# Status of the ATLAS ITk Strip Detector for the HL-LHC

Craig Wiglesworth, Niels Bohr Institute

Spåtind 2020

UNIVERSITY OF

Nordic Conference on Particle Physics



# The High-Luminosity LHC (HL-LHC)



Run 3 (2021) → 14 TeV, 55 – 80 <interactions / BX>, 300 fb<sup>-1</sup> by ~2023 Run 4+ (2026) → 14 TeV, up to 200 <interactions / BX>, 3000 fb<sup>-1</sup> by ~2035

The HL-LHC will pose difficult experimental challenges – requiring ATLAS upgrades

## **ATLAS Upgrades for the HL-LHC**

#### Tracking

New all–silicon Inner Tracker (ITK) will replace the existing Inner Detector Muon Spectrometer

Readout electronics replaced
 New trigger chambers

#### Calorimeters

Readout electronics replaced
New O(10's ps) timing detector 2.4<|η|<4.3</li>

#### Trigger / DAQ

L0/L1 Hardware Track Trigger HLT ~ 10 kHz

## The ATLAS Inner Tracker (ITk)

The new Inner Tracker (ITk) is an all -silicon (pixels & strips) which aims to maintain at least the same performance as the current tracker

#### **Design Highlights:**

- Silicon area: ~200 m<sup>2</sup>
- Radiation hardness: 10+ year lifetime
   @ x10 integrated radiation
- Granularity: baseline occupancy of < 0.1% (pixels) < 1% (strips) @ <µ>=200
- Material budget: > 30% less
- Coverage:  $|\eta| < 2.5$  to  $|\eta| < 4.0$
- Readout: new scheme allows fast track trigger





## **ITk Strip Detector Module**



## **ITk Strip Detector in Scandinavia**



UPPSALA UNIVERSITET







The Scandinavian Cluster will produce **576** endcap modules, in collaboration with an industrial partner

This corresponds to ~10% of endcap modules







### **Other Scandinavian Contributions**





## **Module Production Plan**



## **Preparations For Module Production**











### **Semi-Electrical Modules**



We have built x2 semi-electrical R2 modules for the purposes of performing:

- Petal assembly routines
- (Prototype) system tests



### **First Electrical Module**





We have now almost completed our first operating (R0) module!

- Missing FE bonds & power-board
- Couple of (fixable) readout issues



#### **Summary and Next Steps**

ATLAS ITk project is moving out of R&D phase and into production phase

Our priority is now to finish the first (R0) module & then build a few more with the remaining prototype parts that we have

Aim is to develop production procedures & exercise our QA / QC routines

(Scandinavian) Module Production Milestones

- Site Qualification: Mid/End of Year
- Module Pre-Production: Mid/End of Year
- Module Production:

Early Next Year

#### **Backup Slides**

## Physics @ HL-LHC

• WH / ZH / ttH and  $H \rightarrow \mu\mu$ : Statistically limited  $\rightarrow$  large gains in  $\Delta\mu/\mu$  at HL-LHC. Allow access to the top and muon-Yukawa couplings.

•  $H \rightarrow Z\gamma I H \rightarrow \gamma\gamma$ : Improved precision can probe new physics via loop diagrams.



• **Higgs Self-Coupling:** Measurement is important to confirm the Higgs mechanism. Triple Higgs coupling ( $\lambda_{HHH}$ ) could be observable via HH pair production.

| Decay Channel                   | Branching Ratio | Total Yield $(3000 \text{ fb}^{-1})$ |  |
|---------------------------------|-----------------|--------------------------------------|--|
| $b\overline{b} + b\overline{b}$ | 33%             | 40,000                               |  |
| $b\overline{b} + W^+W^-$        | 25%             | 31,000                               |  |
| $b\overline{b} + \tau^+\tau^-$  | 7.3%            | 8,900                                |  |
| $ZZ + b\overline{b}$            | 3.1%            | 3,800                                |  |
| $W^+W^- + \tau^+\tau^-$         | 2.7%            | 3,300                                |  |
| $ZZ + W^+W^-$                   | 1.1%            | 1,300                                |  |
| $\gamma\gamma + b\overline{b}$  | 0.26%           | 320                                  |  |
| $\gamma\gamma + \gamma\gamma$   | 0.0010%         | 1.2                                  |  |





https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

Δμ/μ

#### **Expected ITk Performance**

