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Limits: Status and prospects
Look for secondary photons from DM
[typical assumption: 100% annihilation into     ]b̄b

Indirect searches ever more competitive!

Dark Matter Searches with the Fermi-LAT in the Direction of Dwarf Spheroidals Matthew Wood

realizations of the two data sets. Because the Pass8 six-year and Pass7 Reprocessed four-
year event samples have a shared fraction of only 20–40%, the two analyses are nearly statistically
independent. For masses below 100GeV, the upper limits of [1] were near the 95% upper bound
of the expected sensitivity band while the limits in the present analysis are within one standard
deviation of the median expectation value.

Figure 1: Constraints on the DM annihilation cross section at 95% CL for the bb̄ (left) and t+t� (right)
channels derived from a combined analysis of 15 dSphs. Bands for the expected sensitivity are calculated by
repeating the same analysis on 300 randomly selected sets of high-Galactic-latitude blank fields in the LAT
data. The dashed line shows the median expected sensitivity while the bands represent the 68% and 95%
quantiles. For each set of random locations, nominal J-factors are randomized in accord with their measure-
ment uncertainties. The solid blue curve shows the limits derived from a previous analysis of four years of
Pass7 Reprocessed data and the same sample of 15 dSphs [1]. The dashed gray curve corresponds to
the thermal relic cross section from [12].
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Figure 2: Constraints on the DM annihilation cross at 95% CL section for the bb̄ (left) and t+t� (right)
channels derived from the combined analysis of 15 dSphs with 6 years of Pass 8 data. For comparison limits
from previously published searches are shown from LAT analysis of the Milky Way halo (3s limit) [13], 112
hours of observations of the Galactic Center with H.E.S.S. [14], and 157.9 hours of observations of Segue 1
with MAGIC [15]. Pure annihilation channel limits for the Galactic Center H.E.S.S. observations are taken
from [16] and assume an Einasto Milky Way density profile with r� = 0.389GeVcm�3. Closed contours
and the marker with error bars show the best-fit cross section and mass from several interpretations of the
Galactic center excess [17, 18, 19, 20].

Figure 2 shows the comparison of the limits from this work with other published limits on
the DM annihilation cross section. The Pass8 combined dSph limits are currently among the
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Bridging the differences with satellite data: 
• Unbiased view of  the  sky (Large survey-like observations) 
• Energy threshold ~20 GeV   
➡ Cross-analysis techniques (template analysis motivated)

Future: the CTA
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The next-generation ground-based                                 
gamma-ray observatory
Two sites (Chile & Canary Islands) 
Large arrays of differently sized telescopes     energy range ~10 GeV — ~300 TeV
unprecedented sensitivity + survey mode: ideal for DM observations 
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Detailed sensitivity study for GC observations
template analysis (DM, CRs + all relevant astro BGs) 
fully include systematic uncertainty
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Figure 3: Gamma-ray background and signal templates computed by ctools with respect to
the GC survey, showing the expected gamma-ray intensity in the energy range from 100 to
500 GeV. The colour code indicates the number of expected photons per 0.1� ⇥ 0.1� pixel.

rejection rate better than 10�2, CR electrons present an essentially irreducible background5.486

In addition, while the spectrum of CR protons and electrons is well measured below a few487

TeV [120–122], significant uncertainties about the number of events which pass all analysis488

cuts remain, making the exact spectrum and normalisation of this (intrinsically) spatially489

isotropic component challenging to model. In practice, this modelling is typically done in490

extensive Monte Carlo simulations of CR showers and their subsequent event reconstruction,491

allowing to obtain the expected numbers of CR misidentified events for a given set of IRFs.492

Here we use ctools to generate such maps. The IRFs this is based on, none-the-less, do not493

include small-scale anisotropies, which might be present in the real data due to, e.g., uneven494

atmospheric conditions or background stellar fields. The systematic uncertainties on this495

predicted number of misidentified CR events are however not yet studied in detail within the496

collaboration and we will hence include them in a parametric way (to be described in detail497

in Section 4).498

3.4 Emission templates and caveats499

To summarise our discussion of emission models, we compare in Fig. 3 the total count maps500

in the 100–500GeV range that results from our benchmark emission templates (as generated501

by ctools, for the GC survey mode). From top left to bottom right, these correspond to:502

• residual CR background events, generated from prod3b-v1 IRFs (section 3.3)503

• interstellar emission, as predicted in the Gamma model (top middle) and the Base504

model (top right) (section 3.2.1)505

5There is an ongoing e↵ort of the community to improve on this aspect, e.g. by tagging the electron-
induced showers based on the Cherenkov light from the origin point of the shower or by XXX. However,
these are only preliminary studies, not expected to be implemented on a short time scale. [Comment for IRs:
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advise.]
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For the CTA collaboration:
TB, Eckner, Sokolenko, Yang, Zaharijas
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Figure 5: Mean projected upper limits on the DM annihilation cross section, at 95%C.L.,
based on our benchmark treatment of the expected instrumental systematic uncertainty. We
also indicate the ‘thermal’ cross section that for the simplest DM models leads to a relic
density within the 3� range observed by Planck [1, 132]. Left panel: DM annihilation into
W+W� final states, without electroweak corrections (see Section 3.1.2 for a discussion). The
green (yellow) band indicates the 2� (3�) scatter of the projected limits (based on the Asimov
data set). Right panel: DM annihilation into b̄b, W+W� and ⌧+⌧�, respectively. Solid lines
as in the left panel, while dotted lines show the statistical reach alone.

.

use DarkSUSY to calculate this cross-section, following the treatment of Ref. [133] under the727

assumption of self-conjugate DM particles annihilating with a velocity-independent �v. We728

thereby improve similar recent results [83, 134] by using an updated temperature dependence729

of the number of relativistic degrees of freedom during and after freeze-out [135] and the730

newest Planck data for the observed value of ⌦�h2 [1, 132].731

It is reassuring to see from this figure that CTA indeed has the potential to test this ‘ther-732

mal’ annihilation cross- section for a wide range of DM masses, in particular for the slightly733

harder gamma-ray spectrum that results from W+W� final states. As already stressed in734

the introduction, this makes CTA the maybe most promising instrument to test the WIMP735

paradigm for DM masses at the TeV scale, providing indeed one of its major science cases.736

Let us stress that we confirm this expectation after including our benchmark treatment of737

systematic uncertainties – which we consider realistic given the obvious limitation that our738

analysis describes an instrument yet to be built (see also section 6.1 for a more thorough739

discussion). For comparison, we also indicate the mean projected limits that would result if740

only statistical errors were included in the analysis.7 As expected, limits are not a↵ected in741

the statistics-limited case of the low photon counts that result from models with large DM742

masses (as well as the background components at these high energies). For DM masses sig-743

nificantly below 10TeV, on the other hand, the limits clearly become systematics rather than744

statistics-dominated because, for a given annihilation cross-section, both the background and745

the signal fluxes are much higher.746
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Figure 9: The green areas indicate the requirement on the instrumental systematics (in
terms of both amplitude and spatial correlation length) for which CTA is expected to reach
the ‘thermal’ cross section sensitivity. For comparison, we also mark the systematic bench-
mark settings used per default in this work (red cross). Left. For fixed DM mass m� = 2TeV
Right. Fixed overall systematics amplitude of �instr

S = 1%. [Comment for IRs: These figures
have been produced with a slightly outdated observational set-up, and will be updated. We
only expect minor modifications.]

other values of both � and ` may turn out to characterise the instrument more accurately. On853

the other hand, our benchmark scenario is by no means a carefully selected singular point,854

either, in the sense that various combinations of parameters would lead to similar conclusions.855

In fact, we can turn the problem around, and ask for the required level of systematics allowing856

CTA to probe the thermal cross-section for standard assumptions about the DM profile. This857

question is explored in Fig. 9. In the left panel, we fix the DM mass to m� = 2TeV and show858

the combinations of amplitude and spatial correlation length for which the thermal cross-859

section can be reached (green shaded area), while in the right panel, we fix the fluctuation860

amplitude �S and vary correlation length and DM mass. We note that, for the design goal861

of �S = 1%, it is indeed crucial that the spatial correlation in mis- reconstructed events does862

not significantly exceed `S ⇠ 0.1�. If the overall systematic uncertainty can be improved to863

be less than 1%, on the other hand, larger spatial correlations can be accepted864

In the last part of this section we briefly comment on the impact of a set of internal865

(i.e. not publicly available) IRFs, based on tighter cuts for gamma/hadron separation and866

optimised for extended source detections (unlike the standard IRFs, which are optimised for867

point source detection). As demonstrated in Fig. 8, even with optimised event cuts it will be868

hard to improve upon the sensitivity based on our standard IRFs. This can be understood869

by noting that, in the energy range where the DM sensitivity is best (few 100 GeV - few870

TeV), the CR background is already electron dominated, see Fig 4, and cannot be reduced871

significantly with current event reconstruction techniques. At the lowest and highest energies872

(and correspondingly DMmasses) on the other hand, the tighter cuts can substantially reduce873

the background, but only at the cost of reducing the e↵ective area. Note however that these874

optimised IRFs none-the-less use the same event reconstruction scheme as the standard ones,875

so if an improved reconstruction algorithm becomes available in the future (benefitting from876

e.g. deep learning) one could hope for more significant improvements.877
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A signal from the galactic center?
Excess emission in inner Galaxy 
and Galactic center region: 
extremely high statistical evidence
relatively sharp peak around 1-3 GeV
rotationally symmetric
roughly          emission profile
extends at least from ~10pc to ~1kpc

r�2.5

Goodenough & Hooper, 0910.2998 
Hooper & Goodenough, PLB ’11

Hooper & Linden,  PRD ’11
Abazajian & Kaplinghat, PRD ’12

Macias & Gordon, PRD ’14
Hooper, PDU ‘13

Hooper & Slatyer,  PDU ’13
Huang,  Urbano & Xue, 1307.6862 

Abazajian, Canac, Horiuchi &  Kaplinghat, PRD 14
Daylan et al.,  PDU ’16

and then the list fully explodes…
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Figure 17. Spectrum of the GCE emission, together with statistical and systematical errors, for
model F (cf. figure 14). We show fits to the GCE with various spectral models. We emphasize that
the shown systematic errors are correlated, and that the spectral models actually do provide a good
fit to the data in most cases. We show the best-fit model parameters, along with indicators for the
fit quality, in table 4 (cf. figures 18 and 20). See text for details on the fitting procedure.

parametric fits to the data.
In the previous section, we found that theoretical and empirical model uncertainties

a↵ect the GCE spectrum at a similar level (see figure 14). However, theoretical model
uncertainties in the way we discussed them here are di�cult to interpret in a purely statistical
sense, since the TS values that we find for fits with our 60 GDE models di↵er typically by
> O(100) values (see appendix A), and even our best-fit model for the GDE gives formally
a poor fit to the data. This is a generic problem of modeling the GDE [58], as we discussed
at the end of section 4.1. On the other hand, the empirical model uncertainties are simple
to interpret statistically and give by construction a realistic account for typical systematics
of state-of-the-art GDE modeling.

We will hence adopt the following strategy : We will use the GCE spectrum and associ-
ated statistical errors from model F only, which gives formally the best-fit to the Fermi -LAT
data in our ROI. In fits to the GCE spectrum we then only consider the empirical model
systematics, and neglect the theoretical ones. Given the small scatter for the GCE spec-
trum that we find for di↵erent GDE models, this is well justified. We checked explicitly that
using di↵erent GDE model as starting point in the spectral fits would not alter our results
significantly (see appendix C.2). Hence, we consider our approach as statistically sound and
su�ciently robust to derive meaningful results.

We will introduce general aspects of fits with correlated errors in subsection 5.1, and
then test the most common interpretations of the GCE emission in terms of a number of DM
and astrophysical toy models in subsection 5.2 and 5.3.
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FIG. 1. Intensity of the Fermi GeV excess at 2 GeV as function of Galactic latitude (see text for details), compared with the
expectations for a contracted NFW profile (dotted line). Error bars refer to statistical ±1� uncertainties, except for Refs. [13, 14]
for which we take into account the quoted systematics coming from di↵erent astrophysical models. The result from Ref. [26] for
the higher-latitude tail and the preliminary results by the Fermi-LAT team [17] on the Galactic center include an estimate of
the impact of foreground systematics. In these cases, the adopted ROIs are shown as bands (for Ref. [26], overlapping regions
correspond to the north and south parts of the sky). Gray areas indicate the intensity level of the Fermi bubbles, extrapolated
from |b| > 10�, and the region where HI and H2 gas emission from the inner Galaxy becomes important.

putative excess emission is – compared to other fore-
grounds/backgrounds – strongest, so the uncertainties
due to foreground/background subtraction systematics
are expected to be the smallest.

The intensities were derived by a careful rescaling of
results in the literature that fully takes into account
the assumed excess profiles. In most works, intensities
are quoted as averaged over a given Region Of Interest
(ROI). Instead of showing these averaged values, which
depend on the details of the adopted ROI, we use the
excess profiles to calculate the di↵erential intensity at a
fixed angular distance from the GC. These excess pro-
files usually follow the predictions similar to those of
a DM annihilation profile from a generalized Navarro-
Frenk-White (NFW) density distribution, which is given
by

⇢(r) = ⇢s
r3
s

r�(r + rs)3��
. (1)

Here, rs denotes the scale radius, � the slope of the in-
ner part of the profile, and ⇢s the scale density. As ref-
erence values we will – if not stated otherwise – adopt
rs = 20 kpc and � = 1.26, and ⇢s is fixed by the re-
quirement that the local DM density at r� = 8.5 kpc is
⇢� = 0.4 GeV cm�3 [95, 96].

We note that the intensities that we quote from
Ref. [26] refer already to a b̄b spectrum and take into
account correlated foreground systematics as discussed

below. In Ref. [26] a broken power-law was found to give
a fit as good as the DM b̄b spectrum. Assuming a broken
power-law, the intensities in Fig. 1 would be somewhat
larger.

We find that all previous and current results (with the
exception of Ref. [7], which we do not show in Fig. 1)
agree within a factor of about two with a signal morphol-
ogy that is compatible with a contracted NFW profile
with slope � = 1.26, as it was noted previously [15, 26].
As mentioned in our Introduction, the indications for a
higher-latitude tail of the GeV excess profile is a rather
non-trivial test for the DM interpretation and provides
a serious benchmark for any astrophysical explanation
of the excess emission. However, we have to caution
that most of the previous analyses make use of the
same model for Galactic di↵use emission (P6V11). An
agreement between the various results is hence not too
surprising. Instead in the work of Ref. [26], the ⇡0,
bremsstrahlung and ICS emission maps, where calcu-
lated as independent components, with their exact mor-
phologies and spectra as predicted from a wide variety
of foreground/background models. As it was shown in
Ref. [26], the exact assumptions on the CR propagation
and the Galactic properties along the line-of-sight can im-
pact both the spectrum and the morphology (which also
vary with energy) of the individual gamma-ray emission
maps. To probe the associated uncertainties on those
di↵use emissions, the authors of Ref. [26] built di↵er-

Calore, Cholis & Weniger, JCAP ’15 Calore, Cholis, McCabe & Weniger, PRD ’15

(excess equally consistent with DM signal and broken PL) 
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Constraints
collider & direct detection 
experiments lead to highly       
model-dependent constraints

Alves+, PRD ‘14
Berlin, Hooper & McDermott, PRD ‘14
Izaguirre, Krnjaic & Shuve, PRD ‘14
Kong & Park, NPB ‘14
…
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FIG. 3. Preferred DM mass and annihilation cross-section (1,
2 and 3 � contours) for all single channel final states where
ICS emission can be safely ignored. Vertical gray lines refer
to the W , Z, h and t mass thresholds. The p-values for an-
nihilation to pure W+W �, ZZ and t̄t final states are below
0.05, indicating that the fit is poor for these channels; see
Tab. I. Uncertainties in the DM halo of the Milky Way are
parametrized and bracketed by A = [0.17, 5.3], see Sec. V.
The results shown here refer to A = 1.

that the interpolation at mass threshold agrees with our
own results from PYTHIA 8.186.

In addition to gamma rays, CR electrons and positrons
are produced as final (stable) products of DM annihila-
tions. These CR electrons/positrons, like all other elec-
trons/positrons propagate in the Galaxy and produce
ICS and bremsstrahlung emission.5 Generally, the ICS
emission is expected to be more important for DM mod-
els with significant branching ratios to (light) leptons.
Therefore we separate our discussion to first address the
cases when ICS emission can be safely ignored, before
discussing in detail ICS emission for annihilation to lep-
tons.

A. Single annihilation channels without ICS

We first discuss annihilation to pure two-body annihi-
lation states for the cases when ICS emission can be safely
ignored. This turns out to be all cases except annihila-
tion to electrons and muons. In Fig. 3 we show the best-

5 CR p and p̄ from DM annihilations can also give their own ⇡0

emission of DM origin, but are suppressed from the p̄/p measure-
ments already by at least five orders of magnitude compared to
the conventional Galactic di↵use ⇡0 emission.

Channel
h�vi

(10�26 cm3 s�1)
m�

(GeV) �2
min p-value

q̄q 0.83+0.15
�0.13 23.8+3.2

�2.6 26.7 0.22

c̄c 1.24+0.15
�0.15 38.2+4.7

�3.9 23.6 0.37

b̄b 1.75+0.28
�0.26 48.7+6.4

�5.2 23.9 0.35

t̄t 5.8+0.8
�0.8 173.3+2.8

�0 43.9 0.003

gg 2.16+0.35
�0.32 57.5+7.5

�6.3 24.5 0.32

W+W � 3.52+0.48
�0.48 80.4+1.3

�0 36.7 0.026

ZZ 4.12+0.55
�0.55 91.2+1.53

�0 35.3 0.036

hh 5.33+0.68
�0.68 125.7+3.1

�0 29.5 0.13

⌧+⌧� 0.337+0.047
�0.048 9.96+1.05

�0.91 33.5 0.055
⇥
µ+µ� 1.57+0.23

�0.23 5.23+0.22
�0.27 43.9 0.0036

⇤
��ICS

TABLE I. Results of spectral fits to the Fermi GeV excess
emission as shown in Fig. 2, together with ±1� errors (which
include statistical as well as model uncertainties, see text).
We also show the corresponding p-value. Annihilation into
q̄q, c̄c, b̄b, gg and hh all give fits that are compatible with
the observed spectrum. There is also a narrow mass where
annihilation into ⌧+⌧� is not excluded with 95% CL signifi-
cance. Annihilation to pure W+W �, ZZ and t̄t is excluded
at 95% CL, as is the µ+µ� spectrum without ICS emission
(��ICS). Bosons masses are from the PDG live [101].

fit annihilation cross-section and DM mass for all other
two-body annihilation states involving SM fermions and
bosons. The results are also summarized in Tab. I, where
we furthermore give the p-value of the fit as a proxy for
the goodness-of-fit. As with previous analyses, we find
that annihilation to gluons and quark final states q̄q, c̄c
and b̄b, provides a good fit. In the case of the canonical b̄b
final states, we find slightly higher masses are preferred
compared to previous analyses, see e.g. Refs. [12, 14, 15].
This is because of the additional uncertainty in the high-
energy tail of the energy spectrum that is allowed for in
this analysis. The highest mass to b̄b final states that
still gives a good fit (with a p-value > 0.05) is 73.9 GeV.

As the tail of the spectrum extends to higher energy, we
also consider annihilation to on-shell t̄t and SM bosons.
For t̄t, we find that the fit is poor because the DM spec-
trum peaks at too high an energy (⇠ 4.5 GeV rather than
the observed peak at 1–3 GeV). As the p-value is very low
for this channel, we do not consider it further. Pure an-
nihilation to pairs of W and Z gauge bosons are also ex-
cluded at a little over 95% CL significance. However, per-
haps surprisingly, annihilation to pairs of on-shell Higgs
bosons (colloquially referred to as “Higgs in Space” [102])
produce a rather good fit, so long as h is produced close
to rest. This is analogous to the scenario studied in
Ref. [103] in a di↵erent context. One interesting feature
of this channel is the gamma-ray line at m�/2 ' 63 GeV
from h decay to two photons. This is clearly visible in the
central panel of Fig. 2. The branching ratio for h ! ��

Calore+, PRD ’15

Dark matter interpretation

TB, Vollmann & Weniger, PRD ‘14

Albert+, ApJ ‘17

(NB: astrophysical uncertainties smaller than typical because DM profile is ~fixed!)

p̄, e+
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indirect searches:                    
model-independent constraints

      - tension with Milky Way       & radio               

      - (just) OK with Fermi dwarf limits

Astrophysical explanations (start to become) more likely:
milli-second pulsars: need large population

But strong evidence (> 4σ) for unresolved point sources

MSPs also consistent bulge+disk component

Hooper+, PRD ‘13
Calore, Di Mauro & Donato,  ApJ ‘14

Bartels, Krishnamurthy & Weniger, PRL ‘16
Lee+, PRL ‘16

Bartels+, Nature Ast. ’18; MNRAS ‘18
Eckner+,  ApJ ‘18

targeted radio observations (MeerKAT, SKA) will conclusively test the MSP hypothesis!

Further options: “recent” bursts injecting high-E; high-E tail                           
of Fermi bubbles; molecular clouds; …

Petrovic, Serpico & Zaharijas, JCAP ‘14
Carlson & Profumo, PRD ’14

Linden+, PRD ’16
Dogiel+, ApJ ’18

…
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Also no gamma-ray lines…
Clear spectral features allow to place much stronger limits:13

 (MeV)χm
310 410 510 610

)
-1 s3

 9
5%

 C
L 

Li
m

it 
(c

m
γγ

v>
σ<

-3110

-3010

-2910

-2810

-2710
=1.3) R3γNFWc(

Obs Limit P8 (5.8 yr stat+syst)
Expected Limit
Expected 68% Containment
Expected 95% Containment
Obs Limit P7REP (3.7 yr, stat-only)

 (MeV)χm
310 410 510 610

)
-1 s3

 9
5%

 C
L 

Li
m

it 
(c

m
γγ

v>
σ<

-3010

-2910

-2810

-2710

-2610
Einasto R16

Obs Limit P8 (5.8 yr stat+syst)
Expected Limit
Expected 68% Containment
Expected 95% Containment
Obs Limit P7REP (3.7 yr, stat-only)
Obs Limit P7REP (5.2 yr, stat+syst)

 (MeV)χm
310 410 510 610

)
-1 s3

 9
5%

 C
L 

Li
m

it 
(c

m
γγ

v>
σ<

-3010

-2910

-2810

-2710

-2610

-2510
NFW R41

Obs Limit P8 (5.8 yr stat+syst)
Expected Limit
Expected 68% Containment
Expected 95% Containment
Obs Limit P7REP (3.7 yr, stat-only)
Obs Limit P7REP (5.2 yr, stat+syst)

 (MeV)χm
310 410 510 610

)
-1 s3

 9
5%

 C
L 

Li
m

it 
(c

m
γγ

v>
σ<

-2910

-2810

-2710

-2610

-2510
Isothermal R90

Obs Limit P8 (5.8 yr stat+syst)
Expected Limit
Expected 68% Containment
Expected 95% Containment
Obs Limit P7REP (3.7 yr, stat-only)
Obs Limit P7REP (5.2 yr, stat+syst)

FIG. 8. 95% CL h�vi�� upper limits for each DM profile considered in the corresponding optimized ROI. The upper left panel
is for the NFWc (�=1.3) DM profile in the R3 ROI. The discontinuity in the expected and observed limit in this ROI around
1 GeV is the result of using only PSF3 type events. See Sec. III for more information. The upper right panel is for the Einasto
profile in the R16 ROI. The lower left panel is the NFW DM profile in the R41 ROI, and finally the lower right panel is the
Isothermal DM profile in the R90 ROI. Yellow (green) bands show the 68% (95%) expected containments derived from 1000
no-DM MC simulations (see Sec. VB). The black dashed lines show the median expected limits from those simulations. Also
shown are the limits obtained in our 3.7-year line search [19] and our 5.2-year line search [22] when the assumed DM profiles
were the same.

