{G}}$	$ H ^2 \tilde{G}^A_{\mu\nu} G^{A\mu\nu}$	Q_{eW}	$(\bar{L}\sigma^{\mu\nu}e)\tau^{I}HB_{\mu\nu}$	$Q_{HL}^{(3)}$	$(H^{\dagger}i \vec{D}^{I}_{\mu}H)(\bar{L}\tau^{I}\gamma^{\mu}L)$	
Q_{HW}	$ H ^2 W^I_{\mu\nu} W^{I\mu\nu}$	Q_{uG}	$(\bar{Q}\sigma^{\mu\nu}T^A u)\tilde{H}G^A_{\mu\nu}$	Q_{He}	$(H^{\dagger}i\vec{D}_{\mu}H)(\bar{e}\gamma^{\mu}e)$	
$Q_{H\tilde{W}}$	$ H ^2 \tilde{W}^I_{\mu\nu} W^{I\mu\nu}$		$(\bar{Q}\sigma^{\mu\nu}u)\tau^{I}\tilde{H}W^{I}_{\mu\nu}$	$Q_{HQ}^{(1)}$	$(H^{\dagger}i\vec{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	
Q_{HB}	Q_{HB} $ H ^2 B_{\mu\nu} B^{\mu\nu}$		$(\bar{Q}\sigma^{\mu\nu}u)\tilde{H}B_{\mu\nu}$	$Q_{HQ}^{(3)}$	$(H^{\dagger}i\overline{D}^{I}_{\mu}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	
$Q_{H\tilde{B}}$	$ H ^2 \tilde{B}_{\mu\nu} B^{\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu\nu}T^Ad)HG^A_{\mu\nu}$	Q_{Hu}	$(H^{\dagger}i \vec{D}_{\mu} H)(\bar{u} \gamma^{\mu} u)$	
Q_{HWB}	$Q_{HWB} \qquad (H^{\dagger}\tau^{I}H)W^{I}_{\mu\nu}B^{\mu\nu}$		$(\bar{Q}\sigma^{\mu\nu}d)\tau^{I}HW^{I}_{\mu\nu}$	Q_{Hd}	$(H^{\dagger}i \vec{D}_{\mu}H)(\bar{d}\gamma^{\mu}d)$	
$Q_{H\tilde{W}B} = (H^{\dagger}\tau^{I}H)\tilde{W}_{\mu\nu}^{I}B^{\mu\nu}$		Q_{dB}	$(\bar{Q}\sigma^{\mu\nu}d)\tilde{H}B_{\mu\nu}$	Q_{Hud}	$(H^{\dagger}i \vec{D}_{\mu}H)(\bar{u}\gamma^{\mu}d)$	

Type VIII: $5 \times (\bar{L}L)(\bar{L}L) + 7 \times (\bar{R}R)(\bar{R}R) + 8 \times (\bar{L}L)(\bar{R}R) + (\bar{L}R)(\bar{R}L) + 4[(\bar{L}R)(\bar{L}R) + h.c.]$ = $25(\bar{\Psi}\Psi)(\bar{\Psi}\Psi)$

$$\begin{split} \text{T3:} \ Q_{H\square} &= (H^{\dagger}H)\square(H^{\dagger}H) \\ \text{T3:} \ Q_{HD} &= (H^{\dagger}D^{\mu}H)^*(H^{\dagger}D^{\mu}H) \\ \text{T4:} \ Q_{HV} &= (H^{\dagger}H)V^{\mu\nu}V_{\mu\nu} \\ \text{T4:} \ Q_{HWB} &= (H^{\dagger}\tau^{I}H)W^{I}_{\mu\nu}B^{\mu\nu} \end{split}$$

$$\begin{split} \text{T5:} \ &Q_{\psi H} = (H^{\dagger}H)(\bar{\Psi}H\psi) \\ \text{T7:} \ &Q_{HL}^{(3)} = (H^{\dagger}i\bar{D}_{\mu}^{I}H)(\bar{L}\gamma^{\mu}L) \\ \text{T7:} \ &Q_{H\Psi}^{(1,3)} = (H^{\dagger}\bar{D}_{\mu}H)(\bar{\Psi}\gamma^{\mu}\Psi) \\ \text{T7:} \ &Q_{H\psi} = (H^{\dagger}\bar{D}_{\mu}H)(\bar{\psi}\gamma^{\mu}\psi) \\ \text{T8:} \ &Q_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L) \end{split}$$

T3: $Q_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H)$ T3: $Q_{HD} = (H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D^{\mu}H)$ T4: $Q_{HV} = (H^{\dagger}H)V^{\mu\nu}V_{\mu\nu}$ T4: $Q_{HWB} = (H^{\dagger}\tau^{I}H)W^{I}_{\mu\nu}B^{\mu\nu}$
$$\begin{split} \text{T5:} \ & Q_{\psi H} = (H^{\dagger}H)(\bar{\Psi}H\psi) \\ \text{T7:} \ & Q_{HL}^{(3)} = (H^{\dagger}i\vec{D}_{\mu}^{\,I}H)(\bar{L}\gamma^{\mu}L) \\ \text{T7:} \ & Q_{H\Psi}^{(1,3)} = (H^{\dagger}\vec{D}_{\mu}H)(\bar{\Psi}\gamma^{\mu}\Psi) \\ \text{T7:} \ & Q_{H\psi} = (H^{\dagger}\vec{D}_{\mu}H)(\bar{\psi}\gamma^{\mu}\psi) \\ \text{T8:} \ & Q_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L) \end{split}$$

 $(H^{\dagger}H)\Box(H^{\dagger}H)\sim -v^{2}(\partial^{\mu}h)(\partial_{\mu}h)+\cdots$

Non-SM-like kinematic structure

T3: $Q_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H)$ T3: $Q_{HD} = (H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D^{\mu}H)$ T4: $Q_{HV} = (H^{\dagger}H)V^{\mu\nu}V_{\mu\nu}$ T4: $Q_{HWB} = (H^{\dagger}\tau^{I}H)W^{I}_{\mu\nu}B^{\mu\nu}$

$$\begin{split} {\rm T5:} \ Q_{\psi H} &= (H^{\dagger}H)(\bar{\Psi}H\psi) \\ {\rm T7:} \ Q_{HL}^{(3)} &= (H^{\dagger}i \vec{D}_{\mu}^{I}H)(\bar{L}\gamma^{\mu}L) \\ {\rm T7:} \ Q_{H\Psi}^{(1,3)} &= (H^{\dagger}\vec{D}_{\mu}H)(\bar{\Psi}\gamma^{\mu}\Psi) \\ {\rm T7:} \ Q_{H\psi} &= (H^{\dagger}\vec{D}_{\mu}H)(\bar{\psi}\gamma^{\mu}\psi) \\ {\rm T8:} \ Q_{LL} &= (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L) \end{split}$$

