#### Developing a Glue Robot for ITk End-Cap Strip Module Assembly A Dive into Applied Glue Science

Jonas Steentoft<sup>2,3</sup>, Eleni Myrto Asimakopoulou<sup>2</sup>, Richard Brenner<sup>2</sup>

Stefania Xella<sup>3</sup>, Craig Wiglesworth<sup>3</sup> Torsten Åkesson<sup>1</sup>, Nils Bingefors<sup>2</sup>, Mogens Dam<sup>3</sup>, Flavia de Almeida Dias<sup>3</sup>, Ole Dorholt<sup>4</sup>, Lars-Erik Lindquist<sup>2</sup>, Else Lytken<sup>1</sup>, Geoffrey Mullier<sup>1</sup>, Jan Oechsle<sup>3</sup>, Lennart Österman<sup>1</sup>, Ole Rohne<sup>4</sup>

<sup>1</sup>Lund University, <sup>2</sup>Uppsala University, <sup>3</sup>Niels Bohr Institute, <sup>4</sup>Oslo University 6th January 2020



### The ITK detector

The new Inner Tracker (ITK), is an all silicon tracker - divided into subsystems based on sensor type and mechanical support structure.





6th January 2020

### Module composition



#### Blow-up of barrel-type module

6th January 2020

### Module assembly in the Scandinavian Cluster

- The ITk will consist of  $\sim 19000$  independent detector modules.
- Scandinavia will produce  $\sim 600$  modules of three different geometries.
- Required production yield  $\ge 98$  % at every step of assembly.
- This talk focuses on the "Module Assembly" part of the process.



- -

### Collaborating with Industry

#### Baseline is to carry out productions in-house - but:

Scandinavia and a few others will collaborate with industry for the module production.

#### Primary reasons for this:

We don't have the in-house manpower for undertakings of this scale. We find it valuable for the instrumentation community to exercise industry collaboration.

Why re-invent the wheel - investing in production infrastructure already existing in industry?



Optimising assembly procedures for industry workflow

- Collaboration baseline assembly procedures rely heavily on manual labour approaches eg. gluing components by hand, using stencils.
- Scandinavian Cluster are collaborating with electronics company specialising in automated production flow.

So, we need to re-develop assembly procedures, into more automated approaches better suited for the work flow in industry



### Requirements for hybrid-to-sensor mounting

#### height of glue layer $z = 120 \pm 40 \ \mu m$

Too thick = unnecessary thermal barrier.

Too thin = more noise from capacitative coupling between sensor and hybrid

#### Filling factor $\sim 60$ %.

Sufficient glue coverage between hybrid and sensor for mechanical stability during wirebonding

#### NO glue seepage onto strip bond pads or guard ring.

Covering the strip bond pad makes it unbondable - channel loss. Covering the guard ring might short-circuit the edge isolation structure - rendering the sensor useless.



#### In house setup

- Sensor jig on XY-table.
- Glue syringe fixed in a Z mount.
- Dispensing on/off through eletric pneumatic valve - manual pressure regulator.
- Custom Python framework controls the robot.
- Glue amount controlled by speed of XY-table.



#### A note on glue

#### The glue is qualified based on:

Low shrinkage during curing. High thermal conductivity Sufficient bonding strength across large temperature range ( $-35^{\circ}$  C to  $40^{\circ}$  C )

Radiation hardness.



### A note on glue

The glue is qualified based on:

Low shrinkage during curing.

High thermal conductivity

Sufficient bonding strength across large temperature range (– $35^\circ$  C to  $40^\circ$  C )

Radiation hardness.

Cannot just go to the the Hardware Store...

Only one vendor offers a viable product, a two-component epoxy, Polaris PF 7006A, (meaning expensive) - delivered to us in small pre-proportioned bags.



### Challenges of Glue Robot Calibration I/II

#### Many variables

Fine tuning for dispensing has shown different dependencies on a number of variables.

The following variables were considered:

XY-table speed

- Dispensing pressure
- Needle gauge
  Needle height over sensor surface

Only real way of programmatically controlling glue amount dispensed is through the XY-table speed. Other variables kept constant.