The LAT consists of 16 towers, each includes a tracker module and a calorimeter module [23]. Pass 8 includes
important updates to the energy reconstruction near the edges of the calorimeter modules (<60 mm from the center of
the gap) [24, 35]. Events that deposit the majority of their energy (or have their reconstructed centroid) near the edge
of a calorimeter module are more di�cult to reconstruct accurately because of energy leakage of the shower into the
gaps between modules, or towers. Pass 8 applies an improved handling of this leakage in the energy reconstruction
algorithms. We show in Fig. 10 the distance of each reconstructed centroid from the center of the calorimeter gap for
the events passing the comparison selection outlined above. Each calorimeter crystal has a width of 326 mm and the
gap between modules of 44 mm [15]. This yields a total width of 370 mm. In this figure, 0 mm marks the distance
from the middle of the gap between sets of crystals. The figure at the top also includes a cartoon to illustrate the
location of the edge of the calorimeter crystal with the center located at 185 mm.

About half of the overlapping events between Pass 7REP and Pass 8 in the 120–150 GeV energy range were
reconstructed with centroids near the edges of the towers (<60 mm from the center of the gap). As a consequence,
these events had the largest di↵erences in reconstructed energy and comprised the tails of the distribution shown on
the left in Fig. 10. There appears to be a slight enhancement of events where much of the shower was lost between
modules in the energy range around 133 GeV relative to all events above 20 GeV.

Ackermann+, PRD ‘155.8 yr Fermi data

130 GeV feature
Tempel, Hektor & Raidal, 1205.1045
Su & Finkbeiner, 1206.1616 

TB+, 1203.1312
Weniger, 1204.2797 
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FIG. 3: Comparison of constraints for prompt annihilation
into two photons obtained by H.E.S.S. for the Einasto (red
dots) and NFW (cyan dots) profiles, respectively, with the
limits from the observations of the Milky Way halo by Fermi-
LAT [35] (black triangles) as well as the limits from 157 hours
of MAGIC observations of the dwarf galaxy Segue 1 [36]
(green triangles). The grey-shaded area shows the natural
scale for a monochromatic �-ray line signal.

range from hundred to several hundred GeV is expected
from the increased number of stereo triggers between the
fifth telescope and one of the recently-upgraded smaller
telescopes. Beyond the sensitivity improvement expected
from increased photon statistics, the inner galaxy survey
will provide a larger fraction of photons in regions of de-
void of known standard astrophysical emissions, therefore
of prime interest for DM searches. Within the next few
years DM searches with H.E.S.S. will enable an even more
in-depth exploration of the WIMP paradigm for DM par-
ticles in the hundred GeV to ten TeV mass range.
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254 h HESS data

Huge potential to improve limits:
CTA, Gamma-400, CALET, DAMPE, …

And: the 3.5 keV X-ray line is still there…! Bulbul+,  ApJ ’14
Boyarski, Ruchayskiy, 

Iakubovskyi & Franse,  PRL ‘14
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Charged cosmic rays

γ

ν

e+

DM

DM
γ

e

p
_

+

GCRs are confined by galactic magnetic fields
Random distribution of field inhomogeneities

        propagation well described by diffusion equation
After propagation, no directional information is left
Also the spectral information tends to get washed out
Equal amounts of matter and antimatter
     focus on antimatter (low backgrounds!)
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Analytical vs. numerical
How to solve the diffusion equation?

Numerically
3D possible
any magnetic field model
realistic gas distribution, full energy losses
computations time-consuming
“black box” (for inexperienced users)

+
+
+
‒
‒

Strong, Moskalenko, … 

DRAGON
Evoli, Gaggero, Grasso & Maccione

e.g.

(Semi-)analytically
Physical insight from analytic solutions
fast computations allow to sample
full parameter space
only 2D possible
simplified gas distribution, energy losses

+
+

‒
‒

e.g.  Donato, Maurin, Salati, Taillet, ...

2h

R = 20kpc

ISM

L � 1kpc

vc

General concern: data start to become better than models!
loss of predictivity ?
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Positrons
Excess in high-energy cosmic ray positron data
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To study the significance of the 1=Es measurement we
varied all six fit parameters to find the regions in six-
dimensional (6D) parameter space corresponding to the
confidence levels from 1 to 5σ with a step of 0.01σ. As
an example, the insert in Fig. 4 shows projections of the 6D
regions of 1σ (green line, 68.26% C.L.), 2σ (black line,
95.54% C.L.), 3σ (blue line, 99.74% C.L.), and 4σ (red line,
99.99% C.L.) onto the plane of parameters (1=Es − Cs).
Detailed analysis shows that a point where the parameter
1=Es reaches 0 corresponds to a confidence level of 4.07σ;
i.e., the significance of the source term energy cutoff is
established at more than 4σ, or that the positron flux in the
entire energy range cannot be described by a sum of two
power-law functions at the 99.99% C.L.
An analysis of the arrival directions of electrons and

positrons was presented in Ref. [1]. A similar analysis was
performed using the positron data of this Letter [37]. The
positron flux is found to be consistent with isotropy; the
upper limit on the amplitude of the dipole anisotropy is
δ < 0.019 at the 95% C.L. for energies above 16 GeV.
In conclusion, we have presented the precision measure-

ments of the positron flux from 0.5 GeV to 1 TeV, with a
detailed study of systematic errors based on 1.9 million
positrons. The positron flux shows complex energy depend-
ence. Its distinctive properties are (a) a significant excess
starting from 25.2! 1.8 GeVcompared to the lower-energy
trends, (b) a sharp dropoff above 284þ91

−64 GeV, (c) in the
entire energy range the positron flux is well described by the
sum of a diffuse term associatedwith the positrons produced
in the collision of cosmic rays, which dominates at low

energies, and a new source term of positrons, which
dominates at high energies, and (d) a finite energy cutoff
of the source term of Es ¼ 810þ310

−180 GeV is established with
a significance of more than 4σ. These experimental data on
cosmic ray positrons show that, at high energies, they
predominantly originate either fromdarkmatter annihilation
or from other astrophysical sources.
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FIG. 4. The fit of Eq. (4) (green line) to the positron flux in the
energy range [0.5–1000] GeV together with the 68% C.L. interval
(green band). The exponential cutoff of the source term is
determined to be 810þ310

−180 GeV from the fit. The red data points
represent the measured positron flux values scaled by Ẽ3. The
source term contribution is represented by themagenta area and the
diffuse term contribution by the gray area. The insert shows
projections of the regions of 1σ (green contour), 2σ (black contour),
3σ (blue contour), and 4σ (red contour) significance of the 1=Es
measurement onto the plane of parameters 1=Es − Cs (see text).
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AMS

Aguilar+, 
PRL ’19

Standard production through cosmic-ray collisions
mostly CR p on ISM gas

At high energies, an additional component is required
Efficient energy losses (IC, synchrotron)       source must be local  (few kpc)
Single power law with exponential cutoff provides a good fit

Astrophysical (PWN, SNRs) or dark matter ? [loooong discussion…]
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DM signal ?  DM limits !
Dark matter interpretation requires
leptophilic DM (lack of excess in antiprotons)
TeV masses
annihilation cross section ~ 103 x ‘thermal’ value

e.g.  Cirelli, Kadastik, Raidal & Strumia, 
NPB ’09, ’13

Bergström, Edsjö & Zaharijas, PRL ‘09

… and is (now) in clear 
     tension with CMB data
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FIG. 4: The upper panel shows the fe↵ coe�cients as a function of DM mass for each of a range of SM final states, as indicated
in the legend. The V V ! 4X states correspond to DM annihilating to a pair of new neutral vector bosons V , which each
subsequently decay into e+e�, µ+µ� or ⌧+⌧� (labeled by X). The lower panels show the resulting estimated constraints from
recent Planck results [8], as a function of DM mass, for each of the channels. The left panel covers the range from keV-scale
masses up to 5 GeV, and only contains results for the e+e�, �� and V V ! 4e channels; the right panel covers the range
from 5 GeV up to 10 TeV, and covers all channels provided in the PPPC4DMID package [27]. The light and dark gray regions
in the lower right panel correspond to the 5� and 3� regions in which the observed positron fraction can be explained by DM
annihilation to µ+µ�, for a cored DM density profile (necessary to evade �-ray constraints), taken from [36]. The solid yellow
line corresponds to the preferred cross section for the best fit 4-lepton final states identified by [37], who argued that models
in this category can still explain the positron fraction without conflicts with non-observation in other channels. The red and
black circles correspond to models with 4e (red) and 4µ (black) final states, fitted to the positron fraction in [38]; as in that
work, filled and open circles correspond to di↵erent cosmic-ray propagation models.

but its e↵ect is generally small (at the percent level).
In general, we see that the final states considered fall

into three categories:

• Final states where the bulk of the power pro-
ceeds into e+e� and photons, where at masses
above 100 GeV the constraint approaches h�vi .
10�27(m�/1GeV) cm3/s.

• Annihilation to neutrinos, where the constraint
arises entirely from electroweak corrections, and is
negligible below ⇠ 200 GeV; at O(TeV) masses,
cross sections as low as a few ⇥10�23 cm3/s can be
constrained. Interestingly, this bound is competi-
tive with that placed by IceCube from observations
of galaxy clusters [41], the Galactic Center [42], and
the Milky Way halo [43], and unlike those limits is
independent of uncertainties in the local DM den-
sity, the DM distribution, and the amount of DM

substructure.

• A band with a width of roughly a factor of 150% in
h�vi that encompasses all the other channels stud-
ied, which at high masses corresponds to h�vi .
2� 3⇥ 10�27(m�/1GeV) cm3/s.

Accordingly, for any linear combination of these final
states that does not contain a significant branching ratio
for DM annihilation directly to neutrinos, one must have
h�vi . 3⇥10�27(m�/1GeV) cm3/s. It is thus challenging
to obtain the correct thermal relic cross section for s-wave
annihilating DM with mass much below m� ⇠ 10 GeV,
without violating these limits (although models with sup-
pressed annihilation at late times may still be viable,
e.g. asymmetric DM models or the scenarios proposed in
[44, 45]). At higher masses, the cross sections constrained
are well above the thermal relic value, but are highly rele-
vant for DM explanations of the positron excess observed
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FIG. 4: The upper panel shows the fe↵ coe�cients as a function of DM mass for each of a range of SM final states, as indicated
in the legend. The V V ! 4X states correspond to DM annihilating to a pair of new neutral vector bosons V , which each
subsequently decay into e+e�, µ+µ� or ⌧+⌧� (labeled by X). The lower panels show the resulting estimated constraints from
recent Planck results [8], as a function of DM mass, for each of the channels. The left panel covers the range from keV-scale
masses up to 5 GeV, and only contains results for the e+e�, �� and V V ! 4e channels; the right panel covers the range
from 5 GeV up to 10 TeV, and covers all channels provided in the PPPC4DMID package [27]. The light and dark gray regions
in the lower right panel correspond to the 5� and 3� regions in which the observed positron fraction can be explained by DM
annihilation to µ+µ�, for a cored DM density profile (necessary to evade �-ray constraints), taken from [36]. The solid yellow
line corresponds to the preferred cross section for the best fit 4-lepton final states identified by [37], who argued that models
in this category can still explain the positron fraction without conflicts with non-observation in other channels. The red and
black circles correspond to models with 4e (red) and 4µ (black) final states, fitted to the positron fraction in [38]; as in that
work, filled and open circles correspond to di↵erent cosmic-ray propagation models.

but its e↵ect is generally small (at the percent level).
In general, we see that the final states considered fall

into three categories:

• Final states where the bulk of the power pro-
ceeds into e+e� and photons, where at masses
above 100 GeV the constraint approaches h�vi .
10�27(m�/1GeV) cm3/s.

• Annihilation to neutrinos, where the constraint
arises entirely from electroweak corrections, and is
negligible below ⇠ 200 GeV; at O(TeV) masses,
cross sections as low as a few ⇥10�23 cm3/s can be
constrained. Interestingly, this bound is competi-
tive with that placed by IceCube from observations
of galaxy clusters [41], the Galactic Center [42], and
the Milky Way halo [43], and unlike those limits is
independent of uncertainties in the local DM den-
sity, the DM distribution, and the amount of DM

substructure.

• A band with a width of roughly a factor of 150% in
h�vi that encompasses all the other channels stud-
ied, which at high masses corresponds to h�vi .
2� 3⇥ 10�27(m�/1GeV) cm3/s.

Accordingly, for any linear combination of these final
states that does not contain a significant branching ratio
for DM annihilation directly to neutrinos, one must have
h�vi . 3⇥10�27(m�/1GeV) cm3/s. It is thus challenging
to obtain the correct thermal relic cross section for s-wave
annihilating DM with mass much below m� ⇠ 10 GeV,
without violating these limits (although models with sup-
pressed annihilation at late times may still be viable,
e.g. asymmetric DM models or the scenarios proposed in
[44, 45]). At higher masses, the cross sections constrained
are well above the thermal relic value, but are highly rele-
vant for DM explanations of the positron excess observed
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FIG. 1. The e± spectrum from annihilating DM, after
propagation, for different annihilation final states, assum-
ing ⟨σv⟩= 3 × 10−26 cm3s−1. Solid lines refer to refer-
ence diffusion zone (L=4kpc) and energy loss assumptions
(Urad + UB = 1.7 eV cm−3). Dashed (dotted) lines show the
effect of a different scale height L=8 (2) kpc. The dash-dotted
line shows the impact of increasing the local radiation plus
magnetic field density to Urad + UB = 2.6 eV cm−3.
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FIG. 2. The AMS positron fraction measurement [2] and
background+signal fit for DM annihilating directly to e+e−,
for mχ = 10GeV and 100GeV. The normalization of the DM
signal in each case was chosen such that it is barely excluded
at the 95% CL. For better visibility, the contribution from
DM (lower lines) has been rescaled as indicated.

of the spectrum depends only marginally on L, it may be
reduced by up to a factor of ∼2 when increasing the as-
sumed local energy losses via synchrotron radiation and
inverse Compton scattering by 50%. In Fig. 2, we show a
direct comparison of the DM signal with the AMS data,
for the case of e+e− final states contributing at the max-
imum level allowed by our constraints (see below) for two
fiducial values of mχ. Again, it should be obvious that
the shape of the DM contribution differs at all energies
significantly from that of the background.
Statistical treatment. We use the likelihood ratio

test [60] to determine the significance of, and limits on,

a possible DM contribution to the positron fraction mea-
sured by AMS. As likelihood function, we adopt a prod-
uct of normal distributions L =

∏
iN(fi|µi,σi); fi is the

measured value, µi the positron fraction predicted by the
model, and σi its variance. The DM contribution enters
with a single degree of freedom, given by the non-negative
signal normalization. Upper limits at the 95%CL on the
DM annihilation or decay rate are therefore derived by
increasing the signal normalization from its best-fit value
until −2 lnL is changed by 2.71, while profiling over the
parameters of the background model.

We use data in the energy range 1–350GeV; the vari-
ance σi is approximated by adding the statistical and
systematic errors of the measurement in quadrature,
σi = (σ2

i,stat + σ2
i,sys)

1/2. Since the total relative error is
always small (below 17%), and at energies above 4GeV
dominated by statistics, we expect this approximation to
be very reliable. The binning of the published positron
fraction follows the AMS energy resolution, which varies
between 10.4% at 1GeV and 1.5% at 350GeV. Although
we do not account for the finite energy resolution of AMS
in our analysis, we have explicitly checked that this im-
pacts our results by no more than 10%.

As our nominal model for the part of the e± spec-
trum that does not originate from DM, henceforth sim-
ply referred to as the astrophysical background, we use
the same phenomenological parameterization as the AMS
collaboration in their analysis [2]. This parameterization
describes each of the e± fluxes as the sum of a common
source spectrum – modeled as a power-law with expo-
nential cutoff – and an individual power-law contribution
(only the latter being different for the e+ and e− fluxes).
After adjusting normalization and slope of the secondary
positrons such that the overall flux reproduces the Fermi
e++e− measurements [61], the five remaining model pa-
rameters are left unconstrained. This phenomenological
parameterization provides an extremely good fit (with a
χ2/d.o.f. = 28.5/57), indicating that no fine structures
are observed in the AMS data. For the best-fit spectral
slopes of the individual power-laws we find γe− ≃ 3.1
and γe+ ≃ 3.8, respectively, and for the common source
γe± ≃ 2.5 with a cutoff at Ec ≃800GeV, consistent with
Ref. [2]. Subsequently, we will keep Ec fixed to its best-fit
value.

Results and Discussion. Our main results are the
bounds on the DM annihilation cross section, as shown
in Fig. 3. No significant excess above background was
observed. For annihilations proceeding entirely to e+e−

final states, we find that the “thermal” cross section is
firmly excluded for mχ ! 90GeV. For mχ ∼ 10GeV,
which is an interesting range in light of recent results
from direct [62–66] and indirect [67–69] DM searches, our
upper bound on the annihilation cross section to e+e− is
approximately two orders of magnitude below ⟨σv⟩therm.
We also show in Fig. 3 the upper bounds obtained for
other leptonic final states. As expected, these limits are
weaker than those found in the case of direct annihilation
to electrons – both because part of the energy is taken

Very stringent (and robust!) 
limits on leptonic final states
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FIG. 3. Upper limits (95% CL) on the DM annihilation cross
section, as derived from the AMS positron fraction, for various
final states (this work), WMAP7 (for ℓ+ℓ−) [43] and Fermi
LAT dwarf spheroidals (for µ+µ− and τ+τ−) [42]. The dot-
ted portions of the curves are potentially affected by solar
modulation. We also indicate ⟨σv⟩therm ≡ 3× 10−26 cm3s−1.
The AMS limits are shown for reasonable reference values of
the local DM density and energy loss rate, and can vary by a
factor of a few, as indicated by the hatched band (for clarity,
this band is only shown around the e+e− constraint).

away by other particles (neutrinos, in particular) and be-
cause they feature broader and less distinctive spectral
shapes. These new limits on DM annihilating to µ+µ−

and τ+τ− final states are still, however, highly competi-
tive with or much stronger than those derived from other
observations, such as from the cosmic microwave back-
ground [43] and from gamma-ray observations of dwarf
galaxies [42]. Note that for the case of e+e−γ final states
even stronger limits can be derived for mχ ! 50GeV by
a spectral analysis of gamma rays [70]. We do not show
results for the b̄b channel, for which we nominally find
even weaker limits due to the broader spectrum. In fact,
due to degeneracies with the background modeling, lim-
its for annihilation channels which produce such a broad
spectrum of positrons can suffer from significant system-
atic uncertainties. For this reason, we consider our limits
on the e+e− channel to be the most robust.
Uncertainties in the e± energy loss rate and local DM

density weaken, to some extent, our ability to robustly
constrain the annihilation cross sections under consid-
eration in Fig. 3. We reflect this uncertainty by show-
ing a band around the e+e− constraint, corresponding
to the range Urad + UB = (1.2 − 2.6) eV cm−3, and
ρ⊙χ = (0.25− 0.7)GeV cm−3 [59, 71]. Uncertainty bands
of the same width apply to each of the other final states
shown in the figure, but are not explicitly shown for clar-
ity. Other diffusion parameter choices impact our lim-
its only by up to ∼10%, except for the case of low DM
masses, for which uncertainties in the modeling of solar
modulation may be important [51, 72]. We reflect this in
Fig. 3 by depicting the limits derived in this less certain

mass range, where the peak of the signal e+ flux falls
below 5GeV, with dotted (rather than solid) lines.

For comparison, we have also considered a collection
of physical background models in which we calculated
the expected primary and secondary lepton fluxes using
GALPROP, and then added the contribution from all
galactic pulsars. While this leads to an almost identical
description of the background at high energies as in the
phenomenological model, small differences are manifest
at lower energies due to solar modulation and a spec-
tral break [53, 73, 74] in the CR injection spectrum at a
few GeV (both neglected in the AMS parameterization).
We cross-check our fit to the AMS positron fraction with
lepton measurements by Fermi [61]. Using these physical
background models in our fits, instead of the phenomeno-
logical AMS parameterization, the limits do not change
significantly. The arguably most extreme case would be
the appearance of dips in the background due to the su-
perposition of several pulsar contributions, which might
conspire with a hidden DM signal at almost exactly the
same energy. We find that in such situations, the real lim-
its on the annihilation rate could be weaker (or stronger)
by up to roughly a factor of 3 for any individual value of
mχ. We refer to the accompanying material in the Ap-
pendix for more details and further discussion of possible
systematics that might affect our analysis.

Lastly, we note that the upper limits on ⟨σv⟩(mχ) re-
ported in Fig. 3 can easily be translated into upper limits
on the decay width of a DM particle of mass 2mχ via
Γ ≃ ⟨σv⟩ρ⊙χ /mχ. We checked explicitly that this sim-
ple transformation is correct to better than 10% for the
L =4 kpc propagation scenario and e+e− and µ+µ− final
states over the full considered energy range.

Conclusions. In this Letter, we have considered a
possible dark matter contribution to the recent AMS cos-
mic ray positron fraction data. The high quality of this
data has allowed us for the first time to successfully per-
form a spectral analysis, similar to that used previously
in the context of gamma ray searches for DM. While we
have found no indication of a DM signal, we have derived
upper bounds on annihilation and decay rates into lep-
tonic final states that improve upon the most stringent
current limits by up to two orders of magnitude. For
light DM in particular, our limits for e+e− and µ+µ− fi-
nal states are significantly below the cross section naively
predicted for a simple thermal relic. When taken together
with constraints on DM annihilations to hadronic final
states from gamma rays [42] and antiprotons [22], this
new information significantly limits the range of models
which may contain a viable candidate for dark matter
with mχ ∼ O(10)GeV.

The AMS mission is planned to continue for 20 years.
With the total data set, we expect to be able to
strengthen the presented limits by at least a factor of
three in the energy range of 6–200GeV, and by more in
the likely case that systematics and the effective accep-
tance of the instrument improve.
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Antiprotons
Cosmic-ray antiprotons
are also produced as secondary particles
suffer from less energy losses             
space diffuse much further
do not show any (obvious) high-E excess

Figure 2: The combined total uncertainty on the predicted secondary p̄/p ratio, superim-
posed to the older Pamela data [48] and the new Ams-02 data.

expected to be relevant only at small energies and in any case to have a small impact.

Finally, p̄’s have to penetrate into the heliosphere, where they are subject to the phenomenon
of Solar modulation (abbreviated with ‘SMod’ when needed in the following). We describe this
process in the usual force field approximation [47], parameterized by the Fisk potential �F ,
expressed in GV. As already mentioned in the Introduction, the value taken by �F is uncertain,
as it depends on several complex parameters of the Solar activity and therefore ultimately on
the epoch of observation. In order to be conservative, we let �F vary in a wide interval roughly
centered around the value of the fixed Fisk potential for protons �p

F (analogously to what done
in [25], approach ‘B’). Namely, �F = [0.3, 1.0] GV ' �p

F ± 50%. In fig. 1, bottom right panel,
we show the computation of the ratio with the uncertainties related to the value of the Fisk
potential in the considered intervals. Notice finally that the force field approximation, even if
‘improved’ by our allowing for di↵erent Fisk potentials for protons and antiprotons, remains
indeed an e↵ective description of a complicated phenomenon. Possible departures from it could
introduce further uncertainties on the predicted p̄/p, which we are not including. However it
has been shown in the past that the approximation grasps quite well the main features of the
process, so that we are confident that our procedure is conservative enough.

