From Little Bang to Mini Bang: study the primordial fluid at the LHC

You Zhou

Niels Bohr Institute University of Copenhagen

Nordic Particle Physics Meeting (Spaatind 2020)

Heavy-ion collisions —> Little Bang

- Heavy ion collisions allow people to recreate QGP that existed at the very beginning of the universe.
- We can study the properties of the QGP (e.g. shear & bulk viscosities) in heavy ion collisions.

UNIVERSITY OF COPENHAGEN

Anisotropic Flow

- Spatial anisotropy in the initial state converted to momentum anisotropic particle distributions
 - known as **elliptic flow**
 - its magnitude sensitive to details of initial eccentricity and transport properties of QGP

Probe QGP properties with vn

v_n quantitatively described by hydrodynamics

- $v_2 > v_3 > v_4$; also $v_2{4} \approx v_2{6} \approx v_2{8}$
- QGP behaves nearly as a perfect fluid

(¶)1 1

Extraction QGP properties

Using flow data to extract QGP properties

!¶"₽₁ ₩

UNIVERSITY OF COPENHAGEN

• Shear and bulk viscosities: $\eta/s(T)$ and $\zeta/s(T)$

vn of identified particles

ALICE, JHEP09(2018)006

PID v₂ measurements in Pb-Pb collisions

• Mass dependence at low pT,

COPENHAGEN

- Interplay between radial flow and v_2
- described by hydrodynamic model (VISHNU / iEBE-VISHNU)
- Baryon meson grouping (recombination or coalescence?) at intermediated p_T

Correlations between v_m and v_n

$v_n \mbox{ and } v_m \mbox{ correlations }$

UNIVERSITY OF COPENHAGEN Ψ_n and Ψ_m correlations

ALICE, PLB773 (2017) 68

Measurements of correlations between flow vectors provide stronger constraints on the η/s in hydro than individual vn measurements alone.

Constraints on theory

Model	iEBE-VISHNU	iEBE-VISHNU	VISU2 1	EKRT	EKRT	IP-Glasma
	(I)	(II)	$V_{15}\Pi_{2+1}$	$+ \Pi y \Pi 0$	+Hyulo (naram I)	+ MOSIC + UrOMD
Setting	Ref. [49]	Ref. [49]	Kei. [23]	$\frac{11100}{11100}$	$\frac{\text{(parall I)}}{\text{Ref [50]}}$	$\frac{1}{Ref} [51]$
Initial conditions	T _P ENTo	AMPT	AMPT	EKRT	EKRT	IP-Glasma
η/s	$\eta/s(T)$	$\eta/s = 0.20$	$\eta/s = 0.16$	$\eta/s = 0.20$	$\eta/s(T)$	$\eta/s = 0.095$
ζ/s	$\zeta/s(T)$	$\zeta/s = 0$	$\zeta/s = 0$	$\zeta/s(T)$	$\zeta/s(T)$	$\zeta/s(T)$
Observables		~	-		-	
v ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
V ₃₋₇	\checkmark	\checkmark	Δ	\checkmark	\checkmark	\checkmark
$P(v_n)$	\checkmark	\checkmark	Δ	\checkmark	\checkmark	\checkmark
$v_n(p_{\rm T})^{ch,PID}$	Δ	\checkmark	N/A	N/A	N/A	Δ
r _n	Δ	Δ	N/A	N/A	N/A	Δ
SC(m,n)	Δ	Δ	×	Δ	Δ	N/A
V _{n,mk}	\checkmark	\checkmark	N/A	\checkmark	\checkmark	\checkmark
$\rho_{n,mk}$	\checkmark	\checkmark	N/A	\checkmark	\checkmark	\checkmark
$\chi_{n,mk}$	\checkmark	\checkmark	N/A	N/A	N/A	\checkmark
$V_{n,mk}(p_{\rm T})^{ch,PID}$	Δ	\checkmark	N/A	N/A	N/A	N/A

Table 1. Current available comparisons of between data and model calculations. Here \checkmark (Good), \triangle (Not so bad), \times (Not good) and N/A (Not available).

A similar but different approach

Instead of using anisotropic flow, map the Early Universe with angular power spectrum!

M. Machado etc, PRC99, 054910 (2019)

You Zhou (NBI) @ Spaatind 2020

Pb-Pb & Xe-Xe -> p-Pb & pp

Pb-Pb & Xe-Xe p-Pb collisions pp collisions collisions p-Pb @ √s_{NN} = 5.02 TeV 2012-9-13 01:33:48 Fill : 3056 Run : 188359 Event : 0x4cc42286 Pb-Pb @ sqrt(s) = 2.76 ATe 2011-11-12 06:51:12 Fill : 2290 Run : 167693 Event : 0x3d94315a 2.76 TeV • 5.02 TeV \bullet 900 GeV ullet5.02 TeV 8.16 TeV \bullet 2.76 TeV \bullet 5.44 TeV \bullet 5.02 TeV 7 TeV ullet8 TeV 13 TeV Mini Bang? **Little Bang** Hot OGP A droplet of QGP? UNIVERSITY OF

You Zhou (NBI) @ Spaatind 2020

دو الو. الآل

COPENHAGEN

Collectivity in small systems

Why is collectivity in small systems so interesting?