Inverse scaling between XY-table speed and dispensed mass.

### Challenges of Glue Robot Calibration II/II

#### Time Dependency

Epoxy cures over time  $\rightarrow$  viscosity increases  $\rightarrow$  flowrate at constant pressure decreases  $\rightarrow$  dispensed mass goes down over time, using identical settings.

#### **Target Mass Scaling**

Need to translate between a target mass of glue, and the table speed setting. This scaling changes with the viscosity of the glue.

#### Length Scaling

Need capability to dispense same amount of glue mass over differing lengths.

We need V(t, m, l), parameterising XY-table speed w.r.t. time elapsed since mixing glue, the target mass and the desired length to dispense this mass over.



6th January 2020

### Calibration approach

• Procedure should be flexible and allow for "easy" transition between prototyping and production type modules.

• Approach was be to split each path of the pattern into sublines off 8 *mm*, Robot calibration was done solely wrt. to this 8 *mm* baseline.

• To optimise glue spread, small voids included between some 8 mm lines.



Figure: R0 sensor with its two hybrids, and the glue patterns underneath them.



## Calibration approach - V(m, t) look-up table

The calibration should take two input variables

- Time since mixing
- Desired glue mass

#### Accomplished by V(m,t) Look-up Table

A fine grained scan of the dispensed mass across a range of speed settings diminishing over time.

Data was sorted into a list of lists,  $V[\Delta m_i][\Delta t_j]$ , with bin-width's of 1 mg and 1 min.

#### Originally analytical approach was attempted:

Very nice time stabilisation was achieved.

But very difficult to combine with target mass and length calibration - separation of variables not possible.

Not feasible to gain enough statistics for multi-variable fit

- glue supply is limited. 6th January 2020 ITk module assembly J.Steentoft Uppsala U / NBI



# V(m, t) look-up table

# To Fill in blank spots in the table, Fits are used to interpolate values. two examples shown below.



Figure: Histograms of XY-table speed vs time since mixing - resulting in dispensing a glue mass within the given range.



15/22

6th January 2020

### V(m, t) Visualisation



Figure: Y-axis is time elapsed since glue mixing, X-axis is the target mass and the colourbar is the XY-table speed setting accomplishing this.

6th January 2020



### V(m, t) evaluation

Performance of V(m, t) was evaluated by repeatedly dispensing the RO pattern at 3 differents sets of mass settings -  $m_{nominal}$  and  $m_{nominal} \pm 2 mg$  - each set containing 8 different settings.

Resulting in a scanned mass range of [15; 42] mg across 24 target settings.

Time stability of V(m, t). Not as refined as analytical approach, but, successful 3 variable calibration.

Stable until 70 min after mixing.





6th January 2020

### V(m, t) evaluation

Robot precision currently at the 8 % level - while ITk baseline procedure precision sitting at  $\sim 10$  % - operator dependent!





6th January 2020

#### Glue robot - conclusion

For industry module assembly, a glue robot has been developed, using a XY-table and it's speed setting to regulate the glue flow generated by constant high pressure air flow.

- The robot has been tested capable of delivering paths containing [15; 42] mg of glue with a precision of 8 %.
- The operating window for module assembly is currently 40-50 minutes, [20;70] min with each module assembly taking  $\sim 10$  min. First fully functional module assembly setup in ITk - using a glue robot.
- Avenues of improvement identified setup to be optimised further before going into pre-production.



### Electrical R0 production - I/II



Figure: R0H0 glue pattern (*left*), R0H0 curing on spacers (*right*) and R0H1 pattern mid-dispense (*bottom*).



6th January 2020

### Electrical R0 production - II/II



Figure: Module after gluing R0H0 and R0H1 (*left*), after full module assembly (*right*)

6th January 2020



#### Summary

The Scandinavian ITk Cluster will be producing  $\sim 600$  silicon strip detector modules for the HL-LHC upgrade of the ATLAS Inner Tracker (ITK)

Due to our collaboration with industry, alternative automated production procedures had to be developed.

This led to the succesful development of a glue robot - to be used in the attachment of hybrids and powerboards to the sensor surface.