Fig. 2 constitutes our summary and best determination of the astrophysical p̄/p ratio and
its combined uncertainties, compared to the new (preliminary) Ams-02 data. The crucial
observation is that the astrophysical flux, with its cumulated uncertainties, can reasonably well
explain the new datapoints. Thus, our first —and arguably most important— conclusion is
that, contrarily to the leptonic case, there is no clear antiproton excess that can be identified in

the first place, and thus, at this stage, no real need for primary sources. This also means that,
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Figure 4: Annihilating DM: current constraints. Left Panel: current constraints from the
antiproton to proton ratio measurements by Ams-02, for di↵erent annihilation channels. The areas
above the curves are excluded. Right Panel: illustration of the impact of DM-related astrophysical
uncertainties: the constraint for the bb̄ channel spans the shaded band when varying the propagation
parameters (dashed lines) or the halo profiles (solid lines). Notice that in the Min case the analysis is
not sensible, hence not shown here (see text for details).
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Figure 5: Decaying DM: current constraints. Left Panel: current constraints from the antiproton
to proton ratio measurements by Ams-02, for di↵erent decay channels. The areas below the curves
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constraint for the bb̄ channel spans the shaded band when varying the propagation parameters (dashed
lines) or the halo profiles (solid lines). Notice that in the Min case the analysis is not sensible, hence
not shown here (see text for details).
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FIG. 3. PAMELA antiproton data [82] as measured on top of
the atmosphere (TOA). The coloured bands show the predic-
tion for the astrophysical background (BG), with the width of
each band deriving from uncertainties in the propagation pa-
rameters left from the B/C analysis. The two di↵erent bands
bracket the uncertainty from nuclear cross sections, where the
maximal (minimal) flux corresponds to the analysis performed
in Ref. [75] ([74]). The best-fit BG model is given by the solid
line. For comparison, the dotted and dashed lines also show
the case of a fiducial WIMP with mass 34 GeV, annihilating
to b̄b with a rate barely allowed at 95%CL (see Fig. 4).

The contribution to the antiproton flux from DM anni-
hilation [72] is subject to much larger theoretical uncer-
tainties than what is illustrated by the coloured bands
in Fig. 3 for the astrophysical background [85]. The
main reason for this is that DM annihilation is very e�-
cient in a rather large part of the halo, implying that
it probes a much larger volume of the di↵usion zone
than the B/C analysis that is restricted to sources in the
Galactic disk. In particular, the antiproton flux from
DM is mostly sensitive to the thickness L of the dif-
fusion zone perpendicular to the Galactic plane, while
B/C essentially only constrains the ratio of L and the
di↵usion coe�cient D [86]. While the B/C analysis in
principle allows a di↵usion zone as small as L ⇠ 1 kpc,
a vertical extension of L ⇠ 10 kpc is preferred when tak-
ing into account radioactive isotopes [87], with similar
results obtained when adding gamma rays [88, 89] and
cosmic-ray electrons [90, 91] to the analysis. Also ra-
dio [92, 93] and low-energy cosmic-ray positron [94] data
have been shown to be clearly inconsistent with a halo
size as small as ⇠ 1 kpc. With this in mind, we will in the
following mainly use the recommended reference model,
’KRA’, of the recent comprehensive analysis presented
in Ref. [95], which features L = 4kpc (and is very simi-

FIG. 4. Limits on the annihilation rate of DM into quark final
states from our analysis of the PAMELA antiproton data.
Solid lines refer to the generalized NFW profile of Eq. (2)
with � = 1.04 and are essentially indistinguishable from the
standard NFW (� = 1) case; dotted lines show the case for
� = 1.26.

lar to the best-fit model of Ref. [86]). For the propaga-
tion of primary antiprotons we use DarkSUSY [70], which
implements the semi-analytical solution of the di↵usion
equation described in Refs. [95, 96].
We use the likelihood ratio test [97] to determine lim-

its on a possible DM contribution to the antiproton flux
measured by PAMELA. For the likelihood function, we
adopt a product of normal distributions over each data
bin i,

L = ⇧i N(fi|µi,�i) , (3)

where fi is the measured value, µi the total antiproton
flux predicted by the model and �i its variance. For a
given mass and annihilation channel, the DM contribu-
tion enters with a single degree of freedom that parame-
terizes the non-negative signal normalization (and which
we will always express in terms of the annihilation rate).
95%CL upper limits on h�vi are thus derived by increas-
ing the signal normalization from its best-fit value until
�2 lnL has changed by 2.71, while re-fitting (’profiling
over’) the parameters (↵prop,↵nuc,�F ) of the background
model.
In Fig. 4, we show the resulting limits on h�vi as a

function of the DM mass m�, for all quark final states
and two representative values of the �-parameter of the
generalized NFW profile of Eq. (2). Limits for the stan-
dard NFW profile (� = 1) are essentially indistinguish-
able from the � = 1.04 case displayed here. These limits
are one of our main results and rather strong, exclud-
ing the cross section h�vitherm ⌘ 3 · 10�26cm3s�1 typi-
cally favoured by thermally produced DM up to masses
of m� ⇠ 35� 55GeV for an NFW profile (depending on
the channel). There are two main reasons why we could
improve previous limits [79, 95, 98, 99] by a factor of
roughly 2–5 at the DM masses of interest here (while the
limits presented in Ref. [100] are actually slightly stronger

G
iesen+

, JC
A

P ‘15

T
B, Vollm

ann &
 W

eniger, PR
D

 ‘14

Details in the analysis do matter…



 (Torsten Bringmann) Searching for dark matter ‒ 45

Another GeV excess ?Antiprotons
Recent developments Cuoco, Krämer, Korsmeier 1610.03071

finds a possible excess

mDM = 80 GeV, bb, 
thermal cross-section

on the other hand:

B/C and p probably probe 
different regions

it’s a very tricky region,
cool things can hide there

similarly: 
Cui, Yuan, Tsai, Fang 1610.03840 
Huang + 1611.01983  (light mediators) 
Feng, Zhang 1701.02263 
Cuoco, Heisig, Krämer, Korsmeier 1704.08258 
Boschini+ (Galprop) 1704.06337 (but οnly 1σ)

Antiprotons
Recent developments Cuoco, Krämer, Korsmeier 1610.03071

finds a possible excess

mDM = 80 GeV, bb, 
thermal cross-section

on the other hand:

B/C and p probably probe 
different regions

it’s a very tricky region,
cool things can hide there

similarly: 
Cui, Yuan, Tsai, Fang 1610.03840 
Huang + 1611.01983  (light mediators) 
Feng, Zhang 1701.02263 
Cuoco, Heisig, Krämer, Korsmeier 1704.08258 
Boschini+ (Galprop) 1704.06337 (but οnly 1σ)

without DM with DM

Antiprotons
Recent developments Cuoco, Krämer, Korsmeier 1610.03071

finds a possible excess

mDM = 80 GeV, bb, 
thermal cross-section

on the other hand:

B/C and p probably probe 
different regions

it’s a very tricky region,
cool things can hide there

similarly: 
Cui, Yuan, Tsai, Fang 1610.03840 
Huang + 1611.01983  (light mediators) 
Feng, Zhang 1701.02263 
Cuoco, Heisig, Krämer, Korsmeier 1704.08258 
Boschini+ (Galprop) 1704.06337 (but οnly 1σ)

= a 4.5σ signal ??

Cuoco, Krämer & Korsmeier, PRL ‘17

Reinert & Winkler, JCAP ‘18

10 50 100 500 1000

10-28

10-27

10-26

10-25

mDM [GeV]

��
v
�
[c
m
3
/s
]

bb

Figure 13: Constraints on dark matter annihilation into bb̄ and WW derived from the antiproton and
B/C data of AMS-02. Expected limits are also shown.
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ΛCDM cosmology

A great success 
on large scales...

Springel, Frenk & White, 
Nature ’06

Figure 1: �2(k) ⌘ 4⇡(k/2⇡)3
P(k), the linear power spectrum of density fluctuations at z = 0. The solid line is the

canonical cold DM model with an Eisenstein & Hu (1997) [10] transfer function. The dashed line is a thermal relic warm
DM model with mWDM = 8 keV [11]. The dotted line is an atomic DM model [12]. We used WMAP7 cosmological
parameters [13], ⌦m = 0.265, ⌦⇤ = 0.735, ⌦b = 0.0449, h = 0.71, �8 = 0.801, and ns = 0.963.

the important questions to tackle, and how best to do so? What developments should be pursued
in order to take advantage of technological advances?

2. Dark Matter Simulations and the Dark Universe

The numerical simulation discussed in this review together span an enormous range of length
scales, more than 8 orders of magnitude reaching from near horizon scale (⇠ 20 Gpc) down to
sub-Galactic (tens of pc). Individually they focus on di↵erent regimes (see §3 and Table 2), but
all have in common that they evolve the growth of DM density fluctuations all the way to the
present epoch at redshift zero.1

The shape of the CDM power spectrum results in a hierarchical, bottom-up process of struc-
ture formation, in which small and low mass objects collapse first and over time merge to form
ever more massive structures, until the onset at z ⇡ 1 of DE induced accelerated expansion begins
to halt further collapse. In Fig. 1 we show a plot of the linear dimensionless matter power spec-
trum �2(k) ⌘ 4⇡(k/2⇡)3

P(k) at z = 0 versus the wavenumber k of the fluctuation. Where � & 1,
gravitational collapse will have proceeded to the non-linear regime and typical objects of the cor-
responding mass will have collapsed. Cosmic scales, including the Baryon Acoustic Oscillation

1We deliberately omit from our discussion multi-billion particle simulations that focus only on the first billion years
of cosmic evolution, for studying the epoch of reionization [14] or early supermassive black hole growth [15].

3

Kuhlen, Vogelsberger & Angulo, PDU ’12

Figure 1: The galaxy distribution obtained from spectroscopic redshift surveys and from mock

catalogues constructed from cosmological simulations. The small slice at the top shows the CfA2

“Great Wall”3, with the Coma cluster at the centre. Drawn to the same scale is a small section of the

SDSS, in which an even larger “Sloan Great Wall” has been identified100. This is one of the largest

observed structures in the Universe, containing over 10,000 galaxies and stretching over more than 1.37

billion light years. The wedge on the left shows one-half of the 2dFGRS, which determined distances

to more than 220,000 galaxies in the southern sky out to a depth of 2 billion light years. The SDSS

has a similar depth but a larger solid angle and currently includes over 650,000 observed redshifts

in the northern sky. At the bottom and on the right, mock galaxy surveys constructed using semi-

analytic techniques to simulate the formation and evolution of galaxies within the evolving dark matter

distribution of the “Millennium” simulation5 are shown, selected with matching survey geometries and

magnitude limits.
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Small-scale problems ?

2 DARK MATTER SUBSTRUCTURE

2. SUBSTRUCTURE WITHIN GALAXIES AND CLUSTERS

We simulate the hierarchical formation of dark matter
halos in the correct cosmological context using a high res-
olution parallel treecode pkdgrav. An object is chosen
from a simulation of an appropriate cosmological volume.
The small scale waves of the power spectrum are realised
within the volume that collapses to this object with pro-
gressively lower resolution at increasing distances from the
object. The simulation is then re-run to the present epoch
with the higher mass and force resolution. We have ap-
plied this technique to several halos identified from a 106

Mpc3 volume, including a cluster similar to the nearby
Virgo cluster (Ghigna et al. 1998) and a galaxy with a
circular velocity and isolation similar to the Milky Way.

Fig. 1.— The density of dark matter within a cluster halo of mass
5×1014M⊙ (upper) and a galaxy halo of mass 2×1012M⊙ (lower).
The edge of the box is the virial radius, 300kpc for the galaxy and
2000 kpc for the cluster (peak circular velocities of 200 km s−1 and
1100 km s−1 respectively).

The cosmology that we investigate is a universe dom-
inated with a critical density of cold dark matter, nor-
malised to reproduce the local abundance of galaxy clus-

ters. The important numerical parameters to remember
are that each halo contains more than one million particles
within the final virial radius rvir , and we use a force reso-
lution ∼ 0.1%rvir. Further details of computational tech-
niques and simulation parameters can be found in Ghigna
et al. (1998) and Moore et al. (1999). Here we focus our
attention directly on a comparison with observations.

Figure 1 shows the mass distribution at a redshift z = 0
within the virial radii of our simulated cluster and galaxy.
It is virtually impossible to distinguish the two dark mat-
ter halos, even though the cluster halo is nearly a thou-
sand times more massive and forms 5 Gyrs later than the
galaxy halo. Both objects contain many dark matter sub-
structure halos. We apply a group finding algorithm to
extract the sub-clumps from the simulation data and use
the bound particles to directly measure their kinematical
properties; mass, circular velocity, radii, orbital parame-
ters (c.f. Ghigna et al. 1998). Although our simulations
do not include a baryonic tracer component, we can com-
pare the properties of these systems with observations us-
ing the Tully-Fisher relation (Tully & Fisher 1977). This
provides a simple benchmark for future studies that in-
corporate additional physics such as cooling gas and star-
formation.

Fig. 2.— The abundance of cosmic substructure within our
Milky Way Galaxy, the Virgo cluster and our models of comparable
masses. We plot the cumulative numbers of halos as a function of

their circular velocity (vc =
√

(Gmb/rb), where mb is the bound
mass within the bound radius rb of the substructure, normalised to
the circular velocity, Vglobal of the parent halo that they inhabit.
The dotted curve shows the distribution of the satellites within the
Milky Way’s halo (Mateo 1998) and the open circles with Poisson
errors is data for the Virgo galaxy cluster (Binggeli et al. 1985). We
compare these data with our simulated galactic mass halo (dashed
curves) and cluster halo (solid curve). The second dashed curve
shows data for the galaxy at an earlier epoch, 4 billion years ago -
dynamical evolution has not significantly altered the properties of
the substructure over this timescale.

Figure 2 shows the observed mass (circular velocity)
function of substructure within the Virgo cluster of galax-
ies compared with our simulation results. The circular ve-
locities of substructure halos are measured directly from

“mass”

cu
m

ul
at

iv
e 

nu
m

be
r

MW dwarfs

CDM
 sim

ulations

1. Missing satellites?

More satellites 
in simulations 
of MW-like 
galaxies than 
observed

Moore et al., ApJ ’99

6 de Blok et al.

Fig. 2.— Histogram of the values of the inner power-law slope α of the mass density profiles presented in Fig. 1. We distinguish between
well-resolved (hatched histogram) and unresolved (blank histogram) galaxies. The unresolved galaxies generally have higher values of α.

Fig. 3.— Value of the inner slope α of the mass density profiles plotted against the radius of the innermost point. Black dots are from the
dBMR sample, stars are from the de Blok & Bosma (2001) sample, open circles represent the four LSB galaxies from the Verheijen (1997)
sample. Over-plotted are the theoretical slopes of a pseudo-isothermal halo model (dotted lines) with core radii of 0.5 (left-most), 1 (canter)
and 2 (right-most) kpc. The full line represents a NFW model (Navarro, Frenk & White 1996), the dashed line a CDM r−1.5 model (Moore
et al. 1999). Both of the latter models have parameters c = 8 and V200 = 100 km s−1, which were chosen to approximately fit the data points
in the lower part of the diagram.

2. Cusps or cores?

Cuspy inner 
density profiles 
predicted by 
simulations not 
found in (all) 
observations 

Blok et al., ApJ ’01
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Figure 3. Rotation curves for all subhalos with Vinfall > 30 km s�1 and Vmax > 10 km s�1, after excluding Magellanic Cloud analogs, in
each of the six Aquarius simulations (top row, from left to right: A, B, C; bottom row: D, E, F). Subhalos that are at least 2� denser
than every bright MW dwarf spheroidal are plotted with solid curves, while the remaining subhalos are plotted as dotted curves. Data
points with errors show measured Vcirc values for the bright MW dSphs. Not only does each halo have several subhalos that are too
dense to host any of the dSphs, each halo also has several massive subhalos (nominally capable of forming stars) with Vcirc comparable
to the MW dSphs that have no bright counterpart in the MW. In total, between 7 and 22 of these massive subhalos are unaccounted for
in each halo.

of Vcirc(r1/2) for the bright Milky Way dwarf spheroidals.
As in Fig. 2, we plot only halos with Vinfall > 30 km s�1

and Vmax(z = 0) > 10 km s�1. Subhalos that are at least 2�
more massive than every dwarf (at r1/2) are plotted as solid
curves; these are the “massive failures” discussed in BBK,
and each halo has at least four such subhalos. Fig. 3 shows
that each halo has several other subhalos with Vinfall > 30
that are unaccounted for as well: for example, halo B has
three subhalos that are not massive failures by our defini-
tion but that are inconsistent at 2� with every dwarf except
Draco. Even ignoring the subhalos that are completely un-
accounted for (and are yet more massive than all of the MW
dSphs), the remaining massive subhalos do not resemble the
bright MW dSph population.

3.3 High redshift progenitors of massive subhalos

To investigate the possible impact of reionization on our re-
sults, we show the evolution of the progenitors of all subhalos
with Vinfall > 30 km s�1 in Figure 4. The solid curve show
the median M(z), while the shaded region contains 68% of
the distribution, centered on the median, at each redshift.

For comparison, we also show Tvir(z) = 104 K (the tempera-
ture at which primordial gas can cool via atomic transitions)
and 105 K (dashed lines), as well as the mass Mc(z) below
which at least half of a halo’s baryons have been removed
by photo-heating from the UV background (Okamoto et al.
2008). Subhalos with Vinfall > 30 km s�1 lie above Mc and
Tvir = 104 K at all redshifts plotted, indicating that they are
too massive for photo-ionization feedback to significantly al-
ter their gas content and thereby inhibit galaxy formation.

Figure 5 focuses on the z = 6 properties of these sub-
halos. It shows the distribution of halo masses at z = 6
for “massive failures” (open histogram) and the remaining
subhalos (filled histogram), which are possible hosts of the
MW dSphs. The massive failures are more massive at z = 6,
on average, than the potentially luminous subhalos. This
further emphasizes that reionization is not a plausible ex-
planation of why the massive failures do not have stars: the
typical massive failure is a factor of ten more massive than
the UV suppression threshold at z = 6. Implications of this
result will be discussed in Boylan-Kolchin et al. (in prepa-
ration).

In a series of recent papers, Broderick, Chang, and
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Figure 3. Rotation curves for all subhalos with Vinfall > 30 km s�1 and Vmax > 10 km s�1, after excluding Magellanic Cloud analogs, in
each of the six Aquarius simulations (top row, from left to right: A, B, C; bottom row: D, E, F). Subhalos that are at least 2� denser
than every bright MW dwarf spheroidal are plotted with solid curves, while the remaining subhalos are plotted as dotted curves. Data
points with errors show measured Vcirc values for the bright MW dSphs. Not only does each halo have several subhalos that are too
dense to host any of the dSphs, each halo also has several massive subhalos (nominally capable of forming stars) with Vcirc comparable
to the MW dSphs that have no bright counterpart in the MW. In total, between 7 and 22 of these massive subhalos are unaccounted for
in each halo.
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which at least half of a halo’s baryons have been removed
by photo-heating from the UV background (Okamoto et al.
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Tvir = 104 K at all redshifts plotted, indicating that they are
too massive for photo-ionization feedback to significantly al-
ter their gas content and thereby inhibit galaxy formation.

Figure 5 focuses on the z = 6 properties of these sub-
halos. It shows the distribution of halo masses at z = 6
for “massive failures” (open histogram) and the remaining
subhalos (filled histogram), which are possible hosts of the
MW dSphs. The massive failures are more massive at z = 6,
on average, than the potentially luminous subhalos. This
further emphasizes that reionization is not a plausible ex-
planation of why the massive failures do not have stars: the
typical massive failure is a factor of ten more massive than
the UV suppression threshold at z = 6. Implications of this
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Figure 3. Rotation curves for all subhalos with Vinfall > 30 km s�1 and Vmax > 10 km s�1, after excluding Magellanic Cloud analogs, in
each of the six Aquarius simulations (top row, from left to right: A, B, C; bottom row: D, E, F). Subhalos that are at least 2� denser
than every bright MW dwarf spheroidal are plotted with solid curves, while the remaining subhalos are plotted as dotted curves. Data
points with errors show measured Vcirc values for the bright MW dSphs. Not only does each halo have several subhalos that are too
dense to host any of the dSphs, each halo also has several massive subhalos (nominally capable of forming stars) with Vcirc comparable
to the MW dSphs that have no bright counterpart in the MW. In total, between 7 and 22 of these massive subhalos are unaccounted for
in each halo.
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Figure 5. Rotation curves of four dwarf irregular galaxies of approximately the same maximum rotation speed (∼80–100 km s−1) and galaxy mass, chosen
to illustrate the diversity of rotation curve shape at given Vmax. As in previous figures, coloured solid curves and shaded areas correspond to the median (and
10th–90th percentile) circular velocity curve of simulated galaxies matching (within 10 per cent) the maximum circular velocity of each galaxy. Note that the
observed rotation curves exhibit a much wider diversity than seen in the EAGLE and LG simulations, from galaxies like UGC 5721, which are consistent with
our simulations, to galaxies like IC 2574, which show a much more slowly rising rotation curve compared with simulations, either hydrodynamical (coloured
lines) or DMO (black lines).

origin of the diversity at fixed Vmax, especially in dwarf galaxies,
which tend to be dark-matter-dominated. These are all galaxies that
form in similar haloes, have approximately the same baryonic mass,
and similar morphologies. Some diversity induced by differences in
the distribution of the baryonic component is expected, but clearly
the observed diversity is much greater than in our simulations.

The second, and more worrying, concern is the inner mass deficit
that some of these galaxies seem to exhibit relative to the !CDM
simulation predictions. Indeed, except for UGC 5721, all of the
galaxies shown in Fig. 5 have less mass in the inner 8 kpc than
expected not only from our hydro simulations (shaded coloured
regions) but also from a !CDM halo alone (solid black lines).
Systems like UGC 11707 seem marginally consistent, and could
perhaps be interpreted as outliers, but cases like IC 2574, or LSB
F583-1 are too extreme to be accommodated by our model without
significant change.

The mass deficit we highlight here has been noted before in
the context of the ‘cusp versus core’ debate (see e.g. McGaugh
et al. 2007, and references therein). Indeed, if constant density
‘cores’ were imposed on the dark matter it would be relatively
straightforward to reproduce the data shown in Fig. 5. Such cores,
however, would need to vary from galaxy to galaxy, even at fixed
halo mass and galaxy mass. Indeed, a core at least as large as
∼5 kpc would be needed to explain the fact that the rotation
curve of IC 2574 rises linearly out to ∼8 kpc, but ought to be
much smaller in LSB F583-1 and even smaller, if at all present, in
UGC 5721.

4.4 The challenge to baryon-induced core formation

The diversity of observed rotation curves presents a challenge not
only to our simulations, but also to the baryon-induced ‘core’ cre-
ation mechanism: why would baryons carve out cores so different
in galaxies that are so similar in terms of morphology, halo mass,
and galaxy mass? Further, we would expect the dark matter to be
most affected in systems where baryons play a more important role
in the potential, such as high surface brightness galaxies, whereas
observations seem to suggest the opposite trend.