 $\begin{array}{c} \mathrm{T5:} \ Q_{\psi H} = (H^{\dagger}H)(\bar{\Psi}H\psi) \\ \\ \mathrm{T7:} \ Q_{HL}^{(3)} = (H^{\dagger}i\vec{D}_{\mu}^{I}H)(\bar{L}\gamma^{\mu}L) \\ \\ \mathrm{T7:} \ Q_{H\Psi}^{(1,3)} = (H^{\dagger}\vec{D}_{\mu}H)(\bar{\Psi}\gamma^{\mu}\Psi) \\ \\ \mathrm{T7:} \ Q_{H\psi} = (H^{\dagger}\vec{D}_{\mu}H)(\bar{\psi}\gamma^{\mu}\psi) \\ \\ \mathrm{T8:} \ Q_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L) \end{array}$

The Higgs Sector: Measurements

ATLAS Herei Total Constant Syst. III SM √s = 13 TeV. 24.5 - 79.8 fb⁻¹ $m_{H} = 125.09 \text{ GeV}, |y_{\mu}| < 2.5$ $p_{\rm SM} = 71\%$ Total Stat. Syst. ± 0.14 (± 0.11 , $^{+0.09}_{-0.08}$) $10^{-1} \text{pb} \pm 15\%$ γγ 0.96 ZZ* +0.16 1.04 $(\pm 0.14, \pm 0.06)$ $10^{0} \text{ pb} + 15\%$ lggF WW* 1.08 ± 0.19 (±0.11 , ±0.15) $10^{1} \text{ pb} + 18\%$ +0.59+0.37+ 0.46 0.96 ττ $10^{0} \text{ pb} \pm 58\%$ - 0.52 -0.36 - 0.38 +0.07comb. 1.04 ± 0.09 ± 0.07 - 0.06 +0.40+0.31+0.261.39 10^{-2} pb $\pm 29\%$ γγ -0.19 +0.27 -0.20 -0.35 -0.30 ZZ* +0.98+ 0.94 10^{-1} pb+34% 2.68 - 0.83 (-0.81 + 0.36 WW* + 0.29 $10^{0} \text{ pb} \pm 60\%$ 0.59 - 0.35 (-0.27 ± 0.21 VBF + 0.58 +0.42 + 0.40 10^{-1} pb $\pm 48\%$ ττ 1.16 - 0.53 -0.40 - 0.35 bb +1.63+ 0.39 +1.673.01 $10^{0} \text{ pb} \pm 55\%$ - 1.57 - 0.36 -1.61+0.24+0.18+0.161.21 comb + 0.53 +0.25+0.58 10^{-2} pb $\pm 51\%$ γγ 1.09 - 0.54 (-0.49 , -0.22 ZZ* +1.20+ 1.18 +0.180.68 10^{-1} pb $\pm 147\%$ VН -0.78 -0.77 -0.11 bb +0.18 + 0.20 $10^{0} \text{ pb} \pm 22\%$ 1.19 - 0.25 -0.17 -0.18 comb. + 0.24 1.15 ± 0.16 -0.22 -0.16 +0.41 + 0.36 +0.19 10^{-3} pb $\pm 35\%$ γγ 1.10 - 0.35 - 0.33 -0.14 VV^* +0.59+0.43+0.411.50 $10^{-1} \text{pb} \pm 38\%$ - 0.57 -0.42 - 0.38 +1.13+0.84+0.75 10^{-2} pb+76% tŦH+tH ττ 1.38 -0.76 , -0.59 - 0.96 bb + 0.60 10^{-1} pb $\pm 75\%$ 0.79 ± 0.29 . ± 0.52 comb. 1.21 +0.26 $(\pm 0.17$, $^{+0.20}_{-0.18}$ +0.20-2 0 2 4 6 8 $\sigma \times BR$ normalized to SM

The Higgs Sector: Measurements

The Higgs Sector: Measurements

The "correct" Higgs width in the SMEFT

The "correct" Higgs width in the SMEFT

The narrow width approximation has been used extensively for $H \to VV$ calculations.

This corresponds to a correction of ~ 30%. For $ee\mu\mu$ the correction is about 15%

$H \rightarrow ZZ \rightarrow 4l$, beyond the narrow width approx

Narrow width and full calculation agree to within 30% for $e^+e^-e^+e^-$

$H \rightarrow 2e2\nu$, beyond the narrow width approx

$$\begin{split} \Gamma &= \frac{4g_2^8 v^2}{c^8} (1 + 2\Delta_{HZZ}^{(1)} + \delta g_Z) N_c^2 \left[(g_a^L)^2 (g_b^L)^2 + (g_a^R)^2 (g_b^R)^2 + (g_a^L)^2 (g_b^R)^2 + (g_a^R)^2 (g_b^L)^2 \right] \mathcal{P}_Z \\ &+ g_2^8 v^2 N_c^2 (1 + 2\Delta_{HWW}^{(1)} + \delta g_W) \mathcal{P}_W \\ &+ \frac{2g_2^8 (g_a^L) (g_b^L) v^2}{c^4} N_c (1 + \Delta_{HZZ}^{(1)} + \Delta_{HWW}^{(1)} + \delta g_Z + \delta g_W) \mathcal{F}_{WZ} \end{split}$$

Narrow width and full calculation agree to within 1% for $e^+e^-\nu\nu$

but this is because the contribution of ZZ is small compared to WW if interference is enhanced in SMEFT could cause narrow width to be wrong(er)

Contact $hV\bar{\psi}\psi$ contributions:

New Kinematic Form, $H V^{\mu\nu} V_{\mu\nu}$

But wait, there's more! $H\gamma\gamma$, $HZ\gamma$, and Hgg:

Tree–level $\mathcal{O}(1/\Lambda^2)$ $H\gamma\gamma$, $HZ\gamma$, and Hgg couplings exist in SMEFT!

But wait, there's more! $H\gamma\gamma$, $HZ\gamma$, and Hgg:

1-4% correction 5-9% correction 10+% correction

	SM	c_{HB}	c_{HWB}	$c_{Hl}^{(1)}$	c_{He}	$c_{Hq}^{(1)}$	c_{Hu}	c_{Hd}
4ψ	$2.62 \cdot 10^{-4}$	185	042	015	012	.023	.036	019
NW:	$2.64 \cdot 10^{-4}$	189	036	013	012	.022	.035	018

$$\frac{\Gamma(H \to 4\psi)}{\Gamma(H \to 4\psi)_{\rm SM}} = 1 - .185c_{HB} - .042c_{HWB} + \cdots$$

But wait, there's more! $H\gamma\gamma$, $HZ\gamma$, and Hgg:

1-4% correction 5-9% correction 10+% correction

	SM	c_{HB}	c_{HWB}	$c_{Hl}^{(1)}$	c_{He}	$c_{Hq}^{(1)}$	c_{Hu}	c_{Hd}
4ψ	$2.62 \cdot 10^{-4}$	185	042	015	012	.023	.036	019
NW:	$2.64 \cdot 10^{-4}$	189	036	013	012	.022	.035	018

1-9% correction			0 - 99% co	rrection	100 + % co	orrection			
		$_{\rm SM}$	c_{HW}	c_{HB}	c_{HWB}	c_{HD}	$c_{Hl}^{(1)}$	$c_{Hl}^{(3)}$	c_{He}
	$ee\nu\nu$	$1.03 \cdot 10^{-5}$	-1.51	.010	056	551	008	-3.74	041
	NW:	$1.07 \cdot 10^{-5}$	-1.50	035	019	-0.508	.004	-3.95	041

The SMEFT is our best tool for heavy NP beyond the LHC's reach

The Higgs production and decay in SMEFT at tree-level "was" done

- Use of the narrow width approximation has been industry standard
- Careful calculation can make $\mathcal{O}(10\% 100\%)$ differences
- some more tree level may remain... $H \to 2F\checkmark$, $H \to 4F\checkmark$, $H \to 3F$?

