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Feebly interacting particles

® While we wait for the next hadron collider (FCC-hh: 2040-2060) to probe the energy
frontier, let's explore the intensity frontier using low-energy, high-intensity experiments.
— C.f. Oleg’s talk this morning.

® Feebly interacting particles (FIPs): particles interacting with the SM with a suppressed
coupling. The new degrees of freedom are typically SM singlets.

FIP candidates

® Renormalizable portals (mix with interacting SM states, or interact with small coupling):
Spin 0: scalar portal (dark Higgs).
Spin %: neutrino portal (heavy neutral lepton).
Spin 1: vector portal (dark photon).

® Non-renormalizable portals (interact through higher dimensional operators):

m Axion-like particles.
..



Heavy Neutral Leptons (HNLs)

Three Generations
of Matter (Fermions) spin %
| U} i | U} I

Three Generations
of Matter (Fermions) spin %

mass - [ 24 ey 127 Gev, 7126y mass - [ 24 vev 127 Gev 7126V
charge 2 t charge - | % u % C %
name - top name - up charm 1op
4.2 GeV. ” 4.8 MeV 104 MeV. 4.2 GeV
. Y 2 s Vs R
£ ] S
5] (3
6 bottom down strange bottom
-
oev - >114GeV < >114 GeV
Y : 0 Y Vy/N, °V & °
T 7 0 € - Y n o
ta @ Higgs electrdn muor sterie sterle 8 Higgs
neutpino 4 boson Rewho aating | TEU0 Sl [CUMF neurino| S boson
= N iy y
0.511 Mev. 105.7 Mev 1.777 Gev I spin 0 » 0,511 Mev 105.7 Mev. 1.777 Gev e spin 0
o |1 - =l o S |a 1 -1 <
st =3 o
e 9 T g e e 3 T g
& electron muon tau 2 - electron muon tau @
— m

® HNLs can explain neutrino masses and oscillations (maybe: baryogenesis, dark matter).
® They interact via mixing with flavor eigenstates: v, = UEMNSy, + © /N, © < 1.

® |argely constrained below the kaon mass, the neutrino portal will be probed at the
GeV scale by the proposed SHiP experiment.
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SHiP (Search for Hidden Particles) Decay
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® Low-background (0.1 evts.) beam-dump experiment @ 400GeV SPS; 2-102°POT in 5yr.

® Comprehensive Design Study for SHiP and Beam Dump Facility submitted last December.

® SHiP aims to observe HNLs, and measure their mass and mixing angles.

What else can we learn about the properties of HNLs at SHiP?
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Detour: realistic HNL benchmarks

Sensitivity study [1811.00930] / PBC

[1901.09966] assume one Majorana HNL, ~ BUE
mixing with one generation only. ® y masses generated by see-saw mechanism:

Myg = — Z M;©,,04;
T

® For one HNL, the seesaw limit is a prediction:
E.g. for a 1GeV HNL, we expect [0|° ~ 10101
® To generate two distinct Am?2, at least two

HNLs are needed, mixing with at least two
generations.

® |f multiple HNLs are degenerate as in the
vMSM, their mixing angles can be large.

HNL mass [GeV]
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Majorana HNLs

® New states: SM singlets w/ Majorana mass term.

® Massive states: Majorana particles.
= Can violate lepton number.

® |f we want large mixing angles and correct neutrino
masses, lepton number violating (LNV) effects may
be suppressed (Shaposhnikov [hep-ph/0605047],
Kersten and Smirnov [0705.3221]).

® |s there any hope of observing LNV at all? At SHiP?
® Yes & yes!

® We might even measure the mass splitting!



Main idea

® |f there are two quasi-degenerate HNLs, they can oscillate among themselves.

e Oscillations in the sterile sector can be lepton number violating. For \G)|2 >m, /M,
LNC rate o1+ cos(0MT)
LNV rate o 1—cos(6MT)

® To observe them, we need to remember that HNLs are long-lived.
® Whether LNV is observable depends on the mass splitting §A and proper lifetime 7:

oMt < 21 = LNC only
OMT > 21 = LNC + LNV with equal integrated rates
OMT ~ 21 = Potentially resolvable oscillations

Consequences of HNL oscillations

® LNV may be suppressed (especially at large mass, cf. Drewes, Klari¢, Klose [1907.13034]).

