

Search for electroweakinos with small Δm using XGBoost

Knut Vadla (University of Oslo) Spåtind 2020 — Nordic Conference on Particle Physics

> Run: 297041 Event: 59057181 2016-04-24 05:41:50 CEST

Photo ref.: ATLAS-PHOTO-2016-009-1

SUSY production @ LHC

Plot: https://github.com/fuenfundachtzig/xsec

Cross-section refs.: see slide 14

pp, $\sqrt{s} = 13$ TeV, NLO+NLL - NNLO_{approx}+NNLL

- Cross-sections for strongly interacting sparticles expected to be much higher than weakly interacting sparticles @ LHC
- No signs of strong SUSY so far
- Is SUSY hiding in the EW sector?

√s=8-13 TeV, 20.3 - 139 fb⁻¹

 $\tilde{q}, \tilde{b}, \tilde{t} \rightarrow q(\gamma/Z)\tilde{G} \text{ via } \tilde{\chi}^0 \geq 2 \gamma [1802.03158]$

 $\tilde{q}_{,} \rightarrow q(II/lv/vv)\tilde{\chi}_{,}^{0}$ via $\tilde{I}/\tilde{v} \geq 2$ lep

 $\widetilde{q}_{,} \rightarrow q(\tau \tau / \tau v / v v) \widetilde{\chi}_{,}^{0} via \widetilde{\tau} / \widetilde{v} \geq 1 \tau$

ATL-PHYS-PUB-2019-044

All limits at 95% CL

 $\tilde{a} \rightarrow qWZ\tilde{\chi}_{_{-}}^{0} \geq$ 7-11 jets + \geq 2 lep. SS 8 TeV,

 $\tilde{a} = \tilde{u}, d, \tilde{s}, \tilde{c}$

3000

2000

1500-

1000

500

400 600

ິ ເຊັ່ງ 2500

[GeV]

 10^{4}

Search for electroweakinos

Electroweakinos

- Neutralinos, $\tilde{\chi}_i^0 = N_1 \tilde{B}^0 + N_2 \tilde{W}^0 + N_3 \tilde{H}_u^0 + N_4 \tilde{H}_d^0$ i = 1, 2, 3, 4
 - superpartners of the neutral gauge and CP-even higgs bosons
- Charginos, $\tilde{\chi}_j^{\pm} = C_1 \tilde{W}^{\pm} + C_2 \tilde{H}_{u/d}^{\pm}$ j = 1, 2
 - superpartners of the charged gauge and higgs bosons

Simplified model

- Mass-degenerate $\tilde{\chi}_{1}^{\pm}$, $\tilde{\chi}_{2}^{0}$ (wino)
- Decay to X˜⁰1 (bino) via W(qq)Z(II)
- Final state: 2 leptons + 2 (+ISR) jets + ET^{miss}

Preselection of events and objects

	Preselection
triggers	ee, µµ, eµ/µe
# SFOS leptons p⊤ > 25 GeV	2
# jets p⊤ > 30 GeV	≥ 2
# b-jets p _T > 20 GeV, 77% eff	0
m⊩[GeV]	(81, 101)
m _{jj} [GeV]	(60, 110)

Scenario: $\Delta m(\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}, \tilde{\chi}^{0}_{1}) \sim m_{Z}, m_{W}$

- Signal looks very much like the SM WZ background
- Conventional cut-and-count analyses have used initial state radiation (ISR) to boost the final-state momenta (recoiling against ISR jet)
- Struggling to be sensitive to $\Delta m \sim 100 \text{ GeV}$
- Can machine learning (ML) methods help gain sensitivity to these particularly difficult scenarios?