- Collectivity in small systems challenges two paradigms at once!
 - How far down in systems size does the "SM of heavy ions" remain?
 - ② Can the standard tools for min bias pp remain standard?

Christian Bierlich (NBI/Lund)

Two key questions:

- Is there anisotropic flow in small systems?
- What is the origins of anisotropic flow?

v_n {2} in Xe-Xe, Pb-Pb

ALICE, PRL123, 142301 (2019)

Large systems:

- strong N_{ch} dependence of v₂, reflecting the overlap geometry
- ordering $v_2 > v_3 > v_4$ except for very high N_{ch} (fluctuation dominant region)

v_n {2} in p-Pb, Xe-Xe, Pb-Pb

ALICE, PRL123, 142301 (2019)

Large systems:

- strong N_{ch} dependence of v_{2} , reflecting the overlap geometry
- ordering $v_2 > v_3 > v_4$ except for very high N_{ch} (fluctuation dominant region)

Small systems:

- v_n are compatible with large collision systems, with weak N_{ch} dependence
- ordering V₂ > V₃ > V₄

v_n {2} in pp, p-Pb, Xe-Xe, Pb-Pb

ALICE, PRL123, 142301 (2019)

Large systems:

- strong N_{ch} dependence of v_{2} , reflecting the overlap geometry
- ordering $v_2 > v_3 > v_4$ except for very high N_{ch} (fluctuation dominant region)

Small systems:

- v_n are compatible with large collision systems, with weak N_{ch} dependence
- ordering V₂ > V₃ > V₄

Comparions to PYTHIA

ALICE, PRL123, 142301 (2019)

PYTHIA 8.210 Monash 2013: Sjöstrand *et al.*, Comput.Phys.Commun. 191, 159

Small systems:

UNIVERSITY OF COPENHAGEN

• Cannot be explained solely by non-flow (PYTHIA 8 model)

Comparions to hydro

B. Schenke, QM2019

120

Small systems:

UNIVERSITY COPENHAGEN

- Hydrodynamic calculations
 - quantitative agreement with both Pb-Pb and Xe-Xe collisions
 - different v₂ results in pp from IP-Glasma and iEBE-VISHNUs •
 - iEBE-VISHNU works better than hydro with IP-Glasma

You Zhou (NBI) @ Spaatind 2020

Para-l'

v₄{2}×0.2ً

 $N_{
m ch}$

140 160 180 200

Ultra-long-range correlations

Y. Sekiguchi, QM2019

\"}=

- Ultra-long-range correlations ("ridge" structure) has been observed in high multiplicity p-Pb and pp events
 - Can not be described quantitatively by PYTHIA, AMPT, EPOS

Identified particle v2 in p-Pb

What's new: v2 of identified particles in p-Pb

- at low p_T: most particle species follow mass ordering -> hydrodynamic flow?
- at intermediate p_T : baryon $v_2 > meson v_2 -> partonic collectivity? Indication of QGP?$
- Coming LHC-RUN3 enables the possibility to perform a similar measurements in pp collisions

Flow with multi-particles

ALICE, PRL123, 142301 (2019)

- For small systems especially pp collisions
 - Real values of v₂{4}_{3-sub},

- Can not be reproduced by PYTHIA (Standard tool for M.B. pp), evidence of flow!
- Multi-particle correlations: $v_2{4}_{3-sub} \sim v_2{6}$
- Currently no hydro calculation (SM in heavy-ion) describe the data
- LHC-RUN3 data is crucial to confirm v₂{4} = v₂{6} = v₂{8}

Summary

Heavy-ion collisions (Little Bang):

 Flow observables service as an ideal tool to extract the QGP properties and probe the evolution

Small systems (Mini Bang?):

- Flow pattern is observed and similar as in heavy-ion collisions
- not conclusive yet if a tiny droplet of QGP has been created, other observables are also important

backup

Anisotropic Flow and symmetry planes

$$v_2{\Psi_{\rm RP}} = \langle \cos 2(\phi - \Psi_{\rm RP}) \rangle$$

 Ψ_{RP} : Reaction Plane

 $v_n = \langle \cos n(\varphi - \Psi_n) \rangle$

v₂: Elliptic flow v₃: Triangular flow

. . .

