Background modeling and signal estimation using Gaussian Processes in the $H \rightarrow \gamma \gamma$ channel

Simon Millerjord

Master student, UiO

Nordic high energy physics conference, Spåtind, 06.01.20

- H \rightarrow yy channel
 - Parametric functions
- Background modeling
 - Exponential
 - Exponential of polynomials
 - Bernstein polynomials
- Increase of data to 3000 fb^{-1} by 2037
- Relative statistical uncertainty decreases – hidden features may arise

- Article by Frate et. al.
 - <u>arxiv:1709.05681</u>
 - Explore Gaussian Processes
 - Background modeling
 - Generic signal modeling
 - ttbar ATLAS data set with 3.6 fb^{-1}
- Luminosity independence
- What is a good model?
 - Background model modeling without bias
 - Background model does not swallow signal
 - Signal model modeling without bias
 - Minimizing the total uncertainty on signal amplitude

Gaussian Processes (GP)

- Bayesian machine learning method
 - Mean function
 - Covariance matrix kernel
 - Squared exponential: $Ae^{-\frac{(x_1-x_2)^2}{l^2}}$
- Non-parametric samples
- Updating the prior information

Gaussian Processes (GP)

Methods

• Python

- GEORGE
- IMINUIT
- Optimization of hyperparameters
 - Minimization of the negative log marginal likelihood

$$-\ln L = \frac{1}{2}y^{T}K_{y}^{-1}y + \frac{1}{2}\log|K_{y}| + \frac{n}{2}\log 2\pi$$

Background kernel – Squared exponential

•
$$Ae^{-\frac{(x_1-x_2)^2}{l^2}}$$

• Signal kernel – Local Gaussian kernel

$$Ae^{-\frac{(x_1-x_0)^2+(x_2-x_0)}{2w}}$$

- 20 000 toys
- 36 fb^{-1} , 360 fb^{-1} , 1800 fb^{-1} , 3600 fb^{-1}
- Parametric (ad-hoc) function for comparison: e^{ax^2+bx+c}
- Goodness of fit: $\chi^2 = \sum_{i=1}^n \frac{(y_i f(x_i;\theta))^2}{\sigma_i^2}$
- Degrees of freedom for background kernel:
 - Assumed two: Amplitude and lengthscale
 - *Effective* degrees of freedom: ~ 5
- Number of degrees of freedom for χ^2 distribution:
 - Ndof = 40 2 = 38
 - Actual ndof = 35

Mean test statistic evolution

Residuals – Background only kernel

Signal injection test

Signal injection test using a Matérn kernel

Signal amplitude estimation

Luminosity $[fb^{-1}]$	Expected signal amplitude	Estimated signal amplitude	Uncertainty [%]
36	398	373 <u>+</u> 271	72
360	3989	3955 <u>+</u> 2778	70
1800	19947	19927 <u>+</u> 14096	70
3600	39894	39901 <u>+</u> 28218	70

The Gaussian Process:

- Using the hyperparameters for estimating the signal amplitude was unsuccessful due to the large uncertainties.
 - A different method for estimating the signal is required
- Manages to find the underlying function and is luminosity independent.
- Does not produce a large bias relative to the expected Higgs boson signal
- Does not swallow a inserted signal.