Future measured deviations may be fake if we don't things correctly Future measured null results may be fake if we don't do things correctly

Global fits of the SMEFT

Triple Gauge Sector $\begin{array}{c} & W \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

Electroweak Precision Data

An example global fit

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$
 $\mathcal{L}_d = \sum_i c_i Q_i$

Higgs Production in the SM

Examples of Higgs Production in the SMEFT

$$Q_{HG} = (H^{\dagger}H)G^{A,\mu\nu}G^{A}_{\mu\nu}$$

h
Examples of Higgs Production in the SMEFT

Higgs Width in the SM

Higgs Width in the SM

Higgs Width in the SM

Examples of Higgs Decay in the SMEFT

Examples of Higgs Decay in the SMEFT

Ward Identities in YM

In traditional R_{ξ} gauge, the naive ward identities are not preserved. One must invoke BRST symmetry to recover them:

$$\int \left(\frac{\delta \Gamma}{\delta A^a_\mu \delta A^b_\nu}\right) \left(\frac{\delta \Gamma}{\delta K^\mu_a \delta c^d}\right) = 0 \Rightarrow k^\mu \langle A^a_\mu(k) A^b_\nu(-k) \rangle = 0$$

(Peter Van Nieuwenhuizen, AQFT notes)

Which coefficients can we constrain?

- The latest ATLAS combination of STXS measurements with 80 fb⁻¹ not enough to constrain all parameters appearing in the parametrisation.
 - Likelihood minimisation not stable due to large correlation between parameters and blind directions
- Fisher information matrix obtained from the inverse of the covariance matrix of the measurement and propagating the EFT parametrisation of each bin and each decay.

$$P_{EFT}^{-1} = P^T C_{STXS}^{-1} P, P = \begin{pmatrix} A_1^{\sigma_1} & A_2^{\sigma_1} & A_3^{\sigma_1} & \dots \\ A_1^{\sigma_2} & A_2^{\sigma_2} & A_3^{\sigma_2} & \dots \\ A_1^{\sigma_3} & A_2^{\sigma_3} & A_3^{\sigma_3} & \dots \\ \vdots & \vdots & \vdots & \end{pmatrix},$$

nxn parametrisation matrix (n=15x5)

- # Find eigenvectors (sensitive directions) and eigenvalues (large values correspond to high experimental sensitivity).
- * Assuming Gaussian behaviour.
- * Three different scenarios:

(

- Combined measurement, production only (BR= BR_{SM}) <u>ATLAS-CONF-2018-028</u>
- Φ H->γγ considering both production and decay variations.
- The combined measurement of all channels <u>1909.02845</u>

Full eigenvectors tables

Combined measurement:

Eigenvalue	Eigenvector			
241550	$0.24 \cdot c_{HG} - 0.23 \cdot c_{HW} - 0.83 \cdot c_{HB} + 0.45 \cdot c_{HWB}$			
147981	$-0.97 \cdot c_{HG} - 0.21 \cdot c_{HB} + 0.11 \cdot c_{HWB}$			
6090	$-0.12 \cdot c_{HW} - 0.98 \cdot c_{Hq3} - 0.11 \cdot c_{Hu}$			
124	$-0.20 \cdot c_{HWB} + 0.30 \cdot c_{Ha1} + 0.14 \cdot c_{Ha3} - 0.85 \cdot c_{Hu} + 0.29 \cdot c_{Hd}$			
34	$-0.21 \cdot c_{Hq1} + 0.156 \cdot c_{Hq1} + 0.17 \cdot$			
	$c_{Hu} = 0.37 \cdot c_{H1} = 0.1$			
22	$-0.11 \cdot c_G + 0.60 c_{F_{1/2}} \sim \frac{1}{2} \sim \frac{1}{2} \sim \frac{1}{2} \sim \frac{1}{2} \sim \mathcal{O}\left(\frac{g_1^2}{2}\right) c_{qq11} - 0.31$			
	$c_{qq31} - 0.13 \cdot c_{uu1} = \sqrt{241550} = 1100 = 7 \cdot 16\pi^2 = \sqrt{16\pi^2}$			
16	$-0.48 \cdot c_{HW} + 0.19 \cdot c_{He} + 0.31 \cdot c_{He} + 0.31 \cdot c_{He}$			
	$c_{II1} + 0.14 \cdot c_{dH} + 0$			
5	$0.13 \cdot c_{Hbox} - 0.14 \cdot c_{HDD} - 0.33 \cdot c_{HB} - 0.58 \cdot c_{HWB} - 0.42 \cdot c_{Hl1} - 0.34 \cdot c_{Hl3} + 0.33 \cdot c_{HB} - 0.42 \cdot c_{Hl1} - 0.34 \cdot c_{Hl3} + 0.33 \cdot c_{Hl3} + 0.33 \cdot c_{Hl3} - 0.33 $			
	$c_{H} = 0.24 \cdot c_{Hq1} + 0.11 \cdot c_{ll1} - 0.17 \cdot c_{eH} $			
0.9	$0.12 \cdot c_{HWB} + 0.26 \cdot c_{Hq1} - 0.21 \cdot c_{ll1} - 0.79 \cdot c_{eH} + 0.47 \cdot c_{dH} $			
0.4	$0.18 \cdot c_{Hbox} - 0.11 \cdot c_{HW} + 0.12 \cdot c_{HWB} - 0.33 \cdot c_{Hl1} - 0.16 \cdot c_{Hl3} + 0.26 \cdot c_{He} + 0.67 \cdot c_{Hl1} - 0.16 \cdot c_{Hl3} + 0.26 \cdot c_{He} + 0.67 $			
	$c_{Hq1} + 0.18 \cdot c_{Hu} - 0.20 \cdot c_{Hd} - 0.12 \cdot c_{ll1} - 0.43 \cdot c_{dH} $			
0.2	$-0.34 \cdot c_{Hbox} - 0.23 \cdot c_{Hl1} + 0.22 \cdot c_{Hl3} + 0.15 \cdot c_{He} + 0.32 \cdot c_{Hq1} + 0.11 \cdot c_{Hu} - 0.11 \cdot$			
	$c_{Hd} + 0.40 \cdot c_{ll1} + 0.37 \cdot c_{eH} + 0.57 \cdot c_{dH} $			

100s of operators in Leung et al. 1986 \Rightarrow 59 operators in Grzadkowski et al. 2010