A second challenge concerns the magnitude of the effect needed
to create a core as large as that inferred, for example, for IC 2574.
Published simulations where baryon effects create cores tend to
have overall a modest effect on the total inner mass profile of the
galaxy. One example is provided in Fig. 1; although baryons have
carved a ∼1 kpc core in the dark matter halo in the simulated galaxy
DG1, the total inner mass profile is actually quite similar to what
is expected for galaxies of that circular velocity in our simulations
(green-shaded region), which do not produce cores. This is because,
to first order, the baryons that displace the dark matter to create a
core take its place, leading to a modest net change in the total mass
profile.

In other words, ‘flattening the dark matter cusp’ is not enough
to explain galaxies like IC 2574. A net removal of large amounts
of mass from the inner regions is needed to reconcile such galaxies
with !CDM, at least if we equate the measured rotation curve
with the circular velocity curve. In the case of IC 2574, at least

MNRAS 452, 3650–3665 (2015)
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Generic dark sector models

Standard 
Model

Dark 
Sector

SU(3)c ⇥ SU(2)L ⇥ U(1)Y
<latexit sha1_base64="xqO5xF91XkfgcNL1pA79dFQDdgk="></latexit>

e.g. U(1)X ⇥ ...
<latexit sha1_base64="KLvRV1lIfKJ9/ebLagwBbpaMcJU="></latexit>

Dark matter
Dark radiation                    
(‘sterile neutrinos’, ‘dark photons’, …)

SM particles

e.g. LHiggs � |�|2|⇥|2

A ‘portal’ typically still ensures 
thermalisation at high temperatures
Separate entropy conservation after decoupling  Tphoton 6= Tdark
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imprints on linear
imprints on inner 
(sub-)halo structure

need to treat 
consistently!
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LLP are a Hallmark of Hidden sectors, with non-SM matter and 
forces, that can be connected to the SM via very small effective 

couplings called portals
Hidden sectors could explain big questions of the SM in a way that 

is compatible with the current lack of new particles

!! Hidden sectors 
!!! Higgs portal (new particle could hide surprises)
!!!! Hidden “Dark” sectors (explaining Dark Matter)

[see talk by R. Gonzalez Suarez]
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Freeze-out = decoupling !
Expect WIMPs (and similar DM particles) to stay much longer in 
kinetic than in chemical equilibrium:
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Boltzmann equation in FRW spacetime:
       recovers familiar  

E(�t �Hp ·⇥p)f� = C[f�]
�

d3p dn�

dt
+ 3Hn� = �⇥�v⇤

�
n2

� � n2
�eq

⇥

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 T. Bringmann, 2009

log10 (x = mχ/T )

lo
g 1

0

( y
=

m
χ
g−

1
/
2

eff
T

χ
/T

2
)

Tχ ∝ a−2

Tχ
= T

xkd =mχ/Tkd

(T < Tkd)

(T > Tkd)
= ‘point’ of 

kinetic 
decoupling

Example:
m� = 100GeV
|M|2 � g4

Y (E�/m�)2

solve resulting ODE for     T�

<latexit sha1_base64="VsbUFg0obF8FMLm/kdevx5DK6dw=">AAACAXicbVDLSsNAFL3xWeur6tLNYBFclUQKdllw47JCX9CWMpnetGMnkzAzEUroyh9wq3/gTtz6Jf6A3+GkzUJbD1w4nHNfHD8WXBvX/XI2Nre2d3YLe8X9g8Oj49LJaVtHiWLYYpGIVNenGgWX2DLcCOzGCmnoC+z409vM7zyi0jySTTOLcRDSseQBZ9RYqd0c9tmED0tlt+IuQNaJl5My5GgMS9/9UcSSEKVhgmrd89zYDFKqDGcC58V+ojGmbErH2LNU0hD1IF18OyeXVhmRIFK2pCEL9fdESkOtZ6FvO0NqJnrVy8R/vZhnC1eum6A2SLmME4OSLY8HiSAmIlkcZMQVMiNmllCmuP2fsAlVlBkbWtEG463GsE7a1xWvWqneV8v1Wh5RAc7hAq7Agxuowx00oAUMHuAZXuDVeXLenHfnY9m64eQzZ/AHzucPvEOXdQ==</latexit>

[See also Binder, TB, Gustafsson & Hryczuk, 
PRD ’18 for detailed treatment]

Bertschinger, PRD ’06
TB & Hofmann,  JCAP ’07

TB, NJP ’09

Now consider 2nd moment, introducing
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The smallest protohalos
In kinetic equilibrium, density contrasts 
in DM component immediately erased

e.g. Green, Hofmann & Schwarz, JCAP ’05

Loeb & Zaldarriaga, PRD ’05;Bertschinger, PRD ’06
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Resulting small-scale cutoff in power spectrum corresponds to 
mass of smallest gravitationally bound structures 
Not ‘earth-mass’ but strongly model-dependent!

Much later kinetic decoupling (i.e. larger cutoffs) possible for 
scattering with dark radiation, e.g. with light mediators
way to address the missing satellite ‘problem’ TB, Ihle, Kersten & Walia, PRD ‘16

[full simplified model classification]

Around and after decoupling, two effects 
suppress the growth of overdensities:
free-streaming
baryonic (‘dark’) acoustic oscillations 
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Self-interacting DM (SIDM)
DM-DM scatterings

do not affect linear perturbations (number densities!)

but isotropise DM distribution in inner parts of halo:  

Spergel & Steinhardt, PRL ‘99

4 M. Vogelsberger et al.

Figure 2. Density (left panels) and velocity dispersion profiles (right panels) of haloes of different masses. The top panels are for the case of a constant
cross section (�max

T /m� = 10 cm2 g�1) showing the profiles after 25 t0. Bottom panels are for the case of a velocity-dependent cross section (vmax =
30 km s�1, �max

T /m� = 10 cm2 g�1) after 1 Gyr. In scaled units, the constant cross section curves for all masses collapse to a single one. For the
velocity-dependent case, evolution progresses faster for lower mass systems, because (�T v) peaks at a velocity of 30 km/s.

and velocity distribution functions we can now calculate the num-
ber of expected scattering events and compare this to the N-body
/ Monte Carlo results obtained with the technique presented in the
paragraphs above.

As an example of the number of scattering events expected in
a DM halo, we take a smooth spherical distribution of DM with a
Hernquist density profile (Hernquist 1990):

⇢(r) =
Ma
2⇡r

1
(r + a)3

, (7)

where M is the total mass of the halo and a its scale length. The
velocity dispersion profile for the Hernquist halo follows from the
Jeans equation, which for an isotropic velocity distribution and us-

ing Eq. (7) gives:
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It is then straightforward to compute the scattering rate using
Eq. (5). To compare these analytical expectations with N-body
simulations, it is necessary to take into account the mass resolu-
tion of the simulation. We therefore need to multiply Eq. (5) with
m�/mdm, where mdm is the DM particle mass of the simulation,
which yields the number of scatter events in the simulation volume.

The left panel of Figure 1 shows the analytically calcu-
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core formation once         scatters per dynamical time O(1)
Core Formation in Dwarf Halos with Self Interacting Dark Matter: No Fine-Tuning Necessary 5

Figure 3. Density profiles of Pippin (left) and Merry (right) in collisionless CDM and in SIDM (see legend) at z = 0. All SIDM runs with �/m �
0.5 cm2 g�1 produce central density profiles with well-resolved cores within ⇠ 500 pc. Core densities are the lowest (and core sizes the largest) for cross
sections in the range �/m = 5�10 cm2 g�1. The 50 cm2 g�1 run of Pippin has undergone a mild core collapse, with a resultant central density intermediate
between the 10 cm2 g�1 run and 1 cm2 g�1 run. For velocity dispersion profiles of these halos, see Appendix A. NFW fits to the CDM profiles of each halo
yield scale radii of ⇠ 2.7 kpc.

dense enough to reside in a CDM halo larger than 40 km s�1. The
rest appear to reside in halos that are significantly less dense than
expected for the ten most massive systems predicted in CDM sim-
ulations. These missing, or overdense, Vmax ' 40 km s�1 halos
are the systems of concern for the TBTF problem.

Figure 4 illustrates this problem explicitly by comparing the
circular velocities of nearby field dwarfs at their half-light radius
(data points) to the circular velocity profiles of our simulated ha-
los (lines), each of which has Vmax ' 40 km s�1 and is there-
fore nominally a TBTF halo. The data points indicate dwarf galax-
ies (M⇤ < 1.7 ⇥ 107) farther than 300 kpc from both the Milky
Way and Andromeda that are dark matter dominated within their
half-light radii ( r1/2), with estimates for their circular velocities
at r1/2 (V1/2). We have excluded Tucana, which has an implied
central density so high that it is hard to understand even in the
context of CDM (see Garrison-Kimmel et al., 2014b, for a discus-
sion). V1/2 for the purely dispersion galaxies are calculated using
the Wolf et al. (2010) formula, where measurements for stellar ve-
locity dispersion, �?, are taken from Hoffman et al. (1996), Simon
& Geha (2007), Epinat et al. (2008), Fraternali et al. (2009), Collins
et al. (2013), and Kirby et al. (2014). However, WLM and Pegasus
also display evidence of rotational support, indicating that they are
poorly described by the Wolf et al. (2010) formalism. For the for-
mer, we use the Leaman et al. (2012) estimate of the mass within
the half-light radius, obtained via a detailed dynamical model. The
data point for Pegasus is obtained via the method suggested by
Weiner et al. (2006), wherein �2

? is replaced with �2
? + 1

2 (v sin i)
2

in the Wolf et al. (2010) formula, where v sin i is the projected ro-
tation velocity (also see §5.2 of Kirby et al., 2014).

As expected, the data points all lie below the CDM curves
(black lines), demonstrating explicitly that both Merry and Pippin
are TBTF halos. The SIDM runs, however, provide a much better

match, and in fact all of the SIDM runs with �/m � 0.5 cm2 g�1

alleviate TBTF.

3.3 Expectations for the stellar-mass halo-mass relation

A problem related to TBTF, but in principle distinct from it, con-
cerns the relationship between the observed core densities of galax-
ies and their stellar masses. Specifically, there does not appear to be
any correlation between stellar mass and inner dark matter den-
sity inferred from dynamical estimates of dwarf galaxies in the
Local Group (Strigari et al., 2008; Boylan-Kolchin et al., 2012;
Garrison-Kimmel et al., 2014b). If dark matter halos behave as ex-
pected in dissipationless ⇤CDM simulations, then we would ex-
pect more massive galaxies to have higher dark matter densities at
fixed radius. This ultimately stems from the expectation, borne out
at higher halo masses, that more massive dark matter halos tend to
host more massive galaxies.

Consider, for example, the two galaxies Pegasus (r1/2 ' 1
kpc) and Leo A (r1/2 ' 500 pc) in Figure 4. Both of these
galaxies have about the same stellar mass M? ' 107M�. Ac-
cording to the expectations of abundance matching (Garrison-
Kimmel et al., 2014b), each of these galaxies should reside within
a Vmax ' 40 km s�1 halo. Instead, their central densities are such
that, if their dark matter structure follows the CDM-inspired NFW
form, they need to have drastically different potential well depths:
Vmax ' 30 and 12 km s�1 for Pegasus and Leo A, respectively
(see Figure 12 of Garrison-Kimmel et al., 2014b). However, if we
instead interpret their densities in the context of SIDM, the results
are much more in line with abundance matching expectations.

Abundance matching relations remain unchanged in SIDM
because halo mass functions in SIDM are identical to those in
CDM (Rocha et al., 2013). That is, in SIDM, just like CDM, we
would naively expect both Pegasus and Leo A to reside in ha-

c� 2014 RAS, MNRAS 000, 1–9
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Simple analytic models to predict core radius from σSIDM

reproduce CDM simulation results for          remarkably well ⇢�(r)
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Kaplinghat, Tulin & Yu, PRL ‘15

Sokolenko+, JCAP ‘18

Use caution when applied to systems including baryons!

but underlying (microphysics) assumptions not really satisfied 
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Velocity dependence
Massive mediators induce a Yukawa 
potential between DM particles.
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The case for dark matter scattering with sterile neutrinos

Torsten Bringmann⇤
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(Dated: February 7, 2014 = not really today... ;) )

It has recently been pointed out that TeV-scale dark matter with the characteristic velocity-
dependent self-interaction rate resulting from a light mediator particle can address all small-scale
problems of standard ⇤CDM cosmology simultaneously, provided that kinetic decoupling happens
su�ciently late. Here, we argue that dark matter scattering with sterile neutrinos charged under
a new U(1) gauge interaction is a particularly natural realization of this idea. Interestingly, those
sterile neutrinos may act as a – possibly rather small – dark radiation component at late times,
making the scenario a promising target for both current and upcoming observations of the cosmic
microwave background. We discuss various model-building avenues, current constraints as well as
prospects for a future experimental verification of such scenarios.

I. INTRODUCTION

We consider the scenario of [1], where the dark matter
scatters o↵ light particles (possibly contributing to dark
radiation), which solves all three small-scale problems of
structure formation.

• 1st par: CDM success + shortcomings (many refs)

• 2nd par: point out only existing ‘solution for ev-
erything’ + possible connection to dark radiation

• 3rd: motivations for sterile neutrinos

• connect everything, give a short outlook on the sce-
narios that are interesting

II. SELF-INTERACTING DARK MATTER AND
⇤CDM AT SMALL SCALES

Self-interacting DM (SIDM) has early been proposed
as a way to change the predictions of ⇤CDM at small
scales [2]. The original proposal of a constant cross sec-
tion for the scattering rate, however, faces severe phe-
nomenological problems deriving from the observed el-
lipticity of clusters [3], the survivability of large galaxies
in clusters or dwarf galaxies in the Local Group [4], as
well as the imminent relaxation of halo cores to even
denser states in a ‘gravothermal catastrophe’ [5]; also
the observation of cluster mergers places relevant con-
straints on the self-interaction rate [6]. More recently, it
was realized that the characteristic velocity-dependence
of the scattering rate expected for a Yukawa potential be-
tween the DM particles may not only alleviate the above

⇤Electronic address: Torsten.Bringmann@fys.uio.no
†Electronic address: Jasper.Hasenkamp@desy.de
‡Electronic address: Joern.Kersten@desy.de

mentioned problems [7] but indeed potentially address
all shortcomings of ⇤CDM mentioned in the introduc-
tion simultaneously [1].
The idea of SIDM with a Yukawa potential (YIDM)

corresponds to the existence of a light messenger particle
� that mediates this ’dark force’, which means that it is
much better motivated from a particle physics point of
view than SIDM with a constant interaction rate (or with
an ad-hoc velocity dependence as studied e.g. in Ref. [8]).
In this Section, we adopt a purely phenomenological ap-
proach and work out the general requirements to address
the ⇤CDM small-scale problems in this framework. In
the remainder of this article, we will then translate these
considerations to concrete particle physics models that
can realize this general idea.

A. DM self-scattering

Rather than the full di↵erential scattering cross sec-
tion, d�/d⌦, one typically only considers the transfer
cross section

�T ⌘

Z
d⌦(1� cos ✓)

d�

d⌦
(1)

in the context of DM scattering as this conveniently
regulates divergences appearing for forward scattering –
which anyway does not change the DM distribution (see
Ref. [9] for an extensive discussion).
Assuming a coupling constant g� in the interaction

term between the DM particles and the (vector or scalar)
messenger � in the Lagrangian, the resulting Yukawa po-
tential is given by

V (r) = ±
↵�

r
e
�m�r , (2)

where ↵� ⌘ g
2

�/(4⇡). For scalar � as well as self-
conjugate DM, like Majorana fermions, the potential is
always repulsive (+); otherwise it can be both attractive
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FIG. 2: Left: Numerical calculation of �T /mX , truncated at fixed `max, showing convergence with in-
creasing `max. The parameter point chosen corresponds to the classical regime with an attractive potential.
The convergence to the classical analytic result shown by dashed line. Right: Numerical calculation (solid
blue) of �T /mX versus m�, showing convergence to the classical analytical formula (dotted pink) and Born
approximation (dashed gold) in the classical and Born regimes.

of Ref. [26] requires integrating Eq. (13) to much larger x than in our method, and is therefore
much less efficient. Thus, Ref. [26] truncates at `max = 5 in their calculation, whereas we are
able to perform efficient calculations with `max ⇠ 1000. We demonstrate this point in Fig. 2,
showing how �T depends on `max for one parameter choice in the classical regime. Our numerical
calculation (solid line) converges for `max & 1000, in good agreement with the classical cross
section (dashed line).3

We can also see the convergence to classical and Born analytic formulae in the right panel of
Fig. 2. The dashed gold and dotted pink lines show the results for the Born and classical analytic
formulae, and we see that in the regime of validity, our numerical results (solid blue line) agree
well with the analytic formulae. In the quantum resonant regime, neither of the analytic formulae
reproduce the behavior of the resonant peaks and anti-resonant valleys. Also note that the Born
approximation over-estimates the cross section in the classical regime.

B. Velocity-dependence in dark matter scattering

The most important feature that emerges from our numerical study is the highly nontrivial
velocity-dependence of �T within the resonant regime. While previous studies have focused on
either constant �T or specific v-dependencies, a rich array of possibilities can arise in general, and
the velocity behavior can be rather complicated.

In Fig. 3, we show the cross section as a function of velocity for an attractive potential with
↵X = 10�2. Each curve corresponds to a different value for b (where b ⌘ ↵XmX/m�), as
indicated by the numerical values in the figures. The quantity �Tm2

X is a useful normalization
for the cross section since, for fixed ↵X , it depends on v and mX/m� only (as opposed to mX

and m� separately). Thus, to obtain the required level scattering in dwarf halos, each curve can

3 The reader should not be troubled by the fact that �T can be negative for certain values of `max. Due to the fact
that the momentum and orbital angular momentum operators do not commute, the transfer cross section, defined in
terms of momentum eigenstates, is a physical quantity only in the limit `max ! 1, not for a particular value of `.

10

see e.g. Tulin, Yu & Zurek, PRD ‘13 
[only for attractive potential]

Resulting scattering cross section

atom models. We label the models by their value of the
mass ratio R; the values of the other relevant parameters are
given in the figure caption. As before, the colored points
show the effective ETHOS values of the transfer cross
section over mass for the mapping given in Eq. (57). For the
three models shown here, we observe that the velocity
dependence is very mild over the range of velocities
relevant to a broad spectrum of astrophysical objects (note
for instance the difference of the y-axis between the left and
right panels of Fig. 4). However, the qualitative behavior
of dark atom scattering is similar to the nonperturbative
scattering limit (mχv ≲mϕ) of the Yukawa DM model
presented in the previous subsection.6 This reinforces the
idea that the ETHOS framework can encompass multiple
models using a simple parametrization.

IV. ETHOS: MAPPING PARTICLE MODELS TO
STRUCTURE FORMATION SCENARIOS

In the standard cold DM paradigm, DM is assumed to be
nonrelativistic and to interact primarily via the gravitational
force. These simple hypotheses have been extremely
successful at explaining the structure of the Universe on
large scales. However, we must keep in mind that this
success does not necessarily preclude the existence of
nontrivial DM microphysics that could affect structure

formation at smaller scales, where these hypotheses remain
untested. Indeed, causality dictates that new nongravita-
tional interactions in the DM sector can only modify the
matter distribution on small scales, leaving large scales
intact. Many models have been proposed that either allow
for DM self-interactions inside halos at late times, or for
interactions between DM and other particles in the early
Universe, or both (see Sec. I and references therein). An
immediate difficulty in exploring these models is that
structure formation on small scales is highly nonlinear,
requiring expensive high-resolution simulations in order to
make clear predictions that can be compared with obser-
vations. The cost of these simulations renders nearly
impossible the task of a systematic exploration of all
DM models that lead to modified small-scale structures.
To address this situation, we develop here an “effective
theory of structure formation” (ETHOS), in which the DM
microphysics is systematically mapped to effective param-
eters that directly control astrophysical structure formation.
These effective parameters fully describe the linear evolu-
tion of the growth of structures and provide a convenient
parametrization for DM self-interactions. These two ingre-
dients can then serve as the input for simulations to follow
the growth of structures in the nonlinear regime. The
advantage of developing ETHOS is clear: all DM particle
models that map to a given effective ETHOS model can be
constrained at the same time by comparing a single

FIG. 4. Left panel: Velocity dependence of the self-interaction cross section over mass for DM interacting via a Yukawa potential
mediated by a messenger particle ϕ [22,23,47,91]. The model shown with the thick red solid curve is an example of a symmetric DM
model that primarily scatters in the classical regime (mχv ≫ mϕ) with momentum-transfer cross sections given by the average of
Eqs. (60) and (61). The thin solid blue line is an example of asymmetric DM that primarily scatters in the classical regime with
momentum-transfer cross sections given by Eq. (61). The dashed cyan curve is an example of an asymmetric DM model similar to the
model put forward in Ref. [25]. This model primarily scatters in the nonperturbative regime (mχv ≲mϕ) and we refer the reader to the
Appendix of Ref. [23] for an explicit analytical formula that is valid in this regime. In all cases, the colored points show the average
values hσTivM=mχ [as defined in Eq. (56)] for the three typical velocity ranges shown here by the gray bands. Note that the width of the
gray bands is for illustration purposes only. Right panel: Similar to the left panel but for atomic DM models [12,43–46,49,56,57]. Here,
the models are labeled by the value of R, which is the mass ratio of the two particles forming the dark atom. We show the approximate
fitting formula for the momentum-transfer cross section given in Eq. (10) of Ref. [56] with a dark fine-structure constant value of
αD ¼ 0.05. For all the cases shown, the DM mass is determined from the relation mχ ¼ ðR=αDÞ2=3 GeV [57]. The colored points show
the values of hσTivM=mχ for each typical velocities vM.

6See the dashed cyan line of the left panel of Fig. 4.
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Phenomenologically important: 
characteristic velocity dependence
[not only for Yukawa potentials! 
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particle model

Idea of ETHOS: identify effective parameters and provide 
maps for each of those steps (     no need to re-compute each model!) 

Cyr-Racine+, PRD’16;  Vogelsberger+, MNRAS ’16

The first task can be demanding,                                    
the second in addition computationally very expensive 

But expect large degeneracies, so very inefficient…
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Figure 1: Interaction processes that set the DM relic density
and may lead to observable neutrino annihilation products
today (left), change the inner velocity and density profile of
dwarf halos (middle) and induce a comparatively large cuto↵
in the spectrum of primordial density perturbations (right).

‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant �T .
We also note that �T drops with larger v such that for
galaxy clusters only the very central density profile at
r . O(1 � 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v

2
max = g

2
�mV /(2⇡2

m�) at
which �T v becomes maximal and �

max
T ⌘ �T (vmax) =

22.7m�2
V . In particular, vmax should not be too di↵er-

ent from the typical velocity dispersion �v ⇠ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of �max

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing g� by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (m�,mV ) and the astrophysically relevant param-
eters (vmax,�

max
T ). As demonstrated in Fig. 2, a so-

lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of m� & 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
m� . 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger m� an imminent
gravothermal catastrophe is more constraining.

