Searches for Charged Higgs Bosons at CMS

Santeri Laurila

Helsinki Institute of Physics

CMS Collaboration

Spåtind 2020 Skeikampen, Norway 3.1.2020

- The SM has only one Higgs boson, but we know SM is not the final word
 - Motivation for an extended model is broad: hierarchy problem, dark matter, baryon asymmetry & CP violation, neutrino masses...
 - H₁₂₅ constrains but allows a more complex Higgs sector
 - Observation of new scalar boson(s) would provide direct evidence for BSM physics

- The SM has only one Higgs boson, but we know SM is not the final word
 - Motivation for an extended model is broad: hierarchy problem, dark matter, baryon asymmetry & CP violation, neutrino masses...
 - H₁₂₅ constrains but allows a more complex Higgs sector
 - Observation of new scalar boson(s) would provide direct evidence for BSM physics
- A simple extension: Two Higgs doublet models (2HDMs)
 → 5 different Higgs bosons
 - Neutral, CP-even h (light) and H (heavier)
 - Neutral, CP-odd A
 - Charged Higgs bosons H[±]
 - 2HDMs emerge as **low-energy limits** of several BSM theories (supersymmetric and others)

- The SM has only one Higgs boson, but we know SM is not the final word
 - Motivation for an extended model is broad: hierarchy problem, dark matter, baryon asymmetry & CP violation, neutrino masses...
 - H₁₂₅ constrains but allows a more complex Higgs sector
 - Observation of new scalar boson(s) would provide direct evidence for BSM physics

A simple extension: Two Higgs doublet models (2HDMs)
 → 5 different Higgs bosons

- Neutral, CP-even h (light) and H (heavier)
- Neutral, CP-odd A
- Charged Higgs bosons H[±]
- 2HDMs emerge as **low-energy limits** of several BSM theories (supersymmetric and others)

- The SM has only one Higgs boson, but we know SM is not the final word
 - Motivation for an extended model is broad: hierarchy problem, dark matter, baryon asymmetry & CP violation, neutrino masses...
 - H₁₂₅ constrains but allows a more complex Higgs sector
 - Observation of new scalar boson(s) would provide direct evidence for BSM physics

A simple extension: Two Higgs doublet models (2HDMs)
 → 5 different Higgs bosons

- Neutral, CP-even h (light) and H (heavier)
- Neutral, CP-odd A
- Charged Higgs bosons H[±]
- 2HDMs emerge as **low-energy limits** of several BSM theories (supersymmetric and others)

Light H[±] (m_{H+} < m_t – m_b) : "diresonant" top production

Light H[±] (m_{H+} < m_t – m_b) : "diresonant" top production


```
Heavy H<sup>±</sup> (m<sub>H+</sub> > m<sub>t</sub> - m<sub>b</sub>):
"single-resonant"
top production
```


Light H[±] (m_{H+} < m_t – m_b) : "diresonant" top production

Intermediate H[±] (m_{H+}~ m_t): interference with the "nonresonant" mode

Heavy H[±] (m_{H+} > m_t - m_b): "single-resonant" top production

Experimental signatures for H[±]

- H+ production and decay are model-dependent
 - → Different searches constrain different scenarios

	Light H [±] ($m_{H\pm} < m_t$)	Heavy H [±] ($m_{H\pm} > m_t$)
LHC Run 1 (7–8 TeV)	H±→τυ, semileptonic & fully hadronic <u>HIG-14-023</u>	H±→τυ, semileptonic & fully hadronic <u>HIG-14-023</u>
	H±→cs, semileptonic <u>HIG-13-035</u>	H±→tb, semileptonic <u>HIG-14-023</u>
	H±→cb <u>HIG-16-030</u>	
LHC Run 2 (13 TeV)	H±→WA, A→µµ <u>HIG-18-020</u>	H±→tb semileptonic HIG-18-004
		H±→tb fully hadronic HIG-18-015
	H±→τυ semileptonic & fully hadronic <u>HIG-18-014</u>	H±→τυ semileptonic &fully hadronic <u>HIG-18-014</u>
		and more to come