This was accomplished via field redefinitions or use of EOM (equivalent, *Politzer 1980*)

$$D^2H - |\mu|^2H + 2\lambda(H^{\dagger}H)H + Y_{\psi}\bar{\psi}\Psi = 0$$

Results in this relation between operators:

$$\frac{1}{2}Q_{H\square} + 2(D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) = \sum_{\psi} Y_{\psi}Q_{\psi H} + 2\lambda Q_{H} - \lambda v^{2}(H^{\dagger}H)^{2}$$

$$Q_{H\psi}^{(3)} \leftrightarrow \mathcal{O}_W^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} \tau^A (D_{\nu}H) W^{A,\mu\nu} \quad Q_{H\psi}^{(1)} \leftrightarrow \mathcal{O}_B^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} (D_{\nu}H) B^{\mu\nu}$$

100s of operators in Leung et al. $1986 \Rightarrow 59$ operators in Grzadkowski et al. 2010This was accomplished via field redefinitions or use of EOM (equivalent, Politzer 1980) The Higgs EOM:

$$D^2H - |\mu|^2H + 2\lambda(H^{\dagger}H)H + Y_{\psi}\bar{\psi}\Psi = 0$$

Results in this relation between operators:

$$\frac{1}{2}Q_{H\Box} + 2(D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) = \sum_{\psi} Y_{\psi}Q_{\psi H} + 2\lambda Q_{H} - \lambda v^{2}(H^{\dagger}H)^{2}$$

$$Q_{H\psi}^{(3)} \leftrightarrow \mathcal{O}_W^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} \tau^A (D_{\nu}H) W^{A,\mu\nu} \quad Q_{H\psi}^{(1)} \leftrightarrow \mathcal{O}_B^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} (D_{\nu}H) B^{\mu\nu}$$

100s of operators in Leung et al. $1986 \Rightarrow 59$ operators in Grzadkowski et al. 2010This was accomplished via field redefinitions or use of EOM (equivalent, Politzer 1980) The Higgs EOM:

$$D^2H - |\mu|^2H + 2\lambda(H^{\dagger}H)H + Y_{\psi}\bar{\psi}\Psi = 0$$

Results in this relation between operators:

$$\frac{1}{2}Q_{H\Box} + 2(D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) = \sum_{\psi} Y_{\psi}Q_{\psi H} + 2\lambda Q_{H} - \lambda v^{2}(H^{\dagger}H)^{2}$$

$$Q_{H\psi}^{(3)} \leftrightarrow \mathcal{O}_W^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} \tau^A (D_{\nu}H) W^{A,\mu\nu} \quad Q_{H\psi}^{(1)} \leftrightarrow \mathcal{O}_B^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} (D_{\nu}H) B^{\mu\nu}$$

100s of operators in Leung et al. $1986 \Rightarrow 59$ operators in Grzadkowski et al. 2010This was accomplished via field redefinitions or use of EOM (equivalent, Politzer 1980) The Higgs EOM:

$$D^2H - |\mu|^2H + 2\lambda(H^{\dagger}H)H + Y_{\psi}\bar{\psi}\Psi = 0$$

Results in this relation between operators:

$$\frac{1}{2}Q_{H\Box} + 2(D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) = \sum_{\psi} Y_{\psi}Q_{\psi H} + 2\lambda Q_{H} - \lambda v^{2}(H^{\dagger}H)^{2}$$

$$Q_{H\psi}^{(3)} \leftrightarrow \mathcal{O}_W^{\mathrm{HISZ}} \equiv (D_{\mu}H)^{\dagger} \tau^A (D_{\nu}H) W^{A,\mu\nu} \quad Q_{H\psi}^{(1)} \leftrightarrow \mathcal{O}_B^{\mathrm{HISZ}} \equiv (D_{\mu}H)^{\dagger} (D_{\nu}H) B^{\mu\nu}$$

100s of operators in Leung et al. 1986 \Rightarrow 59 operators in Grzadkowski et al. 2010

This was accomplished via field redefinitions or use of EOM (equivalent, *Politzer 1980*) The Higgs EOM:

$$D^2 H - |\mu|^2 H + 2\lambda (H^{\dagger} H) H + Y_{\psi} \bar{\psi} \Psi = 0$$

Results in this relation between operators:

$$\frac{1}{2}Q_{H\Box} + 2(D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) = \sum_{\psi} Y_{\psi}Q_{\psi H} + 2\lambda Q_{H} - \lambda v^{2}(H^{\dagger}H)^{2}$$

$$Q_{H\psi}^{(3)} \leftrightarrow \mathcal{O}_W^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} \tau^A (D_{\nu}H) W^{A,\mu\nu} \quad Q_{H\psi}^{(1)} \leftrightarrow \mathcal{O}_B^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} (D_{\nu}H) B^{\mu\nu}$$

100s of operators in Leung et al. $1986 \Rightarrow 59$ operators in Grzadkowski et al. 2010This was accomplished via field redefinitions or use of EOM (equivalent, Politzer 1980) The Higgs EOM:

$$D^2H - |\mu|^2H + 2\lambda(H^{\dagger}H)H + Y_{\psi}\bar{\psi}\Psi = 0$$

Results in this relation between operators:

$$\frac{1}{2}Q_{H\Box} + 2(D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) = \sum_{\psi} Y_{\psi}Q_{\psi H} + 2\lambda Q_{H} - \lambda v^{2}(H^{\dagger}H)^{2}$$

$$Q_{H\psi}^{(3)} \leftrightarrow \mathcal{O}_W^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} \tau^A (D_{\nu}H) W^{A,\mu\nu} \quad Q_{H\psi}^{(1)} \leftrightarrow \mathcal{O}_B^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} (D_{\nu}H) B^{\mu\nu}$$

100s of operators in Leung et al. $1986 \Rightarrow 59$ operators in Grzadkowski et al. 2010This was accomplished via field redefinitions or use of EOM (equivalent, Politzer 1980) The Higgs EOM:

$$D^2H - |\mu|^2H + 2\lambda(H^{\dagger}H)H + Y_{\psi}\bar{\psi}\Psi = 0$$

Results in this relation between operators:

$$\frac{1}{2}Q_{H\Box} + 2(D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) = \sum_{\psi} Y_{\psi}Q_{\psi H} + 2\lambda Q_{H} - \lambda v^{2}(H^{\dagger}H)^{2}$$

$$Q_{H\psi}^{(3)} \leftrightarrow \mathcal{O}_W^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} \tau^A (D_{\nu}H) W^{A,\mu\nu} \quad Q_{H\psi}^{(1)} \leftrightarrow \mathcal{O}_B^{\text{HISZ}} \equiv (D_{\mu}H)^{\dagger} (D_{\nu}H) B^{\mu\nu}$$

100s of operators in Leung et al. $1986 \Rightarrow 59$ operators in Grzadkowski et al. 2010This was accomplished via field redefinitions or use of EOM (equivalent, Politzer 1980) The Higgs EOM:

$$D^2H - |\mu|^2H + 2\lambda(H^{\dagger}H)H + Y_{\psi}\bar{\psi}\Psi = 0$$

Results in this relation between operators:

$$\frac{1}{2}Q_{H\Box} + 2(D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H) = \sum_{\psi} Y_{\psi}Q_{\psi H} + 2\lambda Q_{H} - \lambda v^{2}(H^{\dagger}H)^{2}$$

$$Q_{H\psi}^{(3)} \leftrightarrow \mathcal{O}_W^{\mathrm{HISZ}} \equiv (D_{\mu}H)^{\dagger} \tau^A (D_{\nu}H) W^{A,\mu\nu} \quad Q_{H\psi}^{(1)} \leftrightarrow \mathcal{O}_B^{\mathrm{HISZ}} \equiv (D_{\mu}H)^{\dagger} (D_{\nu}H) B^{\mu\nu}$$