More results, not covered

- There are many nice flow studies with HF, which I do not show here
 - If the bulk does not flow, HF should not flow
 - If the bulk flows hydrodynamically, could HF flow generated by initial stage correlations (without correlated with bulk)?
 - Not clear how to treat non-flow precisely (no matter for LF or HF) Latest development: Siyu Tang @ QM19

Geometry driven ?

CMS, arXiv:1904.11519

 $If v_n \propto \varepsilon_n, then v_n\{4\}/v_n\{2\} = \varepsilon_n\{4\}/\varepsilon_n\{2\}$

UNIVERSITY OF COPENHAGEN

- The results seem to indicate that the flow is geometry driven
- Before firm conclusion, the assumption v_n∝ε_n should be validated (model calculations missing !!)

multi-particle cumulants in theory

 $c_2{4} = -v_2^4$

- Initial stage effect (CGC) gives ten times larger results of multiparticle cumulants
- Hydro could not even generate the negative sign of $c_2{4}$
 - No matter with HIJING, super-MC or TRENTo initial conditions

Positive $c_2{4}$ in hydro

Similar results (positive c₂{4}) from hydro with IP-Glasma initial conditions

✤ Hydro seems have the difficulty to generate negative c₂{4}

```
• Negative sign puzzle
```

\"}. T

4} in AMPT 62

M. Nie etc, PRC98, 034903 (2018)

- AMPT reproduces the right sign of * c_2 {4} in p-Pb
- How about pp? *

Symmetric Cumulants in small systems

UNIVERSITY OF COPENHAGEN

Symmetric cumulants

- Correlation between v₂ and v₄ in all systems
- Anti-correlation between v₂ and v₃ at high multiplicities, a transition to positive correlation followed by both small and large systems
- Not described by non-flow only models, but qualitatively predicted by model with initial stage correlations

Flow-vector correlations in pp

Hydrodynamic calculations could qualitatively describe the asymmetric cumulants ac{3}. and symmetric cumulants SC(4.2)

You Zhou (NBI) @ Spaatind 2020

*

UNIVERSITY OF COPENHAGEN

ι**₹**"Ρ⊥ ₩

Working definition

Working defination, Flow: Long-range multi-particle correlations

☆ Long-range:

UNIVERSITY OF COPENHAGEN

- 2- and multi-particle cumulants (typical flow features):
 - show +, -, +, signs

 \Rightarrow extract real values of v₂{m} (m=2,4,6,8)

•
$$v_2{4} = v_2{6} = v_2{8}$$

SC(3,2) in pp

Y. Zhou, QM2019

- Negative SC(3,2) observed in data, while all hydrodynamic calculations give positive SC(3,2)!
- It seems that hydrodynamic calculations have the difficulty to generate multiparticle (single/mixed harmonic) cumulants correctly
 - No such a study with AMPT yet

ι**₹**∎ ₩

NCQ scaling from coalescence

W. Zhao, QM2019

UNIVERSITY OF COPENHAGEN W. Zhao etc., arXiv: 1911.00826

Only ALICE Run1 data used

Calculation with quark coalescence gives a better but not perfect scaling

- A perfect NCQ scaling is not the requirement of parsonic collectivity!
- Quantitative comparisons (e.g. $v_2(p)/v_2(\pi)$) should be done

More from heavy-ion

Constraints (but too many) on initial conditions and properties of QGP

HI collisions

 \Leftrightarrow

ALICE, PLB773 (2017) 68 PRC97, 024906 (2018) JHEP 09 (2017) 032 PRL117, 182301 (2016) PRL116, 132302 (2016) JHEP 06 (2015) 190

> UNIVERSITY OF Copenhagen

Global Bayesian Analysis

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

S. Bass, QM2017 using **Pb-Pb** data only

π+, π

10³

p, p

10³

K⁺,K⁻

10³

dN_{ch}/dη

 $dN_{ch}/d\eta$

 $dN_{ch}/d\eta$

0.5

0.4

Data:

UNIVERSITY OF COPENHAGEN

- ALICE v₂, v₃ & v₄ flow cumulants
- · identified & charged particle yields
- identified particle mean pT
- 2.76 & 5.02 TeV

the entire success of the analysis depends on the quality of the exp. data!

Similar results from CMS

Similar results from CMS

- $v_2{4} = v_2{6} = v_2{8} = v_2{LYZ}$ in p-Pb
- $v_2{4} = v_2{6}$ in pp

Origin of flow with Baryon-meson grouping

- Baryon-meson grouping is observed in p-Pb
 - NCQ scaling, if valid, is only approximate (similar as in Pb-Pb)
 - Partonic degree of freedom?
- Coming LHC-RUN3 enables the possibility to perform a similar measurements in pp collisions

UNIVERSITY OF COPENHAGEN