	Light H [±] ($m_{H\pm} < m_t$)	Heavy H [±] ($m_{H\pm} > m_t$)
LHC Run 1 (7–8 TeV)	H±→τυ, semileptonic & fully hadronic <u>HIG-14-023</u>	H±→τυ, semileptonic & fully hadronic <u>HIG-14-023</u>
	H±→cs, semileptonic <u>HIG-13-035</u>	H±→tb, semileptonic <u>HIG-14-023</u>
	H ±→cb <u>HIG-16-030</u>	
LHC Run 2 (13 TeV)	H±→WA, A→µµ <u>HIG-18-020</u>	H±→tb semileptonic HIG-18-004
		H=→tb fully hadronic HIG-18-015
	H±→τυ semileptonic & fully hadronic HIG-18-014	H±→τυ semileptonic &fully hadronic <u>HIG-18-014</u>
		and more to come

	Light H [±] ($m_{H\pm} < m_t$)	Heavy H [±] ($m_{H\pm} > m_t$)
LHC Run 1 (7–8 TeV)	H±→τυ, semileptonic & fully hadronic <u>HIG-14-023</u>	H±→τυ, semileptonic & fully hadronic <u>HIG-14-023</u>
	H±→cs, semileptonic <u>HIG-13-035</u>	H±→tb, semileptonic <u>HIG-14-023</u>
	H±→cb <u>HIG-16-030</u>	
LHC Run 2 (13 TeV)	H±→WA, A→µµ <u>HIG-18-020</u>	H±→tb semileptonic HIG-18-004
		H±→tb fully hadronic HIG-18-015
	H±→τυ semileptonic & fully hadronic HIG-18-014	H±→τυ semileptonic &fully hadronic HIG-18-014
		and more to come

	Light H [±] ($m_{H\pm} < m_t$)	Heavy H [±] ($m_{H\pm} > m_t$)
LHC Run 1 (7–8 TeV)	H±→τυ, semileptonic & fully hadronic <u>HIG-14-023</u>	H±→τυ, semileptonic & fully hadronic <u>HIG-14-023</u>
	H±→cs, semileptonic <u>HIG-13-035</u>	H±→tb, semileptonic <u>HIG-14-023</u>
	H±→cb <u>HIG-16-030</u>	
LHC Run 2 (13 TeV)	H±→WA, A→μμ <u>HIG-18-020</u>	H±→tb semileptonic HIG-18-004
		H±→tb fully hadronic HIG-18-015
	H±→τυ semileptonic & fully hadronic HIG-18-014	H±→τυ semileptonic &fully hadronic <u>HIG-18-014</u>
		and more to come

Complementary analysis strategies targeting different event topologies:

H[±]→tb: Hadronic results

Resolved analysis:
 m(tb) distribution
 used to extract limits

Resolved analysis:
 m(tb) distribution
 used to extract limits

Resolved analysis:
 m(tb) distribution
 used to extract limits

 Boosted analysis:
 H_T distributions in several categories used to extract limits

H[±]→tb: Hadronic results

H[±]-tb: Combined results

- HELSINKI INSTITUTE OF PHYSICS
- The τυ channel is sensitive as it allows the reconstruction of the transverse mass of the τυ system:

$$m_{\rm T} = \sqrt{2p_T^{\tau_{\rm h}}} E_T^{\rm miss} \left(1 - \cos(\Delta\phi(E_T^{\rm miss}, \tau_{\rm h}))\right)$$

 Production changes with mass, but the final state remains similar

 H^{\pm} (200 GeV, σ = 50 pb)

Jets misid. as τ_{h}

The tu channel is sensitive as it allows the reconstruction of the transverse mass of the τυ system: CMS 35.9 fb⁻¹ (13 TeV) <u>pin</u>

_h+jets, R₂ > 0.75

H[±] (2 TeV, σ = 1 pb)

- Data

10⁴

$$m_{\rm T} = \sqrt{2p_T^{\tau_{\rm h}} E_T^{\rm miss}} \left(1 - \cos(\Delta\phi(E_T^{\rm miss}, \tau_{\rm h}))\right)$$