Triple Gauge Couplings (TGCs)

Triple Gauge Couplings (TGCs)

Shifts in the propagator:

The propagator in the unitary gauge is:

$$\frac{-i}{q_{ij}-\hat{M}^2+i\hat{\Gamma}\hat{M}+i\epsilon}\left(g_{\mu\nu}-\frac{q_{\mu}q_{\nu}}{\hat{M}^2}(1-\frac{\delta M^2}{\hat{M}^2})\right)\left[1+\delta D(q_{ij})\right]$$

With:

$$\delta D(q_{ij}) = \frac{1}{q_{ij} - \hat{M}^2 + i\hat{\Gamma}\hat{M}} \left[\left(1 - \frac{i\hat{\Gamma}}{2\hat{M}} \right) \delta M^2 - i\hat{M} \frac{\delta\Gamma}{\delta\Gamma} \right]$$

The quantity that will show up in our calculations is:

$$2\text{Re}[\delta D(q_{ij})] = \frac{2(q_{ij} - \hat{M}^2)\delta M^2 - \hat{\Gamma}(\hat{\Gamma}\delta M^2 + 2\hat{M}^2 \ \delta \Gamma)}{(q_{ij} - \hat{M}^2)^2 + \hat{M}^2\hat{\Gamma}^2}$$

For $q_{ij} \sim \hat{M}^2$ (i.e. a near on-shell region of PS) we expect:

$$2\operatorname{Re}[\delta D(\hat{M}^2)] \sim -\frac{\delta M^2}{\hat{M}^2} - 2\frac{\delta \Gamma}{\hat{\Gamma}}$$

Tyler Corbett (Niels Bohr Institute)

We need the shifts in the widths of the W and Z in the SMEFT. In the SM we have:

$$\Gamma(W\to \bar\psi\psi)=\frac{3\hat G_F \hat M_W^3}{2\sqrt{2}\pi}$$

Then the shift in the width due to the SMEFT is given by:

$$\delta \Gamma_W = \Gamma_W^{\rm SM} \left(\frac{4}{3} \delta g^{W,l}_{V/A} + \frac{8}{3} \delta g^{W,q}_{V/A} + \frac{\delta M^2_W}{2 \hat{M}^2_W} \right)$$

In the SM we have:

$$\Gamma(Z\to\bar\psi\psi)=\frac{\sqrt{2}\bar G_F\bar M_Z^3N_C^\psi}{3\pi}\left(|\bar g_V^\psi|^2+|\bar g_A^\psi|^2\right)$$

Then the shift in the width due to the SMEFT is:

$$\delta \Gamma(Z \to \bar{\psi} \psi) = \frac{\sqrt{2} \hat{G}_F \hat{M}_Z^3 N_C^\psi}{3\pi} \left(2 \bar{g}_V^\psi \delta g_V^\psi + 2 \bar{g}_A^\psi \delta g_A^\psi \right)$$

$$H \to \bar{\psi}\psi, \, H \to \gamma\gamma, \, H \to gg$$

The H decays to two particles are well known:

$$\Gamma_{\psi\psi} = \frac{N_C \bar{M}_h}{8\pi} \left[|g_{h\psi}^{\rm SM}|^2 + 2g_{h\psi} \operatorname{Re}(\delta g_{h\psi}) \right]$$

$$H \to \bar{\psi}\psi, \, H \to \gamma\gamma, \, H \to gg$$

The H decays to two particles are well known:

$$\Gamma_{\psi\psi} = \frac{N_C \bar{M}_h}{8\pi} \left[|g_{h\psi}^{\rm SM}|^2 + 2g_{h\psi} \operatorname{Re}(\delta g_{h\psi}) \right]$$

$$\Gamma_{\gamma\gamma} = \frac{\bar{\alpha}^2 \bar{G}_F}{128\sqrt{2}\pi^3} \left| N_C^{\psi} Q_{\psi}^2 F_{\psi} + F_W \right|^2 \left(1 + 2\frac{\delta\alpha}{\hat{\alpha}} + \delta D^W \right) - \frac{\hat{\alpha}^2 \hat{M}_H^3}{4\pi} \operatorname{Re}\left[N_C^{\psi} Q_{\psi}^2 F_{\psi} + F_W \right] c_{\gamma\gamma}$$

$$H \to \bar{\psi}\psi, H \to \gamma\gamma, H \to gg$$

The H decays to two particles are well known:

$$\Gamma_{\psi\psi} = \frac{N_C \bar{M}_h}{8\pi} \left[|g_{h\psi}^{\rm SM}|^2 + 2g_{h\psi} \text{Re}(\delta g_{h\psi}) \right]$$

$$\Gamma_{\gamma\gamma} = \frac{\bar{\alpha}^2 \bar{G}_F}{128\sqrt{2}\pi^3} \left| N_C^{\psi} Q_{\psi}^2 F_{\psi} + F_W \right|^2 \left(1 + 2\frac{\delta\alpha}{\hat{\alpha}} + \delta D^W \right) - \frac{\hat{\alpha}^2 \hat{M}_H^3}{4\pi} \operatorname{Re}\left[N_C^{\psi} Q_{\psi}^2 F_{\psi} + F_W \right] c_{\gamma\gamma}$$

$$\Gamma_{gg} = \frac{\bar{\alpha}_s^2 \bar{G}_F}{64\sqrt{2}\pi^3} \bar{M}_H^3 \left| F_\psi \right|^2 \left(1 + 2\frac{\delta\alpha_s}{\hat{\alpha}_s} + \frac{\delta G_F}{G_F} \right) - \frac{\hat{\alpha}_s}{4\pi^4} M_H^3 \text{Re} \left[F_\psi \right] c_{HG}$$

The PS integrations were cross checked ideally up to 3 ways:

PS integral	MG5	Rambo	Vegas
$(WW)^*(WW)$	\checkmark	\checkmark	\checkmark
$(WW)^*(WW _{mtm})$	\checkmark	\checkmark	\checkmark
$(ZZ)^*(ZZ)$	\checkmark	\checkmark	\checkmark
$(ZZ)^*(ZZ _{\rm mtm})$	\checkmark	\checkmark	\checkmark
$(ZZ)^*(WW)$	\checkmark	\checkmark	\checkmark
$(ZZ)^*(WW _{mtm})$	\checkmark	\checkmark	\checkmark
$(VV)^*(\text{contact})$	\checkmark	\checkmark	\checkmark
$(VV)^*(Z\gamma)$	×	\checkmark	\checkmark
$(VV)^*(\gamma\gamma)$	×	×	\checkmark