The small-scale cuto↵.— For small kinetic decou-
pling temperatures Tkd, acoustic oscillations [52] are
more e�cient than free streaming e↵ects to suppress the
power spectrum [4, 53]. The resulting exponential cuto↵
can be translated into a smallest protohalo mass of

Mcut ⇡
4⇡

3

⇢�

H3

���
T=Tkd

= 1.7⇥ 108
✓
Tkd

keV

◆�3

M� , (4)

where H is the Hubble rate and we assumed late kinetic
decoupling such that the e↵ective number of relativistic
degrees of freedom ge↵ = 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending
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Figure 2: The white area corresponds to DM and mediator
masses that may solve the ‘cusp vs. core’ problem. The crosses
indicate two benchmark models for which detailed simulations
[44] have found a solution to the ‘too big to fail’ problem.
Dashed and solid lines show contours of the astrophysical rel-
evant quantities �T

max and vmax. See text for further details.
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Figure 3: This plane shows the mediator mass mV vs. the
coupling strength g⌫ . Large values of g⌫ and small values of
mV lead to late kinetic decoupling and thus a large mass Mcut

of the smallest protohalos. Mcut & 5 ⇥ 1010M� is excluded
by Ly-↵ data while Mcut & 109M� may solve the small-scale
abundance problems of ⇤CDM cosmology.

those expressions to allow for T⌫ 6= T , we find

Tkd =
0.062 keV

N

1
4
⌫ (g�g⌫)

1
2

✓
T

T⌫

◆ 1
2

kd

⇣
m�

TeV

⌘ 1
4
⇣
mV

MeV

⌘
, (5)

where N⌫ is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
Tkd, and thus Mcut, is essentially independent of g� and
m�.

Using for definiteness N⌫ = 3 and T⌫ = (4/11)
1
3T� , we

show in Fig. 3 contours of constant Mcut in the (g⌫ ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for g⌫ & 10�7 (assuming m� ⇠ 1TeV and
mV ⇠ 1MeV; this value is even lower for larger m� and

cosmological 
simulations

input: 
consistent initial 
conditions, non-
gravitational forces 
between “particles”

8 M. Vogelsberger et al.

Figure 7. DM density projections of the selected MW-like halo for the four different models. The suppression of substructure can clearly be seen for M1 to
M3 compared to the CDM model, which does include power down to small scales without a resolved cutoff, which is present in the ETSF models M1 to M3.
The projection has a side length and depth of 500 kpc.

true although the self-interaction cross-section is smallest for this
model. This trend continues up to MW masses. Those halo masses
are not so strongly affected by the damping so the self-interactions
take offer such that the reduction of the central density is following
the strength of the cross section.

4.2 Galactic halo

NOTE: All results are based on level-2. Level-1 is still running

(those are expensive and running around 1-2 months).

We will now consider the galactic scales by studying the
zoom-in simulation of the selected MW-sized halo. We start by
looking at the density distribution on these scales. Fig. 7 shows

density projections of the halo for CDM simulations and compares
to models M1-M3. At these scales, the suppression of small scale
structure is clearly visible, which is largely driven by the resolved
cutoff scale in the linear power spectra of M1-M3 compared to
CDM. This cutoff reduces the number of resolved subhaloes very
strongly for model M1, which has the largest damping scale. We
stress that self-interactions of the order discussed here largely af-
fect only the internal structure of haloes, but do not significantly
alter the number of subhaloes within MW-like haloes. This would
only happen for cross sections of the order of 10 cm2 g�1 on full
galactic scales, which is prevented in the the models discussed here
prevents due to the strong velocity-dependence. Fig. 7 also demon-

© 2015 RAS, MNRAS 000, 1–13
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Fundamentally, have to solve coupled Boltzmann equations:
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mass scales. Taken together, these ETHOS parameters fully describe the dark matter physics required to simulate
cosmological structure formation and we have explicitly demonstrated this procedure by giving several examples of
well-motivated particle models that have been discussed in the literature.

We note that as nonlinear evolution of small-scale structures is e↵ective at erasing the memory of small di↵erences
in the linear power spectrum our parametrization may be more broadly applicable to dark matter physics beyond the
types we discuss in detail here. For instance, while the current ETHOS implementation focuses on nonrelativistic
dark matter models interacting with a relativistic species it would be natural to extend this framework to include
models where dark matter is warm rather than cold. We note, however, that the current framework can already
approximately capture the physics of warm dark matter at the level of producing an equivalent suppression scale in
the linear power spectrum, and indeed when simulated leads to a nonlinear power spectrum nearly indistinguishable
from a warm dark matter case [75]. We leave extensions of the formalism to other dark matter physics and a precise
characterization of these nonlinear mappings to future work.
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Appendix A: The Collisional Boltzmann Equation for Dark Matter and Dark Radiation

In this Appendix, we present detailed derivations of the results given in Sec. IIA above. The structure of this
Appendix is as follows. We begin by studying in Sec. A 1 the structure of the Boltzmann equation dictating the
evolution of dark matter in the early epochs of the Universe. We then study in Secs. A 2 and A3 how the momentum
and angular dependence of the physics responsible for the new interactions determine the structure of the collision
integrals. In Secs. A 4 and A5, we use this latter structure to determine the final form of the cosmological perturbations
equations for DM that couples to a relativistic species.

1. Generalities and Setup

We consider a scenario in which a single species of dark matter (DM, denoted by �) can interact with a relativistic
component (denoted by �̃) which we will generally refer to as dark radiation (DR) Our goal is to determine the
evolution of the DM and DR distribution functions, denoted by f�(x,P, ⌧) and fDR(x,P, ⌧), respectively. Here, P is
the canonical conjugate variable to x. We consider the situation where the only relevant process for DM is its 2-to-2
scattering with DR, ��̃ $ ��̃, but allow for DR self-interactions through the process �̃�̃ $ �̃�̃. We assume that the
DM relic abundance is fixed at some high temperature (through e.g. thermal freeze-out) and we therefore neglect
the e↵ect of DM annihilation or decay on the evolution of f�(x,P, ⌧). The evolution of the distribution functions is
determined by the two coupled Boltzmann equations

df�

d�
= C��̃$��̃ [f�, fDR],

dfDR

d�
= C��̃$��̃ [fDR, f�] + C�̃�̃$�̃�̃ [fDR], (A1)

where � is an a�ne parameter that describes the trajectory of the observer and the right-hand sides of these equations
are the collision terms defined with respect to � . In the conformal Newtonian gauge, the space-time metric takes the
form

ds
2 = a

2(⌧)[�(1 + 2 )d⌧2 + (1 � 2�)d~x2], (A2)

Details: Cyr-Racine+, PRD ‘16

Take advantage of various simplifications
Neglect (subdominant) DR-DR iterations 
Assume DR close to EQ: 
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where a is the cosmological scale factor, ⌧ is the conformal time, and � and  are the two gravitational potentials.
We can choose to define the a�ne parameter in terms of the four-momentum P of an observer P

µ
⌘

dxµ

d� , where
x
µ = (⌧, ~x) is a four-vector parametrizing the trajectory of the observer. We note that this implicitly sets the a�ne

parameter to be the proper time ⌧ and selects a physically natural definition for the collision terms. Using Eq. (A2),
we can then write

d

d�
=

d⌧

d�

d

d⌧
= P

0 d

d⌧
=

E(1 �  )

a

d

d⌧
, (A3)

where we have used the dispersion relation gµ⌫P
µ
P

⌫ = �m
2 and we have defined E =

p
p2 +m2, p = |p|, and

p
2 = gijP

i
P

j . We note that Eq. (A3) is valid to first order in perturbation theory. The left-hand side of the
Boltzmann equation reads [100]

df

d⌧
=
@f

@⌧
+

p

E
p̂
i @f

@xi
+ p

@f

@p


�H +

@�

@⌧
�

E

p
p̂
i @ 

@xi

�
, (A4)

where in this work H = d ln a/d⌧ is the conformal Hubble expansion rate. For massless particles, it is generically
simpler to introduce the comoving momentum q ⌘ ap and comoving energy ✏ ⌘ aE. In this case, the left-hand side
of the Boltzmann equation can be written

df

d⌧
=
@f

@⌧
+

q

✏
q̂
i @f

@xi
+ q

@f

@q


@�

@⌧
�
✏

q
q̂
i @ 

@xi

�
. (A5)

Using Eq. (A3), the Boltzmann equations for DM and DR then take the form

@f�

@⌧
+

p

E
p̂
i @f�

@xi
+ p

@f�

@p


�H +

@�

@⌧
�

E

p
p̂
i @ 

@xi

�
=

a

E
(1 +  )C��̃$��̃ [p] , (A6)

@fDR

@⌧
+

q

✏
q̂
i @fDR

@xi
+ q

@fDR

@q


@�

@⌧
�
✏

q
q̂
i @ 

@xi

�
=

a
2

✏
(1 +  )

⇣
C��̃$��̃

hq
a

i
+ C�̃�̃$�̃�̃

hq
a

i⌘
. (A7)

We note that the only assumptions that went into deriving these equations is the perturbativity of the scalar grav-
itational potentials and that the mean distribution function is isotropic. In the following subsections, we further
simplify these equations by assuming that the phase space distribution functions of DM and DR are nearly spatially
homogenous and isotropic.

a. Dark Radiation

We assume that the distribution function of DR is close to its thermal equilibrium value and we parametrize the
deviation from perfect equilibrium as follows

fDR(x,q, ⌧) = f
(0)
DR(q, ⌧)[1 +⇥DR(x,q, ⌧)], (A8)

where f (0)
DR(q, ⌧) denotes the isotropic and homogeneous equilibrium DR distribution function which would be a Fermi-

Dirac (Bose-Einstein) distribution for fermionic (bosonic) DR. Keeping only the terms that do not contain perturbed
quantities in Eq. (A7), we obtain the zeroth-order Boltzmann equation for DR

@f
(0)
DR(q)

@⌧
=

a
2

✏

⇣
C

(0)
��̃$��̃ [f

(0)
DR, f

(0)
� ] + C

(0)
�̃�̃$�̃�̃ [f

(0)
DR]

⌘
, (A9)

where f
(0)
� and C

(0) denote the unperturbed (isotropic and homogeneous) DM distribution function and collision
term, respectively. This equation essentially controls the kinetic energy transfer between the DM and the DR which,
as long as it is e�cient, will result in setting T� = TDR (more details in the dark matter subsection below). The
first-order DR Boltzmann equation is

f
(0)
DR


@⇥DR

@⌧
+ i

q

✏
kµ⇥DR

�
+ q

@f
(0)
DR

@q


@�

@⌧
� i

✏

q
kµ 

�
+

a
2
C

(0)[q/a]

✏
(⇥DR �  ) =

a
2

✏
C

(1)
hq
a

i
, (A10)

Momentum transfer in DM-DR scatterings must be small!

Derive hierarchy of Boltzmann moments
Expand in Legendre polynomials: 
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where we have taken a Fourier transform with respect to the wave number k, and where we have used the zeroth-order
equation to simplify the above. It is understood that the perturbation variables are now evaluated in Fourier space
and µ ⌘ q̂ · k̂, k = |k|, and k̂ = k/k. C(1) stands for the first-order collision term. For notational convenience we have
suppressed the sum over the di↵erent scattering channels; it is understood that C

(0) and C
(1) are summed over the

di↵erent processes. Since we are focusing purely on (helicity) scalar fluctuations, we can expand the µ-dependence of
⇥ in Legendre polynomials as follows

⇥DR(k, q̂, q, ⌧) =
1X

l=0

(�i)l(2l + 1)Fl(k, q, ⌧)Pl(µ). (A11)

Substituting the above expansion in the first-order Boltzmann equation and integrating both sides with 1
2(�i)l

R 1
�1 dµPl(µ)

yields
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+ (A12)
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i
,

where �ij is the Kronecker delta. The above equation represents an infinite hierarchy of equations for the di↵erent
multipole moments of the DR distribution. Omitting the collision terms, these equations are essentially those de-
scribing the cosmological evolution of, e.g., massive neutrinos, and have been extensively studied in the literature
(see e.g. [80]). The addition of the collision integrals can lead to frequent scattering between DM and DR (or DR
self-interaction) that prohibits DR free-streaming, hence suppressing all multipole moments with l � 2 and leaving
only the monopole (l = 0) and dipole (l = 1) to solve for. However, in models where DR eventually decouples from
DM (or itself) the higher multipole moments become important and must be included in the computation.

The hierarchy of equations given in Eq. (A12) is very general and can be used to describe the evolution of a large
variety of interacting massive and massless DR models. In the present work, we exclusively focus on massless DR
(✏ = q) since it allows a dramatic simplification to the above equations. We emphasize that the ETHOS framework does
not depend on this specific choice, and the formalism could easily be expanded to handle massive DR. We also neglect
the term proportional to the zeroth-order collision term in Eq. (A12). This is usually a very good approximation since
this term can only contribute when the DM-DR system significantly departs from thermal equilibrium8. With these
simplifications, we can rewrite Eq. (A12) as
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, (A13)

where

⌫l ⌘ �4
Fl

@ ln f(0)
DR

@ ln q

, (A14)

The variable ⌫l is usually referred to as a temperature fluctuation since it corresponds to a local redefinition of the
DR temperature. As we discuss below, expressing the DR hierarchy in terms of the ⌫l variables also simplifies the
structure of the collision term.

b. Nonrelativistic Dark Matter

We shall now deviate from the complete generality of Eq. (A6) and assume that DM is a stable particle that is
nonrelativistic at all epochs of interest for structure formation. This implies that the term involving p/E ⇠ p/m� ⌧ 1

8 There are some instances where this term could play a role, such as in models where DM never fully reaches thermal equilibrium with
DR, or in models where DM decays to DR.
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where we have taken a Fourier transform with respect to the wave number k, and where we have used the zeroth-order
equation to simplify the above. It is understood that the perturbation variables are now evaluated in Fourier space
and µ ⌘ q̂ · k̂, k = |k|, and k̂ = k/k. C(1) stands for the first-order collision term. For notational convenience we have
suppressed the sum over the di↵erent scattering channels; it is understood that C
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di↵erent processes. Since we are focusing purely on (helicity) scalar fluctuations, we can expand the µ-dependence of
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where �ij is the Kronecker delta. The above equation represents an infinite hierarchy of equations for the di↵erent
multipole moments of the DR distribution. Omitting the collision terms, these equations are essentially those de-
scribing the cosmological evolution of, e.g., massive neutrinos, and have been extensively studied in the literature
(see e.g. [80]). The addition of the collision integrals can lead to frequent scattering between DM and DR (or DR
self-interaction) that prohibits DR free-streaming, hence suppressing all multipole moments with l � 2 and leaving
only the monopole (l = 0) and dipole (l = 1) to solve for. However, in models where DR eventually decouples from
DM (or itself) the higher multipole moments become important and must be included in the computation.

The hierarchy of equations given in Eq. (A12) is very general and can be used to describe the evolution of a large
variety of interacting massive and massless DR models. In the present work, we exclusively focus on massless DR
(✏ = q) since it allows a dramatic simplification to the above equations. We emphasize that the ETHOS framework does
not depend on this specific choice, and the formalism could easily be expanded to handle massive DR. We also neglect
the term proportional to the zeroth-order collision term in Eq. (A12). This is usually a very good approximation since
this term can only contribute when the DM-DR system significantly departs from thermal equilibrium8. With these
simplifications, we can rewrite Eq. (A12) as
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where
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The variable ⌫l is usually referred to as a temperature fluctuation since it corresponds to a local redefinition of the
DR temperature. As we discuss below, expressing the DR hierarchy in terms of the ⌫l variables also simplifies the
structure of the collision term.

b. Nonrelativistic Dark Matter

We shall now deviate from the complete generality of Eq. (A6) and assume that DM is a stable particle that is
nonrelativistic at all epochs of interest for structure formation. This implies that the term involving p/E ⇠ p/m� ⌧ 1

8 There are some instances where this term could play a role, such as in models where DM never fully reaches thermal equilibrium with
DR, or in models where DM decays to DR.

Integrate BEs on both sides with  
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where we have taken a Fourier transform with respect to the wave number k, and where we have used the zeroth-order
equation to simplify the above. It is understood that the perturbation variables are now evaluated in Fourier space
and µ ⌘ q̂ · k̂, k = |k|, and k̂ = k/k. C(1) stands for the first-order collision term. For notational convenience we have
suppressed the sum over the di↵erent scattering channels; it is understood that C
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where �ij is the Kronecker delta. The above equation represents an infinite hierarchy of equations for the di↵erent
multipole moments of the DR distribution. Omitting the collision terms, these equations are essentially those de-
scribing the cosmological evolution of, e.g., massive neutrinos, and have been extensively studied in the literature
(see e.g. [80]). The addition of the collision integrals can lead to frequent scattering between DM and DR (or DR
self-interaction) that prohibits DR free-streaming, hence suppressing all multipole moments with l � 2 and leaving
only the monopole (l = 0) and dipole (l = 1) to solve for. However, in models where DR eventually decouples from
DM (or itself) the higher multipole moments become important and must be included in the computation.

The hierarchy of equations given in Eq. (A12) is very general and can be used to describe the evolution of a large
variety of interacting massive and massless DR models. In the present work, we exclusively focus on massless DR
(✏ = q) since it allows a dramatic simplification to the above equations. We emphasize that the ETHOS framework does
not depend on this specific choice, and the formalism could easily be expanded to handle massive DR. We also neglect
the term proportional to the zeroth-order collision term in Eq. (A12). This is usually a very good approximation since
this term can only contribute when the DM-DR system significantly departs from thermal equilibrium8. With these
simplifications, we can rewrite Eq. (A12) as
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where

⌫l ⌘ �4
Fl

@ ln f(0)
DR

@ ln q

, (A14)

The variable ⌫l is usually referred to as a temperature fluctuation since it corresponds to a local redefinition of the
DR temperature. As we discuss below, expressing the DR hierarchy in terms of the ⌫l variables also simplifies the
structure of the collision term.

b. Nonrelativistic Dark Matter

We shall now deviate from the complete generality of Eq. (A6) and assume that DM is a stable particle that is
nonrelativistic at all epochs of interest for structure formation. This implies that the term involving p/E ⇠ p/m� ⌧ 1

8 There are some instances where this term could play a role, such as in models where DM never fully reaches thermal equilibrium with
DR, or in models where DM decays to DR.
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in Eq. (A28) stands for the DR momentum. We note that the above result was achieved by performing an expansion
in the small momentum transfer exchanged in a typical DR-DM collision. Its generalization to scattering with DR
particles that are not ultrarelativistic is tedious but straightforward [28]. Note that the same expression holds even if
the amplitude is not Taylor expandable around vanishing momentum transfer t = 0, but |M|

2 should then be averaged
over t rather than evaluated at t = 0 [103, 104].

b. First-order collision term

We now turn our attention to the part of the collision integrals that is first order in the small perturbation variables
⌫l and v�. The computation is somewhat similar to that usually performed for CMB photons scattering o↵ electrons,
but it is more general since we allow for more complex momentum and angular dependence of the DM-DR scattering
cross section. Keeping only the first order11 terms in the perturbation variable ⇥DR, we can rewrite the collision term
given in Eq. (A28) as:
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We use the space part of the delta function to perform the p4 integral. The DM is assumed to be highly nonrelativistic
and we can thus write E� ⇡ m�+p

2
�/(2m�). We use the fact that little momentum is exchanged in a typical collision

to expand the delta function as
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where the derivative of the Dirac delta function is defined via integration by parts. The first term in Eq. (A38) yields
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Since p2 � p1, p3, it is a good approximation to write f�(p1+p2 �p3) ' f�(p2). We can now perform the p3 integral
and Eq. (A39) reduces to
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Here, we have computed the matrix element evaluated at momentum transfer t = 2p21(µ̃ � 1), where µ̃ = p̂1 · p̂3. To
make further progress in evaluating the remaining integrals, we need to examine the structure of the matrix element.
Writing the latter in terms of the Mandelstam variable t and s = m

2
� + 2p1m�(1� (p2/m�)p̂1 · p̂2), we note that the

dependence on the incoming scattering angle of the cross section always appears multiplied by the quantity p2/m� ⌧ 1
[81]. Since the squared matrix element in Eq. (A40) is multiplied by the small perturbations ⇥DR, we can neglect the
dependence of the matrix element on the angle between the incoming particles since they would lead to second-order
terms. A similar argument allows us to neglect the p2 dependence of the matrix element. In order to perform the
angular integration over d⌦3, we expand the µ̃ dependence of the matrix element in Legendre polynomials,
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11 We note that this expression seems to explicitly contain zeroth order terms, but these exactly cancel out and do not contribute to
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in Eq. (A4) can be considered a small perturbation. Neglecting these small perturbations, the zeroth order Boltzmann
equation for DM can be written as
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In analogy with the thermal case for nonrelativistic particles, we define the DM temperature as [81, 101]
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where m� is the DM mass, n(0)
� is the homogeneous and isotropic DM number density, and where ⌘� is the number

of internal degrees of freedom of DM particles. We can multiply Eq. (A15) by ⌘�
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to obtain the evolution equation of the DM temperature [101]
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The second term on the left-hand side accounts for the adiabatic cooling of the DM due to the expansion of the
Universe, while the third term accounts for the DR heating. As long as the heating rate is much larger than the
Hubble expansion rate, the DM will be in thermal equilibrium with the DR and T� = TDR.

We now turn our attention to the DM perturbations. For nonrelativistic DM, the exact form of the zeroth-order
distribution function is almost exactly Maxwellian until just before kinetic decoupling [81]. Just like for the zeroth
order [81, 101], the strategy to obtain the equation for the density and velocity fluctuations of DM is to take moments
of Eq. (A6), keeping only the leading order terms in the small quantity p/E ⌧ 1. We take the first moment of
Eq. (A6):
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Recalling the definition of DM bulk velocity and total number density9,
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we obtain
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We note that the collision term has to be zero here since scattering alone cannot change the number density of dark
matter (see Appendix B for details). Expanding the number density of dark matter as

n�(x, ⌧) ⌘ n
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� (⌧)[1 + ��(x, ⌧)], (A21)

where n
(0)
� is defined in Eq. (A16), and where the above is used to define ��. Keeping only the first order pieces and

performing a Fourier transform yields the equation

�̇� + ✓� � 3�̇ = 0, (A22)

where an overhead dot denotes a derivative with respect to conformal time, ✓� ⌘ i~k · ~v� is the divergence of the DM
velocity, and where it is understood that the perturbation variables are evaluated in Fourier space. To close the dark
matter system of equations, we need an equation for its bulk velocity. We multiply both sides of Eq. (A6) by pp̂

E and
integrate over all p
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9 We emphasize that the DM number density defined in Eq. (A16) is di↵erent from that defined in Eq. (A19); the former is homogeneous
across space while the latter depends on spatial position.
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The second term on the left-hand side accounts for the adiabatic cooling of the DM due to the expansion of the
Universe, while the third term accounts for the DR heating. As long as the heating rate is much larger than the
Hubble expansion rate, the DM will be in thermal equilibrium with the DR and T� = TDR.

We now turn our attention to the DM perturbations. For nonrelativistic DM, the exact form of the zeroth-order
distribution function is almost exactly Maxwellian until just before kinetic decoupling [81]. Just like for the zeroth
order [81, 101], the strategy to obtain the equation for the density and velocity fluctuations of DM is to take moments
of Eq. (A6), keeping only the leading order terms in the small quantity p/E ⌧ 1. We take the first moment of
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We note that the collision term has to be zero here since scattering alone cannot change the number density of dark
matter (see Appendix B for details). Expanding the number density of dark matter as

n�(x, ⌧) ⌘ n
(0)
� (⌧)[1 + ��(x, ⌧)], (A21)

where n
(0)
� is defined in Eq. (A16), and where the above is used to define ��. Keeping only the first order pieces and

performing a Fourier transform yields the equation

�̇� + ✓� � 3�̇ = 0, (A22)

where an overhead dot denotes a derivative with respect to conformal time, ✓� ⌘ i~k · ~v� is the divergence of the DM
velocity, and where it is understood that the perturbation variables are evaluated in Fourier space. To close the dark
matter system of equations, we need an equation for its bulk velocity. We multiply both sides of Eq. (A6) by pp̂

E and
integrate over all p

Z
d
3
p

(2⇡)3
pp̂

E


@f�

@⌧
+

p

E
p̂
i @f�

@xi
+ p

@f�

@p


�H +

@�

@⌧
�

E

p
p̂
i @ 

@xi

��
=

Z
d
3
p

(2⇡)3
pp̂

E

h
a

E
(1 +  )C��̃$��̃ [p]

i
. (A23)

9 We emphasize that the DM number density defined in Eq. (A16) is di↵erent from that defined in Eq. (A19); the former is homogeneous
across space while the latter depends on spatial position.
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The second term on the left-hand side accounts for the adiabatic cooling of the DM due to the expansion of the
Universe, while the third term accounts for the DR heating. As long as the heating rate is much larger than the
Hubble expansion rate, the DM will be in thermal equilibrium with the DR and T� = TDR.

