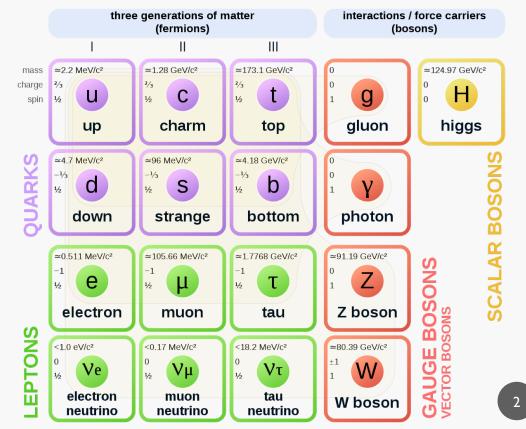
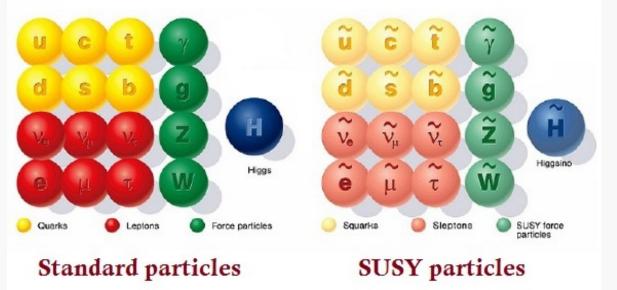
SEARCH FOR THE ELECTROWEAK PRODUCTION OF CHARGINOS AND SLEPTONS DECAYING INTO FINAL STATES WITH TWO ELECTRONS OR MUONS IN PROTON-PROTON COLLISIONS AT $\sqrt{S} = 13$ TEV WITH THE ATLAS DETECTOR

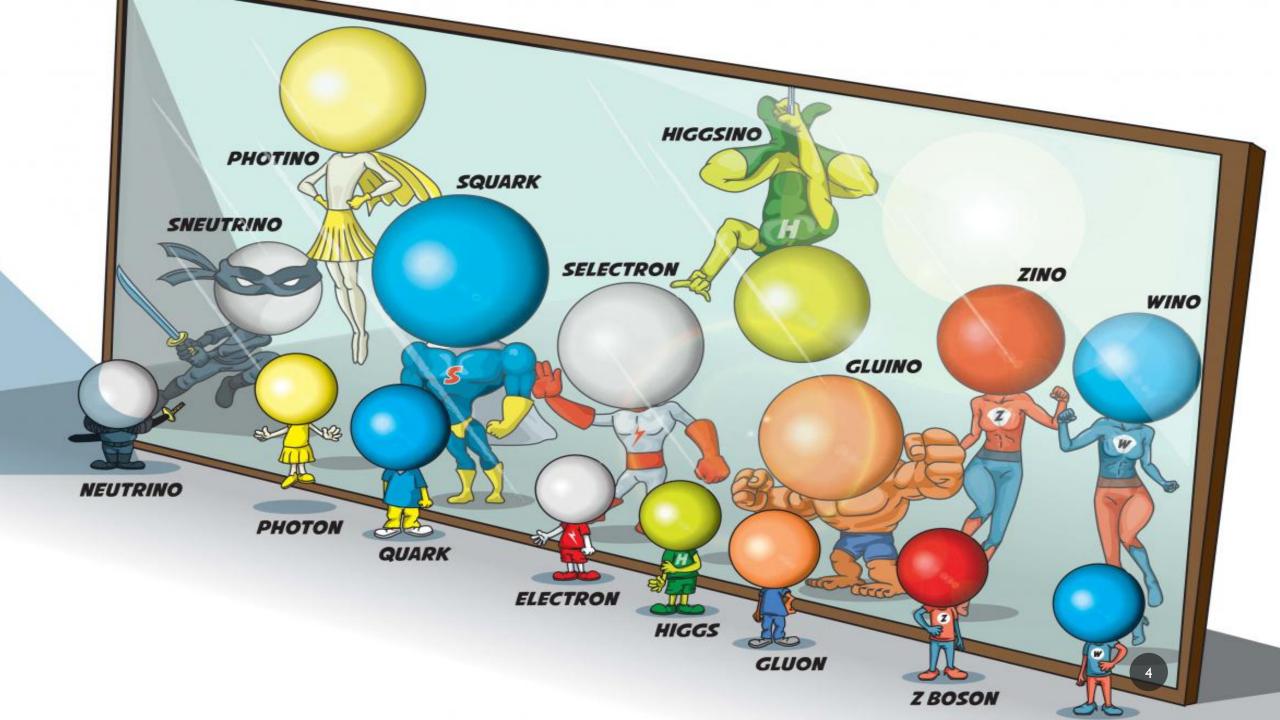

Helén Persson

Master student, University of Oslo

THE STANDARD MODEL

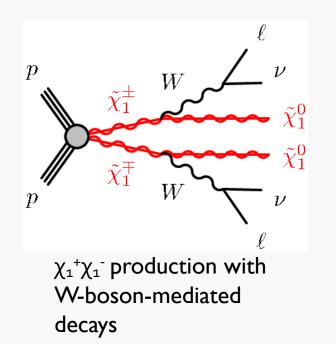
- Describes most of the world we see around us
- Has some problems:
 - Does not include gravity
 - Does not include a candidate for dark matter
- Need an expansion, something that can explain these things