The propagator in the unitary gauge is:

$$-\frac{-i}{q_{ij}-\hat{M}^2+i\hat{\Gamma}\hat{M}+i\epsilon}\left(g_{\mu\nu}-\frac{q_{\mu}q_{\nu}}{\hat{M}^2}(1-\frac{\delta M^2}{\hat{M}^2})\right)\left[1+\delta D(q_{ij})\right]$$

$$2\text{Re}[\delta D(q_{ij})] = \frac{2(q_{ij} - \hat{M}^2)\delta M^2 - \hat{\Gamma}(\hat{\Gamma}\delta M^2 + 2\hat{M}^2\delta\Gamma)}{(q_{ij} - \hat{M}^2)^2 + \hat{M}^2\hat{\Gamma}^2} \to 2\text{Re}[\delta D(\hat{M}^2)] \sim -\frac{\delta M^2}{\hat{M}^2} - 2\frac{\delta\Gamma}{\hat{\Gamma}}$$

Taking the M_W -scheme, ratios of x_i for $e^+e^-e^+e^-$ comparison part 5:

Tyler Corbett (Niels Bohr Institute)

The propagator in the unitary gauge is:

$$-\frac{-i}{q_{ij}-\hat{M}^2+i\hat{\Gamma}\hat{M}+i\epsilon}\left(g_{\mu\nu}-\frac{q_{\mu}q_{\nu}}{\hat{M}^2}(1-\frac{\delta M^2}{\hat{M}^2})\right)\left[1+\delta D(q_{ij})\right]$$

$$2\operatorname{Re}[\delta D(q_{ij})] = \frac{2(q_{ij} - \hat{M}^2)\delta M^2 - \hat{\Gamma}(\hat{\Gamma}\delta M^2 + 2\hat{M}^2\delta\Gamma)}{(q_{ij} - \hat{M}^2)^2 + \hat{M}^2\hat{\Gamma}^2} \to 2\operatorname{Re}[\delta D(\hat{M}^2)] \sim -\frac{\delta M^2}{\hat{M}^2} - 2\frac{\delta\Gamma}{\hat{\Gamma}}$$

Taking the M_W -scheme, ratios of x_i for $e^+e^-e^+e^-$ comparison part 5:

$$\begin{array}{rcl} x_{H_{\square}}^{\delta \text{prop}} / x_{H_{\square}}^{\text{no}\delta} &=& 1 & x_{H_e}^{\delta \text{prop}} / x_{H_e}^{\text{no}\delta} &=& 0.97 \\ \\ x_{H_D}^{\delta \text{prop}} / x_{HD}^{\text{no}\delta} &=& 1.08 & x_{Hl(1)}^{\delta \text{prop}} / x_{Hl(1)}^{\text{no}\delta} &=& 1.01 \\ \\ x_{ll}^{\delta \text{prop}} / x_{ll}^{\text{no}\delta} &=& 0.90 & x_{Hl(3)}^{\delta \text{prop}} / x_{Hl(3)}^{\text{no}\delta} &=& 0.89 \\ \\ x_{HB}^{\delta \text{prop}} / x_{HB}^{\text{no}\delta} &=& 1 & x_{Hq(1,3,L,R)}^{\delta \text{prop}} / x_{Hq(1,3,L,R)}^{\text{no}\delta} &=& \infty \\ \\ x_{HW}^{\delta \text{prop}} / x_{HW}^{\text{no}\delta} &=& 1 \\ \end{array}$$

Tyler Corbett (Niels Bohr Institute)

x

The propagator in the unitary gauge is:

$$-\frac{-i}{q_{ij}-\hat{M}^2+i\hat{\Gamma}\hat{M}+i\epsilon}\left(g_{\mu\nu}-\frac{q_{\mu}q_{\nu}}{\hat{M}^2}(1-\frac{\delta M^2}{\hat{M}^2})\right)\left[1+\delta D(q_{ij})\right]$$

$$2\operatorname{Re}[\delta D(q_{ij})] = \frac{2(q_{ij} - \hat{M}^2)\delta M^2 - \hat{\Gamma}(\hat{\Gamma}\delta M^2 + 2\hat{M}^2\delta\Gamma)}{(q_{ij} - \hat{M}^2)^2 + \hat{M}^2\hat{\Gamma}^2} \to 2\operatorname{Re}[\delta D(\hat{M}^2)] \sim -\frac{\delta M^2}{\hat{M}^2} - 2\frac{\delta\Gamma}{\hat{\Gamma}}$$

Taking the M_W -scheme, ratios of x_i for $e^+e^-e^+e^-$ comparison part 5:

$$\begin{array}{rcl} x_{H_{\square}}^{\delta \text{prop}} / x_{H_{\square}}^{\text{no}\delta} &=& 1 & x_{H_e}^{\delta \text{prop}} / x_{H_e}^{\text{no}\delta} &=& 0.97 \\ \\ x_{H_D}^{\delta \text{prop}} / x_{H_D}^{\text{no}\delta} &=& 1.08 & x_{Hl(1)}^{\delta \text{prop}} / x_{Hl(1)}^{\text{no}\delta} &=& 1.01 \\ \\ x_{ll}^{\delta \text{prop}} / x_{ll}^{\text{no}\delta} &=& 0.90 & x_{Hl(3)}^{\delta \text{prop}} / x_{Hl(3)}^{\text{no}\delta} &=& 0.89 \\ \\ x_{H_B}^{\delta \text{prop}} / x_{H_B}^{\text{no}\delta} &=& 1 & x_{Hq(1,3,L,R)}^{\delta \text{prop}} / x_{Hq(1,3,L,R)}^{\text{no}\delta} &=& \infty \\ \\ x_{HW}^{\delta \text{prop}} / x_{HW}^{\text{no}\delta} &=& 1 \\ \end{array}$$

Tyler Corbett (Niels Bohr Institute)

x

The propagator in the unitary gauge is:

$$-\frac{-i}{q_{ij}-\hat{M}^{2}+i\hat{\Gamma}\hat{M}+i\epsilon}\left(g_{\mu\nu}-\frac{q_{\mu}q_{\nu}}{\hat{M}^{2}}(1-\frac{\delta M^{2}}{\hat{M}^{2}})\right)\left[1+\delta D(q_{ij})\right]$$

$$2\operatorname{Re}[\delta D(q_{ij})] = \frac{2(q_{ij} - \hat{M}^2)\delta M^2 - \hat{\Gamma}(\hat{\Gamma}\delta M^2 + 2\hat{M}^2\delta\Gamma)}{(q_{ij} - \hat{M}^2)^2 + \hat{M}^2\hat{\Gamma}^2} \to 2\operatorname{Re}[\delta D(\hat{M}^2)] \sim -\frac{\delta M^2}{\hat{M}^2} - 2\frac{\delta\Gamma}{\hat{\Gamma}}$$

Compare the above Narrow Width prediction of the phase space population to the full calculation:

$$\delta \Gamma (\delta M_W, \delta \Gamma_W) = - 6.9 \frac{\delta M_W^2}{\hat{M}_W^2} - .95 \frac{\delta \Gamma_W}{\hat{\Gamma}_W}$$

