IceCube - Particle Physics and Astrophysics on Ice

D. Jason Koskinen

University of Copenhagen - Niels Bohr Institute

> Nordic Conference on Particle Physics Norway 2020

IceCube/DeepCore

IceCube/DeepCore

Detection in IceCube

IceCube Science

Neutrino Mixing

- Neutrino mixing matrix (PMNS) is unitary in standard oscillation picture
- New physics
 - Additional (sterile?) states implies 3x3 matrix is subset of full unitary matrix
 - New BSM interactions or couplings can manifest as non-unitarity
- Test unitarity by measuring 3x3 matrix elements
 - Tau-elements least well measured

Atmospheric Neutrino Oscillation

• 2 measurements performed with 3 years of DeepCore data

Data fit in [energy, cos(zenith), PID] space Searching for 3D distortions (shape-only)

• 2 measurements performed with 3 years of DeepCore data

• 2 measurements performed with 3 years of DeepCore data

• 2 measurements performed with 3 years of DeepCore data

Inspired by Gravity

UNIVERSITY OF COPENHAGEN

Environmentally-induced neutrino decoherence

- What if a neutrino experiences perturbations from the environment as it propagates?
 - e.g. fluctuating space-time (quantum gravity)
- If perturbations are stochastic:
 - \rightarrow wavefunction phase shift
 - \rightarrow neutrino population loses coheren
 - \rightarrow damping of oscillation probability

*T. Stuttard, Particle Physics with Neutrino Telescope 2019

Neutrinos + Astronomy

Other higher-energy IceCube analyses begin ~100 GeV

D. Jason Koskinen - IceCube - Spaatind 2020

DeepCore Neutrino Astronomy

- Use event selection developed for neutrino oscillations to search for transient astrophysical sources
 - Find neutrino multiplets from generic point sources

Result

- Generic spectra is based on a sub-photospheric gamma ray burst. Tested using spectra peaked at 20 GeV and 100 GeV.
- 3-years of data is consistent with of background of atmospheric neutrinos
- Work in progress to include DeepCore and lower energy neutrinos within the global multi-messenger family

IceCube-Upgrade

• Dense instrumentation within inner core

30 GeV u_{μ}

Upgrade Performance

Major improvement in detection rate and energy/direction resolution

Huge increase in <10 GeV v rate

Enhanced rate for all oscillation energies

3x improvement @ ν_{τ} appearance energies

Upgrade & Oscillations

- $u_{ au}$ appearance is Upgrade primary physics goal
- Broad oscillation program

Conclusion

- Testing PMNS unitarity offers a powerful, modelindependent search for BSM physics
- DeepCore offers exciting opportunity to probe astrophysics at new energy regimes
- Deploying in 2022/23, the IceCube Upgrade can achieve 10% precision in tau-neutrino sector ($|U_{\tau 3}|$) after 1 year of operation

Backup

Track topology (e.g. induced by muon neutrino)

Good pointing

IceCube: lower bound on energy for through-going events DeepCore: well contained and provide good energy via muon track length

Generic Oscillation (Atm. Disappearance)

$$P(\nu_{\mu} \to \nu_{\mu}) \propto \sin^2(\theta_{23}) \sin^2\left(\frac{\Delta m_{32}^2 L}{E}\right)$$
 $L = \text{travel length}$
 $E = \text{energy}$

Oscillation w/ DeepCore

IceCube + DeepCore collects > 100k isotropic neutrinos at trigger level, tens
of thousands have undergone oscillation. Even single percent final analysis
efficiency contains 1,000s of atm. v events/year