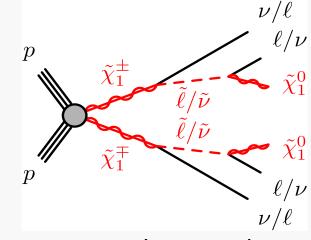

Standard Model of Elementary Particles

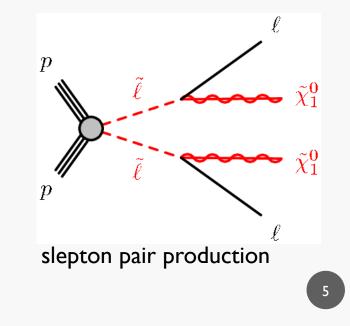


SUPERSYMMETRY (SUSY)

- Links fermions and bosons
- Each SM particle has a superpartner
 - Spin differs by a half-integer.
- Due to spontaneous symmetry breaking the superpartners are more massive than their SM partners
- The superpartners of fermions are bosons with the names of their fermionic counterparts prefixed with «s-» (leptons -> sleptons)
- The superpartners of bosons are fermions with the names of their bosonic counterparts suffixed with «-ino» (gluon -> gluino)






SEARCH FOR THE ELECTROWEAK PRODUCTION OF CHARGINOS AND SLEPTONS DECAYING INTO FINAL STATES WITH TWO ELECTRONS OR MUONS IN PROTON-PROTON COLLISIONS AT \sqrt{S} = 13 TEV WITH THE ATLAS DETECTOR

- The article can be found here <u>https://arxiv.org/abs/1908.08215</u>
- Studies three supersymmetric decay models

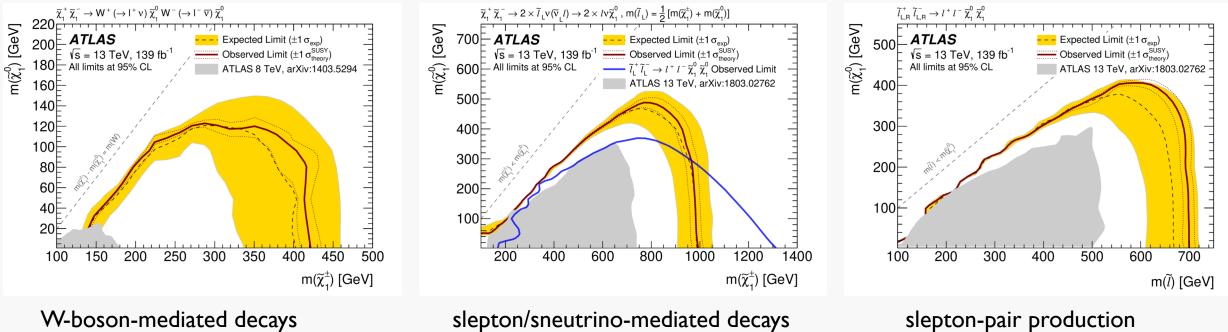
 $\chi_1^+\chi_1^-$ production with slepton/sneutrino-mediated-decays

ABOUT THE SEARCH

- The analysis uses data collected by the ATLAS detector during pp collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV from 2015 to 2018
 - total integrated luminosity of 139 $\rm fb^{-1}$
- Final state that requires
 - 2 leptons
 - 0 jets
 - Missing transverse energy
- Leptons selected as baseline or signal leptons according to various quality and kinematic selection criteria
 - Baseline objects are used in the calculation of missing transverse momentum, to resolve ambiguities between the analysis objects in the event and in the fake/non-prompt (FNP) lepton background estimation
 - Signal objects must satisfy stricter requirements than baseline

SEARCH STRATEGIES

- Two oppositely charged signal leptons, both with $p_T > 25 \text{ GeV}$
- The invariant mass of the two leptons must be $m_{ll} > 100 \text{ GeV}$
- No reconstructed b-jets
- Events can have no more than I non-b-tagged jet
- Events are separated into same flavour (SF), e[±]e[∓] or μ[±]μ[∓], and different flavour (DF) e[±]μ[∓] events due to different background compositions
 - SF events are required to have a dilepton invariant mass far from the Z peak, with $m_{ll} > 121.2 \text{ GeV}$
- $E_T^{miss} > 110 \text{ GeV}$
- E_T^{miss} significance > 10
- High m_{T2} values