We now turn our attention to the DM perturbations. For nonrelativistic DM, the exact form of the zeroth-order
distribution function is almost exactly Maxwellian until just before kinetic decoupling [81]. Just like for the zeroth
order [81, 101], the strategy to obtain the equation for the density and velocity fluctuations of DM is to take moments
of Eq. (A6), keeping only the leading order terms in the small quantity p/E ⌧ 1. We take the first moment of
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We note that the collision term has to be zero here since scattering alone cannot change the number density of dark
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9 We emphasize that the DM number density defined in Eq. (A16) is di↵erent from that defined in Eq. (A19); the former is homogeneous
across space while the latter depends on spatial position.
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[81]. For the special case where the heating rate has the same redshift dependence as the Hubble expansion rate
(�heat/H = constant), Eq. (A60) admits the solution,

T� =
�heat/H

1 + �heat/H
TDR. (A62)

This regime is interesting since it allows T� ⌧ TDR while retaining the scaling T� / a
�1. A concrete model realizing

this regime was recently proposed in Ref. [62]. The sound speed given in Eq. (A26) then takes the form
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We note that the above sound speed is generally very small for nonrelativistic DM (T� ⌧ m�) and thus has very
little impact on the evolution of DM density fluctuations, except on very small length scales. We also note that in
the limit �heat � H, the term in the bracket in Eq. (A63) approaches 4/3, leading to c

2
� ! (4T�/3m�).

b. Perturbation evolution

We now turn our attention to computing the right-hand side of Eq. (A27). It is important to notice that the
momentum appearing in the integrand is the incoming DM momentum, while that appearing in the collision term
given in Eq. (A48) is the incoming DR momentum. We can use conservation of momentum to write [100]
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where on the left-hand side, p2 is the incoming DM momentum, while on the right-hand side, p1 is the momentum
of the incoming DR. With the help of this identity, we can then use Eq. (A48) to compute the right-hand side of the
DM velocity equation:
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Since i~k · p̂1 = ikµ = ikP1(µ), the angular integration is straightforward and yields
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We thus define the DM drag opacity
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where we used the definition of the DR opacity given Eq. (A56) in the last equality.
In summary, the DM equations take the form

�̇� + ✓� � 3�̇ = 0, (A68)
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We observe that the details of the DM particle model only enter through the functions ̇� and c
2
�. It is thus clear that

two models predicting the same values for these functions will lead to a very similar structure formation scenarios.
This is the basic idea behind the ETHOS framework.

Appendix B: Impact of elastic dark matter self-interaction on the evolution of linear cosmological
perturbations

In this Appendix, we briefly consider the physical reasons why elastic DM self-interaction �� $ �� is irrelevant to
the cosmological evolution of linear perturbations for nonrelativistic DM. As we discuss below, this is essentially a
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the matter (both dark and baryonic) density and velocity.2 As matter perturbations grow, they eventually enter the
nonlinear regime and other methods (i.e. numerical simulations, see Ref. [75]) must be used to compute the power
spectrum. The linear matter power spectrum is nonetheless a very useful quantity since it provides approximate
guidelines about the smallest possible bound structures that can form within any dark matter scenario and is used to
set the initial conditions for numerical simulations.

In this first ETHOS paper, we focus on a scenario in which a single species of dark matter (DM, denoted by �)
can interact with a relativistic component (denoted by �̃) which we will generally refer to as “dark radiation” (DR)
but could also be made of Standard Model neutrinos or photons. We consider the situation where the only relevant
process3 for DM is its 2-to-2 scattering with DR, ��̃ $ ��̃, but allow for DR self-interactions through the process
�̃�̃ $ �̃�̃. We assume that the DM relic abundance is fixed at some high temperature (through e.g. thermal freeze-
out) and we therefore neglect here the e↵ect of DM annihilation or decay on the evolution of DM fluctuations. We
note however that these latter processes could be included in future versions of the ETHOS framework.

In this section, our goal is to describe how the nonstandard DM physics enters the computation of the linear matter
power spectrum. Since we are mainly interested in the impact of this nontrivial DM physics on structure formation,
we focus our attention exclusively on scalar cosmological fluctuations and leave the study of tensor fluctuations to
future work. We present in Appendix A a detailed derivation of the coupled equations describing the evolution of
DM and DR perturbations. In the following, we shall first summarize the key results from that Appendix before
describing a general procedure to compute the linear matter power spectrum within the ETHOS framework.

A. Dark Matter and Dark Radiation Perturbation Equations

In the following section, we summarize the key results from Appendix A. We invite the interested reader to consult
that Appendix for more details. Our goal here is to obtain the equations of motion for the DM and DR density
perturbations, denoted by �� and �DR, respectively. These equations must be solved together with those describing the
evolution of baryons, photons, and neutrinos in order to compute the linear matter power spectrum (see e.g. Ref. [80]).
In the following, we assume that DM is made of massive, highly nonrelativistic particles interacting with a massless DR
component. For these choices, the momentum transferred in a typical DM-DR collision is small, which dramatically
simplifies the computation of the collision integral (see Sec. A 2 b of Appendix A). We further assume the DR to have
a thermal spectrum. In conformal Newtonian gauge, the equations describing the evolution of DR perturbations are
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4
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where ✓� ⌘ ik ·~v� is the divergence of the DM bulk velocity in Fourier space, ✓DR is the divergence of the DR velocity
in Fourier space, � and  are the two gravitational potentials in the conformal Newtonian gauge, �DR is the DR
shear stress, k = |k| is the comoving wave number of the perturbation, ⇧DR,l is the l

th moment of the DR multipole
hierarchy, ̇DR�DM is the DR opacity to DM scattering, which is given by
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where the homogeneous part of the DR energy density is ⇢DR = ⌘DR⇣⇡
2
T

4
DR/30 with ⇣ = 1 for bosonic DR and

⇣ = 7/8 for fermionic DR, a is the cosmological scale factor, p is the magnitude of the three-momentum, m� is the

DM mass, n(0)
� is the spatially homogeneous DM number density, TDR is the temperature of the DR, f (0)

DR is the
homogeneous part of the DR phase-space density, and where the Al coe�cients are the projection of the spin-summed
squared matrix element onto the l

th Legendre polynomial Pl(x)
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2 In the case of relativistic dark matter, the shear and higher moments of the dark matter Boltzmann equation must also be evolved.
3 We note that elastic DM self-interaction �� $ �� is irrelevant for the cosmological evolution of linear perturbations, unless the DM is
itself relativistic. See Appendix B for details.
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In the above, ⌘� and ⌘DR are the DM and DR spin and color degeneracy factors, respectively, and |M|
2 is the square

of the matrix element for the ��̃ $ ��̃ process written in terms of the Mandelstam variables s and t. Throughout,
an overhead dot denotes a derivative with respect to conformal time. In Eq. (3), the coe�cients ↵l are l-dependent
factors that encompass information about the angular dependence of the DM-DR scattering cross section. They are
given by
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In models where DR self-interaction is allowed, the function ̇DR�DR appearing in Eq. (3) is the opacity for that
process and �l are the corresponding angular coe�cients [see Eqs. (A58) and (A59) for more details].

The equations governing the DM perturbations are
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where c� is the adiabatic DM sound speed, H is the conformal Hubble rate, and ̇� is the DM drag opacity. The
latter is given by
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The adiabatic DM sound speed appearing in Eq. (8) is approximately given by
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where T� is the DM temperature. The evolution of the latter is controlled by

dT�

d⌧
= �2HT� + �heat(TDR) (TDR � T�) . (11)

Here, �heat stands for the DM heating rate, which can be written as [81]
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where the coe�cients cn are defined from the matrix element for the ��̃ $ ��̃ process
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where q = ap is the comoving momentum of the incoming DR, and where �n = (1 � 2�n�3) for fermionic DR and
�n = 1 for bosonic DR. In Eq. (12), ⇣(z) is the Riemann Zeta function. We observe that the particle physics details of
an interacting DM and DR model only enter through the opacity functions ̇�, ̇DR�DM and ̇DR�DR, and through
the coe�cients ↵l and �l which depends on the angular dependence of the DM-DR and DR-DR scattering amplitude,
respectively. There is also a small dependence on the DM sound speed c�, but since it is very small for highly
nonrelativistic DM, it plays only a minor role in determining the evolution of the DM density fluctuations unless the
wave number k is very large. We now have all the key ingredients necessary to compute the linear matter power
spectrum.

B. A general procedure for computing the linear matter power spectrum

In the previous section (see also Appendix A), we have presented the cosmological perturbation equations for a
model in which nonrelativistic DM couples to a relativistic component via the process ��̃ ! ��̃. While the calculation
can become tedious, it suggests a simple recipe to derive the required system of equations:
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In the above, ⌘� and ⌘DR are the DM and DR spin and color degeneracy factors, respectively, and |M|
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of the matrix element for the ��̃ $ ��̃ process written in terms of the Mandelstam variables s and t. Throughout,
an overhead dot denotes a derivative with respect to conformal time. In Eq. (3), the coe�cients ↵l are l-dependent
factors that encompass information about the angular dependence of the DM-DR scattering cross section. They are
given by
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In models where DR self-interaction is allowed, the function ̇DR�DR appearing in Eq. (3) is the opacity for that
process and �l are the corresponding angular coe�cients [see Eqs. (A58) and (A59) for more details].

The equations governing the DM perturbations are
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where T� is the DM temperature. The evolution of the latter is controlled by
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where the coe�cients cn are defined from the matrix element for the ��̃ $ ��̃ process
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where q = ap is the comoving momentum of the incoming DR, and where �n = (1 � 2�n�3) for fermionic DR and
�n = 1 for bosonic DR. In Eq. (12), ⇣(z) is the Riemann Zeta function. We observe that the particle physics details of
an interacting DM and DR model only enter through the opacity functions ̇�, ̇DR�DM and ̇DR�DR, and through
the coe�cients ↵l and �l which depends on the angular dependence of the DM-DR and DR-DR scattering amplitude,
respectively. There is also a small dependence on the DM sound speed c�, but since it is very small for highly
nonrelativistic DM, it plays only a minor role in determining the evolution of the DM density fluctuations unless the
wave number k is very large. We now have all the key ingredients necessary to compute the linear matter power
spectrum.

B. A general procedure for computing the linear matter power spectrum

In the previous section (see also Appendix A), we have presented the cosmological perturbation equations for a
model in which nonrelativistic DM couples to a relativistic component via the process ��̃ ! ��̃. While the calculation
can become tedious, it suggests a simple recipe to derive the required system of equations:
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the matter (both dark and baryonic) density and velocity.2 As matter perturbations grow, they eventually enter the
nonlinear regime and other methods (i.e. numerical simulations, see Ref. [75]) must be used to compute the power
spectrum. The linear matter power spectrum is nonetheless a very useful quantity since it provides approximate
guidelines about the smallest possible bound structures that can form within any dark matter scenario and is used to
set the initial conditions for numerical simulations.

In this first ETHOS paper, we focus on a scenario in which a single species of dark matter (DM, denoted by �)
can interact with a relativistic component (denoted by �̃) which we will generally refer to as “dark radiation” (DR)
but could also be made of Standard Model neutrinos or photons. We consider the situation where the only relevant
process3 for DM is its 2-to-2 scattering with DR, ��̃ $ ��̃, but allow for DR self-interactions through the process
�̃�̃ $ �̃�̃. We assume that the DM relic abundance is fixed at some high temperature (through e.g. thermal freeze-
out) and we therefore neglect here the e↵ect of DM annihilation or decay on the evolution of DM fluctuations. We
note however that these latter processes could be included in future versions of the ETHOS framework.

In this section, our goal is to describe how the nonstandard DM physics enters the computation of the linear matter
power spectrum. Since we are mainly interested in the impact of this nontrivial DM physics on structure formation,
we focus our attention exclusively on scalar cosmological fluctuations and leave the study of tensor fluctuations to
future work. We present in Appendix A a detailed derivation of the coupled equations describing the evolution of
DM and DR perturbations. In the following, we shall first summarize the key results from that Appendix before
describing a general procedure to compute the linear matter power spectrum within the ETHOS framework.

A. Dark Matter and Dark Radiation Perturbation Equations

In the following section, we summarize the key results from Appendix A. We invite the interested reader to consult
that Appendix for more details. Our goal here is to obtain the equations of motion for the DM and DR density
perturbations, denoted by �� and �DR, respectively. These equations must be solved together with those describing the
evolution of baryons, photons, and neutrinos in order to compute the linear matter power spectrum (see e.g. Ref. [80]).
In the following, we assume that DM is made of massive, highly nonrelativistic particles interacting with a massless DR
component. For these choices, the momentum transferred in a typical DM-DR collision is small, which dramatically
simplifies the computation of the collision integral (see Sec. A 2 b of Appendix A). We further assume the DR to have
a thermal spectrum. In conformal Newtonian gauge, the equations describing the evolution of DR perturbations are
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where ✓� ⌘ ik ·~v� is the divergence of the DM bulk velocity in Fourier space, ✓DR is the divergence of the DR velocity
in Fourier space, � and  are the two gravitational potentials in the conformal Newtonian gauge, �DR is the DR
shear stress, k = |k| is the comoving wave number of the perturbation, ⇧DR,l is the l

th moment of the DR multipole
hierarchy, ̇DR�DM is the DR opacity to DM scattering, which is given by
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where the homogeneous part of the DR energy density is ⇢DR = ⌘DR⇣⇡
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squared matrix element onto the l
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2 In the case of relativistic dark matter, the shear and higher moments of the dark matter Boltzmann equation must also be evolved.
3 We note that elastic DM self-interaction �� $ �� is irrelevant for the cosmological evolution of linear perturbations, unless the DM is
itself relativistic. See Appendix B for details.
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the reader to Ref. [105] for a detailed exposure of the subtleties involved in accurately computing the self-interaction
collision term for massless DR. Since we are mainly interested here in computing the DM power spectrum and not
in the details of the DR spectrum, we adopt a simplified picture of DR-DR scattering in which we assume that the
DR perturbation variables ⌫l(p) are independent of the momentum p. This is equivalent to assuming that the DR
spectrum remains purely thermal throughout the evolution of the Universe, and it is consistent with the choice made
in Eq. (A34). We expand more on the validity of this assumption in Sec. A 4. In this thermal approximation, the
first-order DR-DR collision term admits the general form

C
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where the functions ⇤�̃�̃$�̃�̃ and Gl encode the details of the DR self-interaction. We note that energy conservation
implies that the l = 0 mode exactly vanish in the above expansion. Similarly, momentum conservation within the
DR fluid immediately implies that G1(p1) = 1. Physically, the main e↵ect of DR self-interaction is to suppress its
free-streaming, which could in turn modify the di↵usion (Silk) damping that DR imparts on the DM matter power
spectrum.

4. Dark radiation equations

We can now substitute Eqs. (A48) and (A49) in Eq. (A13) and use the orthogonality of the Legendre polynomials
to perform the µ integral:
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As noted above, the right-hand side exactly vanishes for the monopole. In principle, one could solve this hierarchy
of di↵erential equations on a grid of q values to obtain the complete solution ⌫l(k, q, ⌧), which can then be used to
compute the physical quantities entering the perturbed Einstein equations. For massless DR, the energy perturbation
�DR, the divergence of the DR velocity ✓DR, and the higher moments of the DR Boltzmann hierarchy ⇧l(k, ⌧) are
related to the Fl(k, q, ⌧) variables12 as [80]
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respectively. We note that the DR shear perturbation is given by �DR(k, ⌧) = ⇧DR,2(k, ⌧)/2. In practice however, it
is much simpler to first integrate Eq. (A50) with respect to q before solving the di↵erential equations for the di↵erent
l-moments. Indeed, the left-hand side of Eq. (A50) can straightforwardly be expressed in terms of the physical DR

variables by multiplying it by
R
dq q

3
f
(0)
DR(q), performing the q integration, and dividing the result by

R
dq q

3
f
(0)
DR(q).

However, since the matrix element coe�cients Al appearing on the right-hand side of Eq. (A50) depend on momentum,
the collision term cannot in general be expressed directly in terms of the physical DR variables.13 In the present work,
we assume that the DR spectrum remains exactly thermal throughout the evolution of the Universe, which immediately
implies that the ⌫l variables must be independent of q. For models where DM is in kinetic equilibrium with the DR
at early times, this thermal approximation is extremely good since the large scattering rate appearing in Eq. (A50)
suppresses the q-dependence of the ⌫l variables. For instance, frequent scattering events set ⌫1(k, ⌧) = (4/3)iv� and
⌫l�2(k, ⌧) = 0 at early times, independently of q. As the scattering rate becomes comparable to the Hubble expansion
rate, the DR perturbation variables ⌫l can develop a small q-dependence of the order of the DM to DR entropy ratio.

12 We thank Manuel A. Buen-Abad for pointing out an inconsistency with these definitions in an earlier version of the manuscript.
13 In the CMB case, the Thomson scattering matrix element is independent of momentum and the collision term can exactly be expressed

in terms of physical variables.
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1. For the process ��̃ ! ��̃, compute the spin-summed matrix element squared and evaluate it at t = 2p2(1 � µ̃)
and s = m

2
� + 2pm�, where p is the momentum of the incoming DR and µ̃ is the cosine of the angle between

the incoming and outgoing DR particle.

2. Compute the Al coe�cients using the projection integral given in Eq. (5).

3. Compute ̇DR�DM and ̇� using Eqs. (4) and (9), respectively. Compute the angular coe�cients ↵l using Eq. (6).

4. If relevant for the model at hand, compute the opacity ̇DR�DR and the �l coe�cients using Eqs. (A58) and
(A59), respectively.

5. Solve Eq. (11) to obtain the DM temperature evolution. Compute the DM adiabatic sound speed c
2
� using

Eq. (10).

6. Solve Eqs. (1)-(3), (7), and (8) using a standard Boltzmann solver in order to obtain the matter power spectrum.

This procedure is straightforward but is not fully amenable to a simple numerical implementation since one would
need to code the specific functions ̇DR�DM, ̇DR�DR, �, and �heat for each model. While this is in principle possible,
one can further simplify the computation by noting that the opacities and heating rate are often power-law functions
of the temperature (or redshift). This behavior occurs because the matrix elements entering the collision integrals are
often themselves power laws of momentum (see e.g. Eq. (13)). We can then write

̇DR�DM = �(⌦�h
2)x�(z)

X

n

an

✓
1 + z
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◆n

, ̇� = �
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, (14)
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n

dn
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, (15)

where an, bn, and dn are constants with units of inverse length, h is the dimensionless Hubble constant h =
H0/(100 km/s/Mpc), ⌦� and ⌦DR are respectively the DM and DR densities in units of the critical density of
the Universe, and where we have introduced the dimensionless functions x�(z) and xDR�DR(z) to take into account
possible departures from a pure power-law behavior in some models4. In many instances, the physics responsible for
nontrivial values of x� and xDR�DR can be computed independently of the ��̃ ! ��̃ scattering process considered
here, and the above factorization is therefore physically motivated. We have also introduced the redshift zD which is
used to normalize the values of the coe�cients an, bn, and dn. The value of zD is arbitrary but choosing it to be the
redshift when the DM opacity becomes equal to the conformal Hubble rate H prevents artificially large or small values
for the coe�cients defining the opacity and heating expansions. In this work, we choose zD = 107, which corresponds
to a decoupling temperature close to TDR ⇠ 1 keV (assuming ⇠ = 0.5).

We note that we have written the DM opacity ̇� as an expansion in a term that goes as (1+z)n+1 since we typically
have ̇� / (1 + z)̇DR�DM. The factor 4/3 appearing in this expansion enforces momentum conservation in DM-DR
scattering. We also note that the coe�cients an, bn, and dn are independent of the standard ⇤CDM parameters and
thus only depend on the physics of the dark sector. In many models of interest, only a single term in the expansions
given in Eqs. (14) and (15) is nonvanishing. Furthermore, even in more complex cases with multiple nonzero terms or
nontrivial x�(z), we expect the opacity and heating rates to be well approximated by a single, though not necessarily
integer, power law.

With these expansions, we now have a clear and straightforward mapping between the couplings, masses, and
temperatures defining a given DM particle physics model, and the e↵ective parameters controlling the shape of the
linear matter power spectrum. It is important to realize that our parametrization in terms of an and dn coe�cients
has a clear physical interpretation. Indeed, the presence of nonzero an and dn coe�cients directly corresponds to a
DM-DR scattering process with a squared matrix element whose behavior is given by

|M|
2
��̃!��̃ /

✓
pDR

m�

◆n�2

, (16)

4 A good example of deviation from pure power-law scaling occurs in the atomic dark matter model at the epoch of dark recombination
[49]. Even in this case however, the opacities can generally still be approximated by a (steep) power law close the DM drag epoch.
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FIG. 1. Left panel : Transfer function T (k) ⌘ PETHOS(k)/PCDM(k) for four di↵erent exponents n parametrizing the redshift
dependence of the DM drag opacity ̇� = �(⌦DRh

2)an(4/3)(1 + z)n+1/(1 + zD)
n. The values of an are chosen such that all

models have the same DM drag epoch zdrag, which we define via the criterion �̇�(zdrag) = H(zdrag). The actual values used
are {a1, a2, a3, a4} = {6.56, 3.5 ⇥ 101, 1.86 ⇥ 102, 9.95 ⇥ 102} Mpc�1. All models assume !DR = 1.35 ⇥ 10�6 , ↵l = 1, and
bn = 0. For completeness, we also used ⇠ = 0.5, m� = 10 GeV, and dn = an, but the results shown above are insensitive to
these specific choices. Right panel : Dark matter drag visibility function for the same models as the left panel. The DM drag
visibility function is essentially the probability distribution function for the time at which a DM particle last scatter o↵ DR.

regime ̇�/H � 1 to the decoupled regime ̇�/H ⌧ 1. In contrast, as n approaches 0, DM spends more time in the
weakly coupled regime and a broader range of k-modes can be a↵ected by the dark sector physics. This is particularly
apparent for the n = 1 model where a large range of k-modes are damped by DR di↵usion. A longer period spent in
the weak coupling regime also implies that the damping envelope significantly departs from the exponential relation
e
�(k/kdamp)

2

derived in the tight-coupling limit [84].