= existing bounds relying on LNV might not be valid.
® Observation of LNV (or LNC only) constrains the number and mass splitting of HNLs.
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Distinguishing LNC / LNV events at SHiP

® Most production processes are H — [h']l,,N.
® We select the fully reconstructible decay channels N — [ ;7.

® Can we compare the lepton charges?
— No! Because the primary decay takes place inside the target.

HNLs carry not only lepton number, but also spin % — look at angular distributions.

® |t turns out LNC / LNV processes have very different kinematics! E.g. for 2-body decays:
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Complications

® Not all production processes are 2-body decays.
® Decay products (I,, I, 7) are not massless = helicity flips are possible.
® Heavy mesons are not monochromatic = smears out the distribution of decay products.

® We need to take geometrical acceptance into account.

® To handle these complications, we need a Monte-Carlo simulation!

® \We use our own Monte-Carlo because we need finer control (tracking spin correlations)
over matrix elements compared to what Pythia provides.



LNC / LNV distributions
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We can discriminate these processes using boosted decision trees
® Generate 3-10° events for each mass, split 0.5:0.2: 0.3 into training / validation / test.
® We use the LightGBM gradient boosting algorithm.
® Accuracy is highest when the HNL kinetic energy in CM = heavy meson p; spread.
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How to quantitatively distinguish Majorana / Dirac?

Hypotheses we want to distinguish

J{, (Dirac-like): HNLs are Dirac or quasi-Dirac with dM7 < 27 (LNC only).
H 5 (Majorana-like): HNLs are Majorana or quasi-Dirac with M7 > 2w (LNC + LNV).

Model-selection sensitivity

® Assumptions: The mass M, and U2 : Uﬁ ratio have roughly been measured.
® Compute the likelihood of each hypothesis based on the classifier decisions and accuracy.

® Considering in turn each hypothesis as the null hypothesis, draw the “model-selection”
sensitivity curve where SHiP has a 1/2 probability of excluding this hypothesis at 90% CL
if the other is true, after 5 years of nominal operation i.e. 2-10%° POT.

12 /15



Model-selection sensitivity

® Dashed line:
model-selection sensitivity.
® Colored areas:
existing exclusion bounds
® Dotted lines: future

experiments that can
reconstruct the HNL mass.

©ul?

® Hatched areas:
seesaw lower bound.

Source: Physics Beyond Colliders
report (arXiv: 1901.09966)
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Resolving HNL oscillations
® Simultaneous requirement of BAU and DM production in the ¥MSM suggests M that
could be resolved at SHiP (Canetti and Shaposhnikov [1208.4607]).
® Bin events in proper time, weight them by P(LNV) and subtract the sample average:
® Period of oscillations is 27 /dM. Allows measuring the mass splitting.

2579 events, My =1 GeV, 5M =4-10"7 eV
puny inferred using LightGBM with accuracy 0.639
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Conclusion

For mixing angles |(9|2 = 107°-108, we can expect many fully reconstructed HNL events.
In this region, SHiP can:

® Test the Majorana nature of HNLs,
® |f we are lucky, resolve the mass splitting d M,
. even if current / next-generation experiments like NA627" do not observe any HNLs.

This could help determine the number of nearly-degenerate HNLs (needed to measure |®a|2).

Along with the HNL mass / mixing angles, this would make the ¥YMSM cosmology predictive.
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Fraction of produced HNLs by multiplicity and spin

Fraction of produced HNLs
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LNC vs. LNV
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Angular distribution in the lab frame

® [n the lab frame, the meson spectrum smears out the effect along z, but not necessarily p;.
® |f the HNL p, (CM) is larger than the heavy hadron p; spread (lab), a difference is visible.
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Impact of meson pr spread

* Higher (p?.)

= lower accuracy

= curve moves upward
® Solid line:

best fit from LEBC-EHS
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