Signal region (SR)	SR-DF-0J	SR-DF-1J	SR-SF-0J	SR-SF-1J
$n_{ m non-b-tagged jets}$	= 0	= 1	= 0	= 1
$m_{\ell_1\ell_2}$ [GeV]	>100 >121.2			21.2
$E_{\rm T}^{\rm miss}$ [GeV]	>110			
$E_{\rm T}^{\rm miss}$ significance	>10			
$n_{b-{ m tagged jets}}$	= 0			
Binned SRs				
	\in [100,105)			
	\in [105,110)			
$m_{\rm T2} ~[{\rm GeV}]$	\in [110,120)			
$m_{\rm T2}$ [Gev]	\in [120,140)			
	\in [140,160)			
	\in [160,180)			
	\in [180,220)			
	\in [220,260)			
	\in [260, ∞)			
Inclusive SRs				
	$\in [100,\infty)$			
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	$n_{\mathrm{T2}} [\mathrm{GeV}] \in [160,\infty)$ $\in [100,120)$			
	\in [120,160)			

Region	CR-WW	CR-VZ	CR-top
Lepton flavour	DF	\mathbf{SF}	DF
$n_{b-{ m tagged jets}}$	= 0	= 0	= 1
$n_{ m non-b-tagged jets}$	= 0	= 0	= 0
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	$\in [60, 65]$	> 120	> 80
$E_{\rm T}^{\rm miss}$ [GeV]	$\in [60, 100]$	> 110	> 110
$E_{\rm T}^{\rm miss}$ significance	$\in [5,10]$	> 10	> 10
$m_{\ell_1\ell_2}$ [GeV]	> 100	\in [61.2,121.2]	> 100

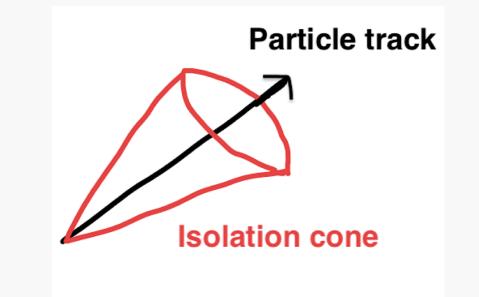
Region	VR-WW-0J	VR-WW-1J	VR-VZ	VR-top-low	VR-top-high	VR-top-WW
Lepton flavour	DF	DF	\mathbf{SF}	DF	DF	DF
$n_{b-{ m tagged jets}}$	= 0	= 0	= 0	= 1	= 1	=1
$n_{ m non-b-tagged jets}$	= 0	=1	= 0	= 0	= 1	=1
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	$\in [65, 100]$	$\in [65, 100]$	$\in [100, 120]$	$\in [80, 100]$	> 100	$\in [60, 65]$
$E_{\rm T}^{\rm miss}$ [GeV]	> 60	> 60	> 110	> 110	> 110	$\in [60, 100]$
$E_{\rm T}^{\rm miss}$ significance	> 5	> 5	> 10	\in [5,10]	> 10	$\in [5,10]$
$m_{\ell_1\ell_2}$ [GeV]	> 100	> 100	\in [61.2,121.2]	> 100	> 100	> 100

RESULTS

No significant deviations from the SM expectations was observed in any of the SRs considered

slepton/sneutrino-mediated decays

10


ISOLATION POINT 101 – LEPTON EDITION

• Terms:

- «Fakes» : a particle that is misidentified during reconstruction
- «Prompt particles» : particles that are not coming from a hadron or tau decay
- «FNP» : fake or non-prompt
- Non-fake and prompt leptons are usually isolated, meaning there is not much other stuff happening around them in the detector
 - To reduce contamination from FNPs we need to define an «isolation region» around the leptons
- FNP electrons can arise from semi-leptonic decays of b and c quarks, photon conversions and jets with large electromagnetic energy
- FNP muons can originate from semi-leptonic decays of b and c quarks, charged hadron decays in the tracking volume or in hadronic showers, or from punch-through particles emerging from high-energy hadronic showers
- The isolation point relies on both information from the tracker and the calorimeter

ISOLATION POINT 101 - LEPTON EDITION

- Isolation points have different kinds of criteria: loose, medium and tight
- The meaning of these terms is how large you make the cone, and how much other stuff than your lepton you allow to happen inside of it

MY THESIS -AN OVERVIEW

- My goal is to study how different lepton isolation points affect the sensitivity of the search for the three different supersymmetric decay models studied in the paper
- Determine what set of isolation points gives best sensitivity in these searches
- The combination of isolation points used in my thesis is shown in the table

	Combination I	Combination 2
Baseline	Electron and muon: none	Electron and muon: medium
Signal	Electron: tight Muon: medium	Electron and muon: tight