The propagator in the unitary gauge is:

$$-\frac{-i}{q_{ij}-\hat{M}^2+i\hat{\Gamma}\hat{M}+i\epsilon}\left(g_{\mu\nu}-\frac{q_{\mu}q_{\nu}}{\hat{M}^2}(1-\frac{\delta M^2}{\hat{M}^2})\right)\left[1+\delta D(q_{ij})\right]$$

$$2\operatorname{Re}[\delta D(q_{ij})] = \frac{2(q_{ij} - \hat{M}^2)\delta M^2 - \hat{\Gamma}(\hat{\Gamma}\delta M^2 + 2\hat{M}^2\delta\Gamma)}{(q_{ij} - \hat{M}^2)^2 + \hat{M}^2\hat{\Gamma}^2} \to 2\operatorname{Re}[\delta D(\hat{M}^2)] \sim -\frac{\delta M^2}{\hat{M}^2} - 2\frac{\delta\Gamma}{\hat{\Gamma}}$$

Compare the above Narrow Width prediction of the phase space population to the full calculation:

$$\delta\Gamma(\delta M_W, \delta\Gamma_W) = 1 \times (\text{SM} - \text{like}) - .38 \frac{c_{H\psi}^{(3)}}{\hat{g}_2^2} - .95 \frac{\delta\Gamma_W}{\hat{\Gamma}_W} - 6.9 \frac{\delta M_W^2}{\hat{M}_W^2} - .64 \frac{c_{HW}}{\hat{g}_2^2}$$

Path Integrals 101: Free field theory

From Sterman 1993, the generating functional is:

$$Z_{\mathcal{L}_0} = \int [\mathcal{D}\phi] \exp\left[i \int d^4x \left(-\frac{1}{2}\phi(\Box + m^2)\phi - J\phi\right)\right]$$
$$= \exp\left[-\frac{i}{2} \int d^4x d^4z J(x) \Delta_F(x-z)J(z)\right] Z_{\mathcal{L}_0}[0]$$

The greens functions are then given by:

$$G(x_1, ..., x_n)_{\text{free}} = \langle 0|T[\Pi_i \phi(x_i)]|0\rangle_{\text{free}} = \prod_i \left[i\frac{\delta}{\delta J(x_i)}\right] Z_{\mathcal{L}_0}[J] \bigg|_{J=0}$$

Path Integrals 101: Free field theory

From Sterman 1993, the generating functional is:

$$Z_{\mathcal{L}_0} = \int [\mathcal{D}\phi] \exp\left[i \int d^4x \left(-\frac{1}{2}\phi(\Box + m^2)\phi - J\phi\right)\right]$$
$$= \exp\left[-\frac{i}{2}\int d^4x d^4z J(x)\Delta_F(x-z)J(z)\right] Z_{\mathcal{L}_0}[0]$$

The greens functions are then given by:

$$G(x_1, ..., x_n)_{\text{free}} = \langle 0|T[\Pi_i \phi(x_i)]|0\rangle_{\text{free}} = \prod_i \left[i\frac{\delta}{\delta J(x_i)}\right] Z_{\mathcal{L}_0}[J]\Big|_{J=0}$$

For example $G_4 = i^4 \delta_{J_1} \delta_{J_2} \delta_{J_3} \delta_{J_4} Z_{\mathcal{L}_0}$ gives:

1

Path Integrals 102: Interacting fields

For some potential $V(\phi)$ we can define the generating functional:

$$Z_{\mathcal{L}}[J] = W[J]/W[0]; \qquad W[J] = \int [\mathcal{D}\phi] \exp\left(i \int d^4x \left[\frac{1}{2}(\partial_{\mu}\phi)^2 - \frac{1}{2}m^2\phi^2 - V(\phi) - J\phi\right]\right)$$

Then we can define perturbation theory as:

$$\begin{aligned} Z_{\mathcal{L}}[J] &= \int [\mathcal{D}\phi] \exp\left(i \int d^4x \left[\frac{1}{2}(\partial_{\mu}\phi)^2 - \frac{1}{2}m^2\phi^2 - V(\phi) - J\phi\right]\right) / W[0] \\ &= \exp\left[-i \int d^4x_1 V\left(i\frac{\delta}{\delta J(x_1)}\right)\right] \exp\left[-\frac{i}{2} \int d^4x_2 d^4x_3 J(x_2) \Delta_F(x_2 - x_3) J(x_3)\right] Z_{\mathcal{L}_0}[0] / W[0] \end{aligned}$$

The Greens functions are then:

$$\begin{split} \langle 0| T[\Pi_i \phi(x_i) |0\rangle_{\text{int}} &= \left[\prod_i i \frac{\delta}{\delta J(x_i)}\right] Z_{\mathcal{L}}[J] \\ &= \left[\prod_i i \frac{\delta}{\delta J(x_i)}\right] \times \\ &\quad \exp\left[-i \int d^4 x_1 V\left(i \frac{\delta}{\delta J(x_1)}\right) - \frac{i}{2} \int d^4 x_2 d^4 x_3 J(x_2) \Delta_F(x_2 - x_3) J(x_3)\right] \times \\ &\quad Z_{\mathcal{L}0}[0]/W[0]\Big|_{J=0} \end{split}$$

Path Integrals 102: Interacting fields

The Greens functions are then:

$$\begin{split} \langle 0| \, T[\Pi_i \phi(x_i) \, |0\rangle_{\rm int} &= \left[\prod_i i \frac{\delta}{\delta J(x_i)} \right] \times \\ &\exp \left[-i \int d^4 x_1 V \left(i \frac{\delta}{\delta J(x_1)} \right) - \frac{i}{2} \int d^4 x_2 d^4 x_3 J(x_2) \Delta_F(x_2 - x_3) J(x_3) \right] \times \\ &Z_{\mathcal{L}_0}[0] / W[0] \Big|_{J=0} \end{split}$$

Diagrammatically the 2 point function at NLO is then:

Path Integrals 102: Interacting fields

The Greens functions are then:

$$\begin{split} \langle 0 | T[\Pi_i \phi(x_i) | 0 \rangle_{\text{int}} &= \left[\prod_i i \frac{\delta}{\delta J(x_i)} \right] \times \\ &\qquad \exp \left[-i \int d^4 x_1 V \left(i \frac{\delta}{\delta J(x_1)} \right) - \frac{i}{2} \int d^4 x_2 d^4 x_3 J(x_2) \Delta_F(x_2 - x_3) J(x_3) \right] \times \\ &\qquad Z_{\mathcal{L}_0}[0] / W[0] \Big|_{J=0} \end{split}$$

Diagrammatically the 2 point function at NLO is then:

Path Integrals 103: The effective action

The effective action is a Legendre transformation of Z[J], (Abbott 1982):

$$\Gamma[\bar{Q}] = Z[J] - J \cdot \bar{Q} \qquad \bar{Q} \equiv \frac{\delta}{\delta J} Z$$

Taking a couple variations of Γ gives:

$$\frac{\delta\Gamma}{\delta\bar{Q}} = -J \qquad \qquad \frac{\delta^2\Gamma}{\delta\bar{Q}^2} = -\frac{\delta J}{\delta\bar{Q}} = \left[-\frac{\delta\bar{Q}}{\delta J}\right]^{-1} = \left[-\frac{\delta^2 Z}{\delta J^2}\right]^{-1} = i\Delta^{-1}$$