Events W+jets tt Ζ/γ* Single t Production changes with mass, • Diboson **NNN Post-fit unc.** 10³ but the final state remains similar 10² 10 Н \mathcal{V}_{τ} \mathcal{V}_{τ} 10⁻¹ g July Summer Data/Bkg. Post-fit unc 1.5 E_T^{miss} 0.5 600 100 200 300 400 500 m_T (GeV)

- Sensitivity improved up to a factor of 3 compared to the Run-1 legacy result
- Mass range extended from 600 GeV to 3 TeV
- m_{H+} ~ m_t included for the first time at CMS

H[±]→TU: Details in my <u>thesis</u>

HELSINKI INSTITUTE OF PHYSICS

INTERNAL REPORT HIP-2019-05

Search for Charged Higgs Bosons Decaying to a Tau Lepton and a Neutrino with the CMS Experiment

Santeri Laurila

HELSINKI INSTITUTE OF PHYSICS

INTERNAL REPORT HIP-2019-05

Search for Charged Higgs Bosons Decaying to a Tau Lepton and a Neutrino with the CMS Experiment

Santeri Laurila

HELSINKI INSTITUTE OF PHYSICS P.O. Box 64 • FI-00014 UNIVERSITY OF HELSINKI • FINLAND

HELSINKI INSTITUTE OF PHYSICS P.O. Box 64 • FI-00014 UNIVERSITY OF HELSINKI • FINLAND

$H^{\pm} \rightarrow \tau \upsilon \& H^{\pm} \rightarrow tb combined$

Comparison of limits from the TU and tb channels and from properties of H₁₂₅

- The first search for
 H=→W=A at the LHC
- B(A→µµ) ≤ 10⁻³, but low-p⊤ muons perform well in terms of trigger & identification efficiency, resolution and pileup robustness

m(µµ) reconstructed
 and used to extract
 limits

• Limits on B(t \rightarrow bH[±])B(H[±] \rightarrow W[±]A)B(A \rightarrow µµ) set for the first time

- CMS has a broad search program for charged Higgs bosons
- Several results are out based on 2016 data (36 fb⁻¹), including...
 - ✤ The first search for H=→W=A at the LHC
 - Most extensive $H^{\pm} \rightarrow \tau^{\pm} u$ search to date, including $m_{H\pm} \sim m_{top}$
 - ✤ First look at the fully hadronic final state of the H=→tb channel
- Full Run 2 data (140 fb⁻¹) is now being analyzed
- Run 3 and HL-LHC coming up, happy searching continues!

Thank you!

Back-up

Previous Searches & Constraints

Assuming m(H) = m(A) = 1 TeV: **%**

H[±] Production at the LHC HELSINKI INSTITUTE OI PHYSICS **H**[±] **production mode** depends on its mass: $m_{H+} = m_t - m_b$ **Light H**[±] ($m_{H+} < m_t - m_b$) dominantly produced in **Heavy H**[±] ($m_{H+} > m_t - m_b$) dominantly top quark decays ("diresonant" top production) produced in association with top quark ("single-resonant" mode) Charged Higgs production at the LHC p 13 TeV, NLO total cross section 10^{2} b H⁺W⁻bb H^+ 000 tī x BR ŦΗ H^+ tan_{B=} 10¹ tanβ=8 σ [pb] tanß=30 AadGraph5_aMC@NLO 10⁰ 10⁻¹ 1.8 NLO/LO K-factor 1.6 1.4 1.2 arXiv:1607.05291 _1 H⊦ 200 140 170 190 220 130 150 160 180 210 m_{H[±]} [GeV] In intermediate region $(m_{H+} \sim m_t)$ the two

processes interfere with the "nonresonant" mode

₩ H[±]→tb: Hadronic final state

$H^{\pm} \rightarrow \tau \upsilon$: Background suppression

H[±]→TU: Combined results

- 95% CL upper limits on H+ production with hadronic and leptonic final states combined
- Expected median limits from the leptonic and hadronic final states separately and combined