In Fig. 2, we study the impact of the angular coe�cients ↵2 on the matter transfer function. Here, we choose
models with a nonvanishing a4 (left panel) and a2 (right panel) coe�cient, and vary the value of ↵2 from 1/2 to
5/2 while keeping everything else fixed. While we realize that it might not be possible to find a physical DM model

FIG. 2. Left panel : Transfer function for three di↵erent values of ↵2 for a model characterized by a nonvanishing value of a4.
The model shown here assumes fermionic DR with a4 = 2.24⇥ 104 Mpc�1, ⇠ = 0.5, m� = 2 TeV, ⌘DR = ⌘� = 2, bn = 0, and
↵l�3 = 1. Right panel : Similar to the left panel but for a model with a2 = 3.5 ⇥ 101 Mpc�1. We assume fermionic DR with
⇠ = 0.5, m� = 10 GeV, ⌘DR = ⌘� = 2, bn = 0, and ↵l�3 = 1.
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FIG. 2. Left panel : Transfer function for three di↵erent values of ↵2 for a model characterized by a nonvanishing value of a4.
The model shown here assumes fermionic DR with a4 = 2.24⇥ 104 Mpc�1, ⇠ = 0.5, m� = 2 TeV, ⌘DR = ⌘� = 2, bn = 0, and
↵l�3 = 1. Right panel : Similar to the left panel but for a model with a2 = 3.5 ⇥ 101 Mpc�1. We assume fermionic DR with
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FIG. 3. Left panel : Transfer function T (k) ⌘ PETHOS(k)/PCDM(k) for three di↵erent values of ↵3 for a model characterized by
a nonvanishing value of a4. The model shown here assumes fermionic DR with a4 = 2.24⇥ 104 Mpc�1, ⇠ = 0.5, m� = 2 TeV,
⌘DR = ⌘� = 2, bn = 0, ↵2 = 1, and ↵l�4 = 1. Right panel : Similar to the left panel but for a model with a2 = 3.5⇥ 101 Mpc�1

and m� = 10 GeV.

realizing these di↵erent values of ↵2, our goal here is to illustrate the sensitivity of the DM distribution to these
parameters. The left panel of Fig. 2 shows that ↵2 has a significant e↵ect on the damping tail of the matter transfer
function, with a smaller value of ↵2 associated with more damping. We can understand this result by noting that the
quantity ↵2̇DR�DM controls the growth of the DR quadrupole which is associated with DR di↵usion damping of DM
perturbations. At a fixed value of the opacity ̇DR�DM, a smaller ↵2 leads to a faster growth of the DR quadrupole,
which results in a stronger damping term. This can also be seen from the direct calculation of the Silk damping scale,
which in the tightly coupled regime takes the approximate form
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+

4̇�

5(↵2̇DR�DM + �2̇DR�DR)

�◆1/2

. (39)

Thus, a larger value of ↵2 indeed corresponds to a smaller damping scale in the tightly coupled regime. One might
ask whether this result holds in models that spend a significant amount of time in the weakly coupled regime. We
illustrate this latter case in the right panel of Fig. 2 where we display a model with a nonvanishing a2 coe�cient.
There, we demonstrate that the matter transfer function is almost insensitive to ↵2. In these models, the broad DM
drag visibility function e↵ectively erases the memory of the specific value of ↵2, and the shape of the DM power
spectrum is almost entirely dictated by ̇�. This implies that a detailed calculation of the exact values of the angular
coe�cients is less important for models dominated by low-n an coe�cients.

In Fig. 3, we illustrate the impact of the next order angular coe�cient ↵3. Similarly to Fig. 2, the left panel displays
a model with a nonvanishing a4 coe�cient for three di↵erent choices of ↵3. We observe that this parameter does
a↵ect the shape of the damping envelope of the matter transfer function, but in a more intricate way than ↵2. Both
the amplitude and phase of the second and subsequent acoustic oscillation peaks are a↵ected by the value of ↵3, in
contrast to ↵2 which mostly a↵ected the amplitude of the damping envelope. In the right panel of Fig. 3, we illustrate
the impact of ↵3 for a model characterized a nonzero value of a2. As in the case of ↵2, the matter transfer function
for n = 2 displays little sensitivity to the angular coe�cient ↵3. The second acoustic oscillation peak is marginally
a↵ected, but it is very unlikely that such a tiny feature has any e↵ect on nonlinear structure formation. Again, the
width of the DM drag visibility function for a model with low n values tends to erase the memory of the angular
dependence of the DM-DR scattering cross section.

In summary, we have seen that for a fixed DM drag epoch, DM models characterized by opacities with weak redshift
(or temperature) dependence generally display a broader drag visibility function, which tends to wash out the details
of the angular dependence of the DM-DR scattering cross section. The wider visibility function also leads to a broader
power spectrum damping envelope which assumes a di↵erent shape than the standard e

�k2/k2
damp . On the other hand,

DM models that have an opacity with a steep redshift dependence near the drag epoch are more sensitive to the
details of the DM-DR scattering cross section encoded in the ↵l coe�cients. In general, as the redshift dependence of
the opacity steepens, we expect the matter transfer function to display an increasing number of essentially undamped

Linear perturbations - results

‘Dark acoustic oscillations’
(Physics very similar to CMB photons scattering on electrons around decoupling!)
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Implementation
Translate power spectrum to initial particle distribution

Probabilistic method to account for elastic scattering
use MUSIC code Hahn & Abel, MNRAS ‘11    [see also Dolag+, ’08]

Vogelsberger, Zavala & Loeb, MNRAS ‘12
isotropic scattering of 
macroscopic ‘particles’ 
with mass

3742 M. Vogelsberger, J. Zavala and A. Loeb

Table 1. Reference points and their particle physics parameters ex-
plored in our simulations. RefP1 serves only as a benchmark point for
tests, since it is well known that such a large constant cross-section
violates various astrophysical constraints. RefP2 and RefP3 do not vi-
olate any constraints and potentially have a significant effect on the
density profiles of low-mass subhaloes. The latter two reference points
are therefore the ones we will mainly focus on.

Name Type σmax
T /mχ (cm2 g−1) vmax (km s−1)

RefP0 CDM – –

RefP1 SIDM (ruled out) 10 –

RefP2 vdSIDM (allowed) 3.5 30

RefP3 vdSIDM (allowed) 35 10

et al. 2001) and (iii) avoidance of the destruction of subhaloes
through collisions with high-velocity particles from a larger par-
ent halo (Gnedin & Ostriker 2001). There is a summary of these
and other constrains in table I of Buckley & Fox (2010) and in
fig. 2 of Loeb & Weiner (2011): on the scales of dwarf galaxies,
σ vel ∼ 10 km s−1, the allowed values for the transfer cross-section
are roughly constrained from above by σ max

T /mχ ! 35 cm2 g−1,
and are much lower at σ vel ∼ 100 km s−1, where the constraints
are stronger by approximately two orders of magnitude. Since we
are interested in the possibility of producing cored density profiles
for the haloes associated with the MW dSphs, we will take two
benchmark points in the (σ max

T /mχ , vmax) parameter space close to
the aforementioned constraints that maximize the self-interaction at
the typical velocity dispersion of these dwarfs (see Table 1).

In this work we only consider elastic scattering leaving the cases
of excited states and their associated exo- and endothermic interac-
tions for a future analysis.

2.2 Numerical technique

To account for DM self-interactions we follow a standard Monte
Carlo approach similar to previous implementations (Burkert 2000;
Kochanek & White 2000; Yoshida et al. 2000a,b; Craig & Davis
2001; Davé et al. 2001; Colı́n et al. 2002; D’Onghia, Firmani &
Chincarini 2003; Koda & Shapiro 2011), but different from fluid
smoothed particle hydrodynamics approaches as in Moore et al.
(2000) and Yoshida et al. (2000a).

We determine the scattering probability for every particle i with
each of its k = 38 ± 5 nearest neighbours1 j in a time step #ti by

Pij = mi

mχ

W (rij , hi) σT(vij )vij #ti , (2)

where mi is the simulation particle mass, vij is the relative velocity
between particles i and j, σ T/mχ is the scattering cross-section
per unit mass described in Section 2.1, hi the smoothing length
enclosing the k nearest neighbours of particle i and W(rij, hi) =
w(rij/hi) is the cubic spline Kernel function in 3D normalization:

w(q) = 8
π

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − 6q2 + 6q3, 0 ≤ q ≤ 1
2
,

2 (1 − q)3 ,
1
2

< q ≤ 1,

0, q > 1.

(3)

1 This choice is to speed up the neighbour search, but we checked that it
does not affect any results.

The time step #ti is chosen small enough to avoid mul-
tiple scatterings during a time step by requiring that #ti <

κ(ρ i σ T(σ vel,i)/mχ σ vel,i)−1, where σ vel,i is the local velocity dis-
persion at the position of particle i calculated based on its k neigh-
bours, and we set κ = 10−2, which is sufficiently small to avoid
multiple scatterings during a step and usually smaller than the time
step inferred from the dynamical time-scale. The total probability
of a particle to interact with any of its neighbours is given by Pi =∑

jPij/2, where the subscript j is limited to the k neighbours. The
factor 1/2 accounts for the fact that a scatter event always involves
two particles, and we therefore need to divide by 2 to reproduce
the correct scatter rate. We say that a collision takes place between
particle i and one of its k nearest neighbours j if x ≤ Pi, where
x is a uniformly distributed random number in the interval (0, 1).
To select the neighbour j that is chosen for collision we sort them
according to their distance to particle i and select the first neighbour
l that satisfies x ≤

∑l
i Pij . In the following we assume that the

self-interaction is isotropic.
In the case of elastic scattering once a pair is tagged for collision

we assign to each particle a new velocity given by

vi = vcm + (vij /2) ê,

vj = vcm − (vij /2) ê,
(4)

where vcm is the centre-of-mass velocity of the pair and ê is a unit
vector that we randomly draw from the unit sphere. This procedure
conserves energy and linear momentum, but not angular momen-
tum. We have implemented this numerical scheme in GADGET-3
(last described in Springel 2005).

To test our implementation we apply it first to isolated haloes.
For a region of volume V , the total number of scattering events is
given by

&tot =
∫

V

ρ(x)2

2m2
χ

⟨σTv⟩(x) dV , (5)

where ρ(x) is the local DM density and ⟨σTv⟩(x) is the local thermal
average of the transfer cross-section times the relative velocity. In
the non-relativistic limit this is given by an average over a Maxwell–
Boltzmann distribution function:

⟨σTv⟩(x) = 1
2σ 3

vel(x)
√

π

∫
(σTv)v2 e−v2/4σ 2

vel(x) dv, (6)

where σvel(x) is the local velocity dispersion. For given density and
velocity distribution functions we can now calculate the number of
expected scattering events and compare this to the N-body/Monte
Carlo results obtained with the technique presented in the para-
graphs above.

As an example of the number of scattering events expected in
a DM halo, we take a smooth spherical distribution of DM with a
Hernquist density profile (Hernquist 1990):

ρ(r) = Ma

2πr

1
(r + a)3

,
(7)

where M is the total mass of the halo and a its scale length. The
velocity dispersion profile for the Hernquist halo follows from the
Jeans equation, which for an isotropic velocity distribution and
using equation (7) gives

σ 2
vel(r) = GM

12a

[
12r(r + a)3

a4
ln

(
r + a

r

)

− r

r+a

(
25+52

( r

a

)
+ 42

( r

a

)2
+12

( r

a

)3
)]

. (8)

It is then straightforward to compute the scattering rate using equa-
tion (5). To compare these analytical expectations with N-body
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MeV-scale vector mediator

massless (sterile) neutrino- 
like fermion
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TB, Hasenkamp & Kersten, JCAP ‘14
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in the following. ETHOS provides a mapping between the intrinsic
parameters (couplings, masses, etc.) defining a given DM particle
physics model, and (i) the effective parameters controlling the shape
of the linear matter power spectrum, and (ii) the effective DM
transfer cross-section (⟨σ T⟩/mχ ); both at the relevant scales for
structure formation. Schematically:
{
mχ , {gi}, {hi}, ξ

}
→

{
ωDR, {an, αl}, {bn, βl}, {dn, mχ , ξ}

}

→ Plin,matter(k)

{
mχ , {hi}, {gi}

}
→

{ ⟨σT ⟩30

mχ

,
⟨σT ⟩220

mχ

,
⟨σT ⟩1000

mχ

}
, (1)

where the parameters on the left are the intrinsic parameters of the
DM model: mχ is the mass of the DM particle, {gi}represents the
set of coupling constants, {hi}is a set of other internal parameters
such as mediator mass and number of degrees of freedom, and
ξ = (TDR/TCMB)|z = 0 is the present-day DR to CMB temperature
ratio.

The effective parameters of the framework are on the right of
equation (1), which in all generality include the cosmological den-
sity of DR ωDR ≡'DRh2, the set {an, αl}characterizing the DM-
DR interaction, the {bn, β l}set characterizing the presence of DR
self-interaction (relevant, for instance, to non-abelian DR), and the
parameter set {dn, mχ , ξ}determining the evolution of the DM
temperature and adiabatic sound speed. This latter quantity is very
small for non-relativistic DM, and it has thus little impact on the
evolution of linear DM perturbations (except on very small scales,
irrelevant for galaxy formation/evolution). In this work, we focus
our attention on the effect of DM-DR interaction on the evolution
of DM perturbations. The physics of these effects are captured by
the parameters {an, αl}, where the set of l-dependent coefficients αl

encompasses information about the angular dependence of the DM-
DR scattering cross-section, whereas the an are the coefficients of
the power-law expansion in temperature (redshift) of the DM drag
opacity caused by the DM-DR interaction (see section II E of Cyr-
Racine et al. 2015). Physically, a single non-vanishing an implies
that the squared matrix element for the DM-DR scattering process
scales as |M|2 ∝ (pDR/mχ )n−2, where pDR is the DR momentum.
We leave the impact of DR self-interactions on the matter power
spectrum to a future study. We note that DR self-interaction as
parametrized by {bn, β l}can actually have a non-negligible effect
on the linear matter power spectrum through its influence on the
gravitational shear stress. However, this latter effect is generally
subdominant compared to the DM-DR interactions studied in this
work.

The other set of effective parameters in ETHOS are related to
DM self-scattering. Although each particle physics model would
have a specific transfer cross-section, in ETHOS we classify (char-
acterize) a given model based on the values of its cross-section
at three relative velocities, those characteristic of dwarf galaxies
(∼30 km s−1), the MW-size galaxies (∼220 km s−1) and galaxy
clusters (∼1000 km s−1).1 The choice of these three characteristic
velocities is arbitrary but it allows us at a glance to (i) check whether
a given model is compatible with observations, and (ii) have a re-
liable estimate at what the outcome of the simulation of a given
model would be based on the results of models already simulated,
which have similar values of the transfer cross-section. For instance,
if two models have the same values of ⟨σ T⟩30/mχ , full simulations

1 Note that in some cases one needs to go beyond the transfer cross-section
to describe the effect of self-interactions, see e.g. Kahlhoefer et al. (2014).

of isolated dwarfs in each model are likely to yield similar results,
even though they might have very different values of ⟨σ T⟩1000/mχ .
Furthermore, these characteristic velocities mark also three rele-
vant regimes for any model containing DM self-interactions: (i)
the dwarf-scale regime where the CDM model is being challenged,
and where the transfer cross-section is largely unconstrained, (ii) the
intermediate-scale regime where a large cross-section can lead to the
evaporation of subhaloes in MW-size galaxies, and (iii) the cluster-
scale regime where observations put the strongest constraints to the
cross-section.

The ETHOS framework described above is general, but for the
purpose of this work we restrict ourselves to an underlying parti-
cle physics model which assumes, like in Van den Aarssen et al.
(2012), a massive fermionic DM particle (χ ) interacting with a
massless neutrino-like fermion (ν) via a massive vector mediator
(φ). This model is characterized by an interaction between DM and
DR and DM-DM self-interactions (see section II F.1 of Cyr-Racine
et al. 2015, for details). The former gives rise to the features in the
power spectrum, which are absent in ordinary CDM transfer func-
tions, while the latter alters the evolution of DM haloes across time.
This model is characterized by a squared matrix element scaling as
(pDR/mχ )2, which immediately implies that the impact of DM-DR
scattering on the linear matter power spectrum is entirely captured
by a non-vanishing a4 coefficient. For DM-DR interactions leading
to late kinetic decoupling, this is indeed a very commonly encoun-
tered situation according to a recent comprehensive classification
of such scenarios Bringmann et al. (2016); note, however, that in
the presence of scalar mediators it is sometimes rather a2 that is
the only non-vanishing coefficient an (depending on the spin of DM
and DR).

In our case, the ETHOS mapping is reduced to
{
mχ , mφ, gχ , gν, ηχ , ην, ξ

}

−→
{

ωDR, a4,αl≥2 = 3
2
,
⟨σT ⟩30

mχ

,
⟨σT ⟩220

mχ

,
⟨σT ⟩1000

mχ

}
. (2)

The model is characterized by six intrinsic particle physics parame-
ters: the mass of the DM particle (mχ ), the mediator mass (mφ), the
coupling between the mediator and DM (gχ ), the coupling between
the mediator and neutrino-like fermions (gν), the number of DM
spin states (ηχ ), and the number of spin states of the neutrino-like
fermion (ην). In principle, the ratio of neutrino-like fermion and
photon temperature ξ constitutes another parameter that follows
from the underlying particle physics framework; for definiteness,
we will set it throughout to 0.5 in this work. The effective ETHOS
parameters that fully characterize the linear power spectrum are then
reduced to three: the abundance of DR ωDR, the opacity parameter
a4 (an ̸= 4 = 0), and a set of constant αl ≥ 2 values. It is possible to
calculate these parameters analytically (Cyr-Racine et al. 2015)

a4 = (1 + zD)4 πg2
χg2

ν

m4
φ

ρ̃crit

mχ

(
310
441

)
ξ 2T 2

CMB,0,

αl≥2 = 3
2
, (3)

where ρ̃crit ≡ρcrit/h
2 with ρcrit the critical density of the Universe,

and TCMB, 0 is the temperature of the CMB today. The normaliza-
tion redshift zD is arbitrary, but choosing it to be the redshift of
DM kinetic decoupling ensures that the an coefficients are gener-
ally of order unity. For models that modify the linear matter power
spectrum on subgalactic scales, we usually have zD ! 107. The
generic form of the a4 coefficient is easy to understand: the com-
bination g2

χg2
ν/m

4
φ is the leading factor in the squared scattering
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Late kinetic decoupling

[dashed lines; would-be result from WDM free-streaming]

Almost identical suppression of 
halo mass function as for WDM 
cosmology: 
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Table 3. Basic characteristics of the MW-size halo formed in the different
DM models. We list the mass (M200, crit), radius (R200, crit), maximum circular
velocity (Vmax), radius where the maximum circular velocity is reached
(Rmax), and the number of resolved subhaloes within 300 kpc (Nsub).

Name M200, crit R200, crit Vmax Rmax Nsub
(1010 M⊙) (kpc) (km s−1) (kpc)

CDM 161.28 244.05 176.82 68.29 16 108
ETHOS-1 160.47 243.64 178.12 62.58 590
ETHOS-2 164.70 245.75 181.49 63.72 971
ETHOS-3 163.36 245.09 180.60 64.37 1080
ETHOS-4 163.76 245.30 178.78 69.18 1366

2014). It was also used to find that self-interactions can leave im-
prints in the stellar distribution of dwarf galaxies by performing the
first SIDM simulation with baryons presented in Vogelsberger et al.
(2014a).

4 R ESULTS

In the following, we first discuss some features of the large-scale
(100 h−1 Mpc) parent simulations, followed by the main focus of
our work, the resimulated galactic halo. We show here only the
results for CDM, and ETHOS-1 to ETHOS-3 since ETHOS-4 has
the same initial power spectrum as ETHOS-3 and a significantly
smaller self-interaction cross-section. The impact of SIDM effects
on large scales is thus much smaller for ETHOS-4 compared to
ETHOS-1 to ETHOS-3. We have therefore not performed a uniform
box simulation for ETHOS-4.

4.1 Large-scale structure

We first quantify the large-scale distribution of matter in Fig. 2,
where we present the dimensionless power spectra, !(k)2 =
k3P (k)/(2π2), at redshifts z = 10, 6, 4, 2, 0 for our parent simula-
tions. The dashed grey line shows the shot-noise power spectrum
caused by the finite particle number of the simulation, it gives an
indication of the resolution limit in this plot at low redshifts. The
DAO features of the ETHOS-1 to ETHOS-3 models, clearly visible
on the primordial power spectrum (see left-hand panel of Fig. 1),
are only preserved down to z ∼ 10 (where the first oscillation is
marginally resolved for model ETHOS-1). At lower redshifts, the
imprint of these features is significantly reduced and is essentially
erased at z = 0. At this time, although the power spectra of the
non-CDM simulations are relatively close to the CDM case, there is
a slight suppression of power in the ETHOS-1 to ETHOS-3 models
for scales smaller than k ! 102 h Mpc−1. This suppression is largest
for ETHOS-1 and smallest for ETHOS-3, which reflects the fact
that the initial power spectrum damping is largest for ETHOS-1
and smallest for ETHOS-3. Our results therefore confirm the previ-
ous finding of Buckley et al. (2014), namely that in the weak DAO
regime, the non-linear evolution makes the differences with CDM
in the power spectra relatively small at low redshifts. We note that
we do not present images of the large-scale density field since the
different models are indistinguishable on these scales.

Although the power spectra are similar at z = 0 between the
different DM models, there are significant differences in the halo
mass function today due to the delay in the formation of low mass
haloes at high redshift. This is shown in Fig. 3 where we plot the
differential FoF mass function at z = 0. Here we see a clear suppres-
sion of low-mass haloes in ETHOS-1 to ETHOS-3 compared to the
CDM case (below a few times ∼1011 M⊙ for model ETHOS-1).

Figure 2. Non-linear dimensionless power spectra, !(k)2 =
k3P (k)/(2π2), of the parent simulations for the different DM mod-
els at the indicated redshifts (z = 10, 6, 4, 2, 0). The dashed grey line
denotes the shot-noise limit expected if the simulation particles are a
Poisson sampling from a smooth underlying density field. The sampling
is significantly sub-Poisson at high redshifts and in low-density regions,
but approaches the Poisson limit in non-linear structures. The non-CDM
models deviate significantly from CDM at high redshifts, but this difference
essentially vanishes towards z = 0.

Figure 3. Differential FoF halo mass function (multiplied by FoF mass
squared) for the different DM models at z = 0. Approximating the first DAO
feature in the linear power spectrum with a sharp power-law cutoff, we show
the resulting analytic estimates for the differential halo mass function of the
different DM models (yellow dashed). The lower panel shows the ratios
between the different simulation models relative to CDM.

The strongest suppression is seen for ETHOS-1 and the weakest for
ETHOS-3. This is again expected given the initial power spectra
of the different models. The lower panel of Fig. 3 shows that the
suppression factor for haloes around ∼1010 h−1 M⊙ is more than
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Figure 1. Characteristics of effective models. Left: Linear initial matter power spectra ( (�linear(k)2 = k3Plinear(k)/(2⇡2))) for the different models
(CDM and ETSF models M1 to M3) as a function of comoving wavenumber k. The ETSF models M1 to M3 differ in the strength of the damping and the dark
acoustic oscillations present at large k. Right: Velocity dependence of the cross-section for the different models. All ETSF models M1 to M3 have velocity
dependent cross sections which decrease as v�4

rel
for large relative velocities. For low velocities the cross sections can reach up to 100 cm2 g�1

.

els discussed above can be mapped to the same effective lin-
ear power spectrum and effective velocity-dependent DM self-
interaction cross section (see Cyr-Racine et al. 2015, for details).
The models discussed in this study are benchmark cases of such
a mapping, which result in specific combinations of linear power
spectra and interaction cross-sections. Various particle models can
therefore be described by an effective theory specified by an ini-
tial power spectrum and a self-interaction cross section. We call
the resulting framework “effective theory for structure formation”
(ETSF), which aims at generalising the theory of DM structure for-
mation to include a wide range of allowed DM phenomenology.