Path Integrals 103: The effective action

The effective action is a Legendre transformation of Z[J], (Abbott 1982):

$$\Gamma[\bar{Q}] = Z[J] - J \cdot \bar{Q} \qquad \bar{Q} \equiv \frac{\delta}{\delta J} Z$$

Taking a couple variations of Γ gives:

$$\frac{\delta\Gamma}{\delta\bar{Q}} = -J \qquad \qquad \frac{\delta^2\Gamma}{\delta\bar{Q}^2} = -\frac{\delta J}{\delta\bar{Q}} = \left[-\frac{\delta\bar{Q}}{\delta J}\right]^{-1} = \left[-\frac{\delta^2 Z}{\delta J^2}\right]^{-1} = i\Delta^{-1}$$

$$\Delta \text{ is the connected propagator!}$$

Path Integrals 103: The effective action

The effective action is a Legendre transformation of Z[J], (Abbott 1982):

$$\Gamma[\bar{Q}] = Z[J] - J \cdot \bar{Q} \qquad \bar{Q} \equiv \frac{\delta}{\delta J} Z$$

Taking a couple variations of Γ gives:

$$\frac{\delta\Gamma}{\delta\bar{Q}} = -J \qquad \qquad \frac{\delta^2\Gamma}{\delta\bar{Q}^2} = -\frac{\delta J}{\delta\bar{Q}} = \left[-\frac{\delta\bar{Q}}{\delta J}\right]^{-1} = \left[-\frac{\delta^2 Z}{\delta J^2}\right]^{-1} = i\Delta^{-1}$$

$$\Delta \text{ is the connected propagator!}$$

Solving for $\delta/\delta \bar{Q}$:

$$\frac{\delta}{\delta \bar{Q}} = \frac{\delta J}{\delta \bar{Q}} \frac{\delta}{\delta J} = \Delta^{-1} \frac{1}{i} \frac{\delta}{\delta J}$$

Then $\delta/\delta \bar{Q}$ acting on Γ adds an external line and removes a propagator.

Path Integrals 103: Some examples

It follows then for the two-point function,

$$\frac{1}{i}\frac{\delta^2\Gamma}{\delta\bar{Q}^2} = \Delta^{-1} \Rightarrow \Delta \frac{1}{i}\frac{\delta^2\Gamma}{\delta\bar{Q}^2}\Delta = \Delta$$

Path Integrals 103: Some examples

It follows then for the two-point function,

Triple Gauge Couplings (TGCs)

Triple Gauge Couplings (TGCs)

Tyler Corbett (Niels Bohr Institute)

TGC fit (2016)

From Butter, Éboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, Rauch, 1604.03105

 $\mathcal{L}_{SM} + f_g(H^{\dagger}H)G^{A,\mu\nu}G_{\mu\nu} + f_W(H^{\dagger}H)W^{A,\mu\nu}W_{A,\mu\nu} + f_B(H^{\dagger}H)B^{\mu\nu}B_{\mu\nu}$ $+ f_W(D^{\mu}H)^{\dagger}\tau^A(D_{\nu}H)W^{A,\mu\nu} + f_B(D^{\mu}H)^{\dagger}(D_{\mu}H)B_{\mu\nu}$ $+ f_{\phi,2}\partial^{\mu}(H^{\dagger}H)\partial_{\mu}(H^{\dagger}H) + f_{\psi}(H^{\dagger}H)H\bar{\Psi}\psi + f_{WWW}\epsilon^{IJK}W^{I\nu}W^{J\rho}W^{K\mu}_{\rho}$

TGC fit (2016)

From Butter, Éboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, Rauch, 1604.03105

EWPD à la LEP

EWPD à la LEP

1-9% correction 10-99% correction 100+% correction

uudd	c_{Hd}	c_{Hu}	$c_{Hq}^{(1)}$	$c_{Hq}^{(3)}$	c_{HWB}	c_{HB}	c_{HW}	c_{HG}
SM–like:	016	.0404	0012	4.02	.033	0	0	0
NW/NW_{SM} :	015	.0397	0052	4.02	.050	0	0	0
+Contact:	0077	.0198	0013	2.24	.033	0	0	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.050	0	0	0
+C+mtm:	0077	.0198	0013	2.24	.019	0075	-1.48	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.034	0087	-1.47	0

1-9% correction 10-99% correction 100+% correction

uudd	c_{Hd}	c_{Hu}	$c_{Hq}^{(1)}$	$c_{Hq}^{(3)}$	c_{HWB}	c_{HB}	c_{HW}	c_{HG}
SM–like:	016	.0404	0012	4.02	.033	0	0	0
NW/NW_{SM} :	015	.0397	0052	4.02	.050	0	0	0
+Contact:	0077	.0198	0013	2.24	.033	0	0	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.050	0	0	0
+C+mtm:	0077	.0198	0013	2.24	.019	0075	-1.48	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.034	0087	-1.47	0
$+C+m+\gamma$:	0077	.0198	0013	2.24	.027	068	-1.41	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.034	0087	-1.47	0

1-9% correction 10-99% correction 100+% correction

uudd	c_{Hd}	c_{Hu}	$c_{Hq}^{(1)}$	$c_{Hq}^{(3)}$	c_{HWB}	c_{HB}	c_{HW}	c_{HG}
SM–like:	016	.0404	0012	4.02	.033	0	0	0
NW/NW_{SM} :	015	.0397	0052	4.02	.050	0	0	0
+Contact:	0077	.0198	0013	2.24	.033	0	0	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.050	0	0	0
+C+mtm:	0077	.0198	0013	2.24	.019	0075	-1.48	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.034	0087	-1.47	0
$+C+m+\gamma$:	0077	.0198	0013	2.24	.027	068	-1.41	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.034	0087	-1.47	0
+C+m+ γ +g:	0077	.0198	0013	2.24	.027	068	-1.41	98
NW/NW_{SM} :	0076	.0194	0054	2.28	.034	0087	-1.47	0

1-9% correction 10-99% correction 100+% correction

uudd	c_{Hd}	c_{Hu}	$c_{Hq}^{(1)}$	$c_{Hq}^{(3)}$	c_{HWB}	c_{HB}	c_{HW}	c_{HG}
SM–like:	016	.0404	0012	4.02	.033	0	0	0
NW/NW_{SM} :	015	.0397	0052	4.02	.050	0	0	0
+Contact:	0077	.0198	0013	2.24	.033	0	0	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.050	0	0	0
+C+mtm:	0077	.0198	0013	2.24	.019	0075	-1.48	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.034	0087	-1.47	0
$+C+m+\gamma$:	0077	.0198	0013	2.24	.027	068	-1.41	0
NW/NW_{SM} :	0076	.0194	0054	2.28	.034	00%7	-1.47	0
+C+m+ γ +g:	0077	.0198	0013	2.24	.027	- 068	-1.41	98
NW/NW_{SM} :	0076	.0194	0054	2.28	.034	0087	-1.47	0
		т	· · · · · · · · · · · · · · · · · · ·	11) +1.:	9(6)			

For uuuu(dddd) this is -8(-6)

For the total $H \to 4f$ width it's -0.28

 $(H \rightarrow gg \text{ is } 619...)$