5

XGBoost BDT

- Xtreme Gradient Boosting (XGBoost)
- Decision tree
 - Make leaf splits that minimize an **objective function**

- > Optimize obj. func. using gradient descent
- Combine multiple trees that are sequentially trained to correct mistakes of previous trees (boosting)

XGBoost setup

	Training parameters
max tree depth (controls number of variables/cuts allowed)	10
learning rate (size of gradient descent update)	0.1
gamma, γ (required reduction in loss in order to split a leaf)	20
subsample (fraction of events used for training; random per tree)	0.5
colsample_bytree (fraction of variables used for training; random per tree)	0.5

Training and testing the low- $\Delta m BDT$

• Signal (MC)

- 21 different samples/mass points
- $\Delta m(\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}, \tilde{\chi}^{0}_{1}) = 50, 100, 150, 200 \text{ GeV}$
- ~60,000 events in total pass preselection

Background (MC)

- Z+jets, W+jets, diboson, triboson, higgs, ttbar, single top, Wt, 3 top, 4 top
- Randomly draw ~60,000 events that pass preselection

Train 2 BDTs

- Odd run numbers tested on even run numbers
- Even run numbers tested on odd run numbers

Training vs. test results

Train even Test <mark>odd</mark>

Train odd Test even

- Test scores are only slightly less accurate than the training scores
 - No significant overtraining observed

Odd run no.	Signal prob. > 0.97
# signal events	2.92
# total bkg. events	4.43
Significance (30% sys.) [σ]	0.83

Even run no.	Signal prob. > 0.97
# signal events	7.39
# total bkg. events	18.70
Significance (30% sys.) [σ]	0.76

Conventional cut-and-count region

Preselection +	SRLow
E _T ^{miss} sig.	(6, 9)
Δφ(p _{T,II} , E _T ^{miss})	< 0.6
ΔR(I,I)	< 0.8

Comparison with conventional analysis

Need 1.64 σ to exclude at 95% CL \rightarrow no exclusion sensitivity expected yet

Conclusions

- Small Δm-scenarios are hard to target using conventional cut-and-count
- By estimating a signal probability using an XGBoost BDT, we can increase the sensitivity
- Crude feasibility study not sensitive enough to reach exclusion sensitivity for the benchmark point of $m(\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (200, 100)$ GeV
- Will most likely benefit from a multi-bin/shape fit to the BDT output distribution

Outlook/ideas

- My initial attempts to train a neural network (NN) have not succeeded in matching the performance of the XGBoost BDT
- Would be interesting to train a NN that interpolates between sparticle masses
- Maybe multiclass classification of several background processes could help?

LHC SUSY cross-section references

Colored Sector

- NLO + NLL Tool for 13 ♂, 14 ♂, 33 ♂ and 100 ♂ TeV cross sections.
- Squark and gluino production cross sections in pp collisions at \sqrt(s) = 13, 14, 33 and 100 TeV
 [™], C. Borschensky, M. Kramer, A. Kulesza, M. Mangano, S. Padhi, T. Plehn, X. Portell, arXiv:1407.5066
 [™], published in Eur.Phys.J. C74 (2014) 12.
- NNLL-fast: predictions for coloured supersymmetric particle production at the LHC with threshold and Coulomb resummation ¹/₂, Wim Beenakker, Christoph Borschensky, Michael Krämer, Anna Kulesza, Eric Laenen, arXiv:1607.07741²/₂, published in JHEP 1612 (2016) 133.
- The full list of references can be found here. ♂

Electroweak Sector

NLO+NLL threshold resummed results from Resummino.

For slepton production:

- G. Bozzi, B. Fuks, and M. Klasen, Nucl. Phys. B 777, 157 (2007)
- B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, Eur. Phys. J. C 73, 2480 (2013)
- B. Fuks, M. Klasen, D. R. Lamprea and M. Rothering, JHEP 01 (2014) 168
- J. Fiaschi and M. Klasen, JHEP 03 (2018) 094
- W. Beenakker et al., Phys. Rev. Lett. 83 (1999) 3780, Erratum: Phys. Rev. Lett. 100 (2008) 029901

For gaugino production:

- J. Debove, B. Fuks, and M. Klasen, Nucl. Phys. B 842, 51 (2011)
- B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, JHEP 10 (2012) 081
- B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, Eur. Phys. J. C 73, 2480 (2013)
- J. Fiaschi and M. Klasen, Phys. Rev. D 98 (2018) 055014
- W. Beenakker et al., Phys. Rev. Lett. 83 (1999) 3780, Erratum: Phys. Rev. Lett. 100 (2008) 029901

(The last reference to the paper by W. Beenakker et al. is the reference for the original NLO results.)