This paper has the following structure. We present the models
discussed in this work in Section 2. Section 3 then discusses the
different simulations carried out to explore these models. Results
are then presented in Section 4. In this section we will also try to
construct a model which solves some of the outstanding small-scale
problems of the MW satellites. Finally, we present our summary
and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are
are summarised in 1. For all simulations we use the following
cosmological parameters: ⌦m = 0.301712, ⌦⇤ = 0.698288,
⌦b = 0.046026, h = 0.6909, �8 = 0.839 and ns = 0.9671,
which are consistent with Planck (Planck Collaboration et al. 2014;
Spergel et al. 2013). We study four different DM models, which
we label CDM and M1 to M3 for the ETSF models. M1 to M3
are models that in our effective structure formation theory space
can be represented by a specific transfer function (see left panel
of Fig. 1 for the resulting linear non-dimensional power spectra),
and a specific velocity-dependent cross-section for DM (see right

Name ↵� ↵⌫ m� m� rDAO rSD
[MeV c�2] [GeV c�2] [h�1Mpc] [h�1Mpc]

CDM – – – – – –
M1 0.071 0.041 0.723 2000 0.362 0.225
M2 0.016 0.01 0.83 500 0.217 0.113
M3 0.006 0.006 1.15 178 0.141 0.063

Table 1. Parameters of the effective models considered in this paper. We
study in total four different scenarios (CDM and ETSF models M1 to M3).
CDM corresponds to the vanilla CDM case. We also provide two character-
istic comoving length scales: the DM sound horizon (rDAO), and the Silk
damping scale (rSD). The ETSF models are characterised by their linear
power spectra (transfer function) and the DM-DM cross sections, which we
present in Fig. 1.

panel of Fig. 1 for the resulting cross-sections). The underlying
particle physics model for those assumes a massive DM particle
(�) interacting with a massless “neutrino” (⌫) via a massive vector
mediator (�). These models are characterised by an interaction be-
tween DM and dark radiation (DR) and DM-DM self-interactions.
The DM-DR interaction give rise to the features in the power spec-
trum, which are absent in ordinary CDM transfer functions. Ta-
ble 1 specifies the relevant scales in the initial power spectrum:
the comoving diffusion (Silk) damping scale (rSD) and the DM
comoving sound horizon rDAO). These are generic scales which
occur in many models where DM is coupled to relativistic parti-
cles until relatively late times. There are two interesting regimes:
rSD ⌧ rDAO and rSD ⇠ rDAO. For the first case, the power
spectrum shows significant oscillations on small scales since dif-
fusion is ineffective around the sound horizon. The other case, on
the other hand, only shows a few oscillations since the damping is

© 2015 RAS, MNRAS 000, 1–13
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Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

times, where the density is high enough to cause at least some par-
ticle collisions during a Hubble time. We can try to quantify this
already at the resolution level that our parent simulation allows. To
do this, we measure the central or core density for all resolved main
haloes in the uniform box simulations, similar to the analysis pre-
sented in Buckley et al. (2014). The mass resolution of our uniform
box is slightly better than that of Buckley et al. (2014), and we
probe at the same time a volume which is about 3.8 times larger.
We can therefore sample a larger range of halo masses and with bet-
ter statistics. We define the central (core) density within three times
the softening length (8.7 kpc). The upper panel of Fig. 4 shows
the actual core density, while the lower panel shows the ratio with
respect to the CDM case. We take the median value of the distri-

bution within each mass bin. The plot shows the familiar scale of
density with mass at a fixed radius, with core densities that vary
from ⇠ 106 h2M�kpc

�3 for halo masses around ⇠ 1010 h�1 M�
to ⇠ 108 h2M�kpc

�3 for halo masses around ⇠ 1014 h�1 M�.
Models ETHOS-1 (red) and ETHOS-2 (blue) have a significantly
reduced core density compared to the CDM case for low mass
haloes. We note that the effect is strongest in the former than in
the latter, which points to the primordial power spectrum suppres-
sion as the main culprit since the cross section is lower for model
ETHOS-1 than for model ETHOS-2. Low-mass haloes in ETHOS-
1 are therefore less dense than in CDM, mainly because they form
later (analogous to the WDM case). Interestingly, ETHOS-3 shows
a different behaviour. Here the core density is most reduced for
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times, where the density is high enough to cause at least some par-
ticle collisions during a Hubble time. We can try to quantify this
already at the resolution level that our parent simulation allows. To
do this, we measure the central or core density for all resolved main
haloes in the uniform box simulations, similar to the analysis pre-
sented in Buckley et al. (2014). The mass resolution of our uniform
box is slightly better than that of Buckley et al. (2014), and we
probe at the same time a volume which is about 3.8 times larger.
We can therefore sample a larger range of halo masses and with bet-
ter statistics. We define the central (core) density within three times
the softening length (8.7 kpc). The upper panel of Fig. 4 shows
the actual core density, while the lower panel shows the ratio with
respect to the CDM case. We take the median value of the distri-

bution within each mass bin. The plot shows the familiar scale of
density with mass at a fixed radius, with core densities that vary
from ⇠ 106 h2M�kpc

�3 for halo masses around ⇠ 1010 h�1 M�
to ⇠ 108 h2M�kpc

�3 for halo masses around ⇠ 1014 h�1 M�.
Models ETHOS-1 (red) and ETHOS-2 (blue) have a significantly
reduced core density compared to the CDM case for low mass
haloes. We note that the effect is strongest in the former than in
the latter, which points to the primordial power spectrum suppres-
sion as the main culprit since the cross section is lower for model
ETHOS-1 than for model ETHOS-2. Low-mass haloes in ETHOS-
1 are therefore less dense than in CDM, mainly because they form
later (analogous to the WDM case). Interestingly, ETHOS-3 shows
a different behaviour. Here the core density is most reduced for

MNRAS 000, 1–18 (2015)



 (Torsten Bringmann) Searching for dark matter ‒ 60

Full parameter scan

coupling fixed by 
thermal relic density

⇠ ⌘ Tdark/Tphoton
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Inner halo structure

1408 M. Vogelsberger et al.

Figure 5. Stacked density profiles for different halo mass ranges (M200, crit) as indicated in each panel for our different DM models. We show the profiles
starting at 2 kpc out to the virial radius. One can clearly see that the different non-CDM models affect the profiles in rather different ways depending on the
mass scale.
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Closer look: can indeed address CDM abundance and structural 
‘problems’ simultaneously, in a consistent particle framework:  

1408 M. Vogelsberger et al.

Figure 5. Stacked density profiles for different halo mass ranges (M200, crit) as indicated in each panel for our different DM models. We show the profiles
starting at 2 kpc out to the virial radius. One can clearly see that the different non-CDM models affect the profiles in rather different ways depending on the
mass scale.
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Dark matter physics and the small-scale CDM problems 1413

Table 4. Overview of reduced DM models. These models are similar
to ETHOS-1 to ETHOS-3, but they only include self-interactions with-
out the damping of the power spectrum (‘sidm’), or they do not include
self-interactions, but have the damping of the primordial power spectrum
(‘power’). The reduced models help us to disentangle these two effects
present in our full models.

Name Reduced model

ETHOS-1-sidm ETHOS-1, only self-int. w/CDM transfer fct.
ETHOS-1-power ETHOS-1, no self-int.

ETHOS-2-sidm ETHOS-2, only self-int. w/CDM transfer fct.
ETHOS-2-power ETHOS-2, no self-int.

ETHOS-3-sidm ETHOS-3, only self-int. w/CDM transfer fct.
ETHOS-3-power ETHOS-3, no self-int.

of ETHOS-4 compared to ETHOS-3. We note that despite hav-
ing considerably lower cross-sections than the other models we
explored, self-interactions are still relevant in ETHOS-4. We have
verified that the central densities in subhaloes are lower (albeit the
effect is relatively small) in ETHOS-4 than in a setting with the
same features but with the self-interactions turned off.

We note that ETHOS-4 alleviates the tension between theory and
observations for the TBTF and MS problems, but our MW-size sim-
ulations cannot be used to study directly if such a model could also
produce the large cores seemingly inferred in low surface brightness
galaxies (e.g. Kuzio de Naray, McGaugh & de Blok 2008), which
might require large cross-sections in an interpretation based on DM
collisions (see fig. 1 of Kaplinghat et al. 2016). However, besides
pure DM self-interactions, ETHOS-4 also includes a relevant effect
due to the damping of the power spectrum. Both effects could com-
bine to reduce densities sufficiently to be consistent with observation
of LSB galaxies. Furthermore, the character of this interplay could

Figure 12. DM density projections of the zoom MW-like halo simulations
for the tuned model ETHOS-4. The projection has a side length and depth of
500 kpc. The initial power spectrum is essentially the same as in ETHOS-3.
The amount of substructure and the general DM density distribution looks
very similar to ETHOS-3. Remaining differences are driven by the very
different self-scattering cross-section between ETHOS-3 and ETHOS-4.

be adjusted relative to ETHOS-4 parameters by increasing the nor-
malization of the cross-section and increasing slightly the scale for
the power spectrum cut off. This would enhance the SIDM-driven
core creation, while retaining significant deviations from CDM in

Figure 11. Subhalo population for the tuned model ETHOS-4. This model was specifically set up to address the MS and TBTF problems. Left-hand panel:
the number of satellite galaxies as a function of their maximal circular velocity for the four different models with a comparison to observed satellites of the
MW including a sky coverage correction (Polisensky & Ricotti 2011). We show all subhaloes with a halocentric distance less than 300 kpc. Right-hand panel:
circular velocity profiles of the same haloes. The data points show MW dSphs taken from Wolf et al. (2010). The ETHOS-4 model provides a reasonable fit to
the subhalo population of the MW.
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Vogelsberger+, MNRAS’16

central (sub)halo densities reduced 
(→ core/cusp)

most massive subhalos less dense
(→ too-big-to-fail)

Details more complicated than the usual ‘need ~1cm2/g’ !

NB: Non-trivial interplay between modified power 
spectrum and self-interactions

Also, this is still without baryonic physics…
[though dSphs highly DM dominated]
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Adding Baryons
Simplest picture: two competing effects

Baugh, RPP ’06

Adiabatic contraction due to 
disk assembly

A) B)

gas and DM heating due to 
supernova feedback

Pontzen & Governato, Nature ’14

increase 
of inner DM density

decrease 
of inner DM density

SIDM + A) may lead to core collapse Elbert+,  ApJ ’18
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Re-ionization history

Follow-up: halo collapse comparison on individual basis
Virial masses of ETHOS halos are suppressed, but not stellar mass
Promising way to test/constrain ETHOS: large populations of very old stars 

Lovell, Vogelsberger & Zavala, MNRAS ‘19
(z > 17)
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Lack of small halos should delay onset of structure formation 
CDM ETHOS-4

Predictions for the high-redshift Universe in ETHOS 5
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log(TETHOS/TCDM)

 

 

     
 

 

Figure 2. Maps of IGM gas temperature in CDM (left panels) and ETHOS (middle panels). The image intensity shows squared gas density (with arbitrary
normalisation), and the colour shows the temperature: 6 104 K gas is shown in purple, 105 K in green and > 106 K in red. The top panels show the entire
box at z = 11, the middle two panels a zoom-in of the region highlighted with a white box in the top middle panel at the same redshift, and the bottom panels
show the same zoomed region at z = 6. Each image slice is 400 kpc thick; all lengths scales quoted are comoving. In the right-hand panels we show the
difference map between the temperature of the CDM and ETHOS maps. Lighter regions are hotter in ETHOS and darker regions are hotter in CDM (colour
bar in the bottom right panel).

galaxy. If the proportion of haloes that host galaxies – the so-called
luminous fraction – is different between CDM and ETHOS, then
this effect will be relevant for the production rate of ionizing pho-
tons in galaxies.

We therefore plot, in the top panel of Fig. 4, the ratio of
ETHOS and CDM luminous fractions as a function of halo mass,
where the luminous fraction is defined as the fraction of haloes that
contain a stellar mass larger than 3⇥ 106 M�. We choose this stel-

lar mass threshold to avoid spurious effects due to limited resolu-
tion, and also restrict our plot to haloes of mass M200 > 109 M�
as the galaxies hosted in M200 < 109 M� haloes rarely meet the
stellar mass threshold, and are therefore subject to shot noise; note
that we therefore resolve the haloes of all galaxies with this stel-
lar mass. The plot demonstrates that below the halo mass where
the halo mass function in ETHOS starts to deviate from CDM, the
luminous fraction is actually higher in ETHOS than in CDM. The

MNRAS 000, 1–14 (2017)

Hydrodynamical simulations: Indeed — but effect on 
reionisation history is surprisingly small 
Suppression of high-z, low-mass galaxies: maybe visible with JWST
Brighter starbursts in these galaxies compensate effect on optical depth

Lovell+, MNRAS ‘18

IGM gas 
temperature

[similar to WDM!]
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Imprint on Lyman alpha spectra ?
Bose+, MNRAS ‘19

4 S. Bose et al.
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Figure 1. Dimensionless power spectra
⇥
�2
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⇤

for the CDM
(black) and �DAO (red) models used in this work. For comparison, we
also show the power spectra for the less extreme E����-4 model (blue; see
Vogelsberger et al. 2016) which exhibits a deviation from CDM at a scale
comparable to that of a 3.3 keV thermal relic WDM particle (in yellow).
On the other hand, the cuto� scale for the �DAO model is closer to that
of a 1.6 keV thermal relic (green). Furthermore, the amplitude of the dark
acoustic oscillations (DAOs) in the �DAO model is considerably larger than
in E����-4.

3 NUMERICAL SETUP

3.1 Simulations and initial conditions

The simulations we present in this work make use of the cosmo-
logical simulation code, A���� (Springel 2010). A���� employs a
hybrid tree/particle-mesh scheme to solve for gravitational interac-
tions of DM particles, and a moving, unstructured Voronoi mesh to
solve equations of hydrodynamics. The moving mesh is adaptive in
nature, resolving fluids in regions of high density with many more
cells of a smaller size than in low density environments. A���� has
been augmented with a comprehensive model for galaxy formation
(Weinberger et al. 2017; Pillepich et al. 2018a) which we use here.
In addition, Vogelsberger et al. (2016) presents an updated version
of A���� which, in addition to the galaxy formation models men-
tioned above, also incorporates elastic, isotropic self-interactions of
DM particles, while allowing for arbitrary velocity-dependent inter-
action cross-sections (using an algorithm adapted from the original
described in detail in Vogelsberger et al. 2012). While the self-
scatterings of DM particles have a pronounced impact on the inter-
nal structure of haloes at late-times, their influence on the IGM at
high redshifts will be sub-dominant to that induced by the cuto� in
the power spectrum; we have therefore turned o� self-interactions
in the simulations.

Our high resolution simulations follow the evolution of 2⇥5123

DM and gas particles from z = 127 to z = 0 in a periodic box of
(comoving) size 29.6 cMpc (20 h

�1cMpc), resulting in an e�ective
DM particle mass of 6.41 ⇥ 106 M� . An individual gas cell has a
target mass of 1.01⇥106 M� . This target gas mass also corresponds
to the typical mass of a stellar macro-particle representing a stellar
population. We enforce that the mass of all cells is within a factor
of two of the target mass by explicitly refining and de-refining the
mesh cells. The comoving softening length for DM particles is set
to 1.19 kpc, while the (adaptive) softening applied to a gas cell is set
to a comoving minimum value of 185 pc. To check for convergence,

we also run a second set of simulations a factor of two lower in
resolution.

We use the fiducial IllustrisTNG galaxy formation model
(Weinberger et al. 2017; Pillepich et al. 2018a) with one change.
Namely, we have turned o� the magnetohydrodynamics solver as
it is not relevant for the analysis presented here. As in the fiducial
TNG model, each of our simulations is set up with a time-dependent,
spatially uniform ionising background as described in the model by
Faucher-Giguère et al. (2009). The TNG model is built upon the
original Illustris galaxy formation model described in Vogelsberger
et al. (2013).

Initial conditions for all simulations were generated using the
����� code (Hahn & Abel 2011), assuming cosmological parame-
ters derived from Planck Collaboration et al. (2016): ⌦0 = 0.311
(total matter density), ⌦b = 0.049 (baryon density), ⌦⇤ = 0.689
(dark energy density), H0 = 67.5 kms�1Mpc�1 (Hubble parame-
ter) and �8 = 0.815 (linear rms density fluctuation in a sphere of
radius 8 h

�1 Mpc at z = 0). The dimensionless linear power spectra
used to generate initial conditions are shown in Fig. 1. While the
CDM power spectrum exhibits power on all scales, the two E����
models cuto� at log[k/hcMpc�1

] ⇡ 1. In this paper we will be con-
cerned with the �DAO model, in which the model parameters have
been adjusted to amplify the e�ect of DAOs, as explained in the
previous section. Our goal is to investigate the extent to which the
characteristics of DAOs in the E���� models can be probed using
the Lyman-↵ forest. To put our results in context, we have also run
simulations of the E����-4 and 1.6 keV WDM models at our default
resolution. The choice of a 1.6 keV thermal relic is motivated by the
fact that the free-streaming scale in this model is identical to the cut-
o� in �DAO; this helps disentangle small-scale di�erences induced
by the acoustic oscillations from those that are caused by a primor-
dial cuto�. The simulations are analysed to perform mock Lyman-↵
observations using the procedure that we describe in the follow-
ing subsection. Finally, we note that simulations that resolve the
primordial power spectrum cuto� are plagued with artificial frag-
mentation of filaments that condense into ‘spurious’ haloes (e.g.
Wang & White 2007; Lovell et al. 2014). These objects are seeded
by discreteness of the particle set rather than a true gravitational
instability, and must hence be excluded from the analysis. This is
a well-known problem in WDM simulations, but is less severe in
the E���� models which have added small-scale power in the form
of DAOs (Buckley et al. 2014, see also Fig. A1). This is especially
true at high redshift, which is the regime of interest in this paper.
As such, we do not perform any extra steps to classify these objects
in the simulations we have run.

3.2 Creating Lyman-↵ mock absorption spectra

From the outputs of each simulation, we generate synthetic absorp-
tion spectra using the methodology outlined in Altay & Theuns
(2013). In short, at each output time, we select 1024 randomly-
selected skewers3 oriented parallel to a coordinate axis of the box.
Gas cell properties are interpolated onto locations along each skewer
using a smoothing kernel; we follow Altay & Theuns (2013) and
employ a truncated Gaussian kernel, Gt (r,�), which is defined as:

Gt (r,�) = N

(
exp (�A

2
r

2
) , for r 6 hsml

0 , otherwise
(2)

3 We have checked explicitly that our results are converged for this choice
for the number of sightlines (see Fig. A2).
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Figure 10. Left panel: As Fig. 8, but now comparing the �DAO model with the 1.6 keV WDM and E����-4 models at z = 5.4. The qualitative behaviour of
each model is similar on scales larger than k = 0.1 s/km, in that power is suppressed relative to CDM. On smaller scales, the �DAO model exhibits a prominent
bump induced by the first DAO peak. This feature is not observed in E����-4, which also exhibits DAOs in the linear power spectrum, but of smaller amplitude
than in the �DAO case. Each model has been run at the same resolution and each curve therefore exhibits the same numerical ‘bump’ at k = 0.4 s/km. Right
panel: The evolution of the flux spectrum ratio from z = 5.4 to z = 4.2 for the �DAO (solid lines) and 1.6 keV WDM models (dotted lines). The z = 5.4 flux
spectrum ratio in the low-resolution (LR) �DAO simulation is shown in grey. As time progresses, the overall increase of power causes adjacent modes to couple
non-linearly, thus erasing any sharp (DAO) features in the power spectrum, until z = 4.2 where the behaviour of the �DAO and 1.6 keV WDM models is very
similar.

curves, respectively). At the lower resolution, the numerical bump is
shifted to larger scales by a factor of two (as expected, since the low-
resolution simulation retains the same number of particles in a box
that is twice as big as the high-resolution simulation). Moreover, the
DAO bump, which just starts to develop, blends with the numerical
bump and is therefore unresolved in the low-resolution simulation.
With increased resolution (i.e., in our default simulations), the DAO
is resolved before the noise becomes dominant. Thus, this figure
reassures us that our physical interpretation of the first peak in the
z = 5.4 flux spectrum for the �DAO model is not a�ected strongly
by numerical systematics. As in the case of the cuto� in the small-
scale flux spectrum, it may be that quantitative details in Fig. 10
are a�ected by assumptions made for the thermal history of the
IGM. While varying these assumptions may certainly smear the
prominence of the DAO feature, it is not clear that such bumps
could be replicated by baryonic mechanisms. In particular, the scale
at which these features are manifest, if induced by the nature of
the DM, will be set by processes intrinsic to the DM model. We
leave the detailed investigation of degeneracies between DAOs and
thermal histories to future work.

5 CONCLUSIONS

We have performed detailed hydrodynamical simulations of non-
standard dark matter (DM) species in which the DM is coupled to a
relativistic component in the early universe. These interactions alter
the primordial linear power spectrum predicted by the concordance
cosmological model in a distinctive way: by generating a cuto� at
the scale of dwarf galaxies through collisional damping, followed
subsequently by a series of ‘dark acoustic oscillations’ (DAOs) to-
wards smaller scales (see Fig. 1). Early structure formation in these
models is therefore modified considerably from standard cold dark
matter (CDM), principally in the form of a delay in the formation
of the first stars, and a suppression in the abundance of low-mass

galaxies (e.g. Lovell et al. 2018). The structure of DM haloes may be
modified as well through strong DM self-interactions at late-times
that reshape the phase-space density profiles of galactic haloes (e.g.
Vogelsberger et al. 2016). The extent to which these processes im-
pact galaxy formation are, of course, sensitive to parameters specific
to the DM theory, such as the duration of DM-radiation coupling,
or the self-interaction cross-section.

While it is impossible to explore this parameter space fully,
various permutations of these model parameters will predict largely
similar galactic populations. The E���� framework (Cyr-Racine
et al. 2016) provides a formalism for mapping these DM proper-
ties to ‘e�ective’ parameters that shape structure formation, thereby
providing a flexible way to explore the implications of a vast range
of theories on galaxy formation. In this paper, we focus our attention
on an atomic DM model (which we refer to as �DAO) in which DM
is composed of two massive fermions that are oppositely charged
under a new unbroken U(1) dark gauge force (see Section 2). The
linear matter power spectrum of this model has a cuto� relative to
CDM at k ⇠ 10 hcMpc�1, identical to a warm dark matter (WDM)
thermal relic with mass 1.6 keV, but di�ers from WDM on smaller
scales where it is composed of a significant number of undamped
DAOs. While models as extreme as these may already be strongly
constrained, our goal in this paper was to investigate if DAOs may
be, in principle, detectable in the Lyman-alpha forest, rather than
to present a model that matches the available data. A priori, it
is not obvious that DAOs would persist in the Lyman-alpha flux
spectrum. In particular, we sought to identify observational proxies
that are able to distinguish between the di�erent small-scale be-
haviour of these DAO models from WDM. For this purpose, we
have investigated the statistics of the Lyman-↵ forest extracted from
hydrodynamical simulations performed with these models using the
A���� code (Springel 2010) coupled with a sophisticated galaxy
formation model used as part of the IllustrisTNG project (Marinacci
et al. 2018; Naiman et al. 2018; Nelson et al. 2018; Pillepich et al.
2018b; Springel et al. 2018).
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Figure 8. Ratio of the mean flux power spectra
⇥
�2

sDAO(k)/�
2
CDM(k)

⇤
. For

clarity, we do not show the observational data in this figure. The signature
of DAOs (at k = 0.4 s/km) can be noticed in the high redshift spectra,
particularly at z = 6 and z = 5.4. Any evidence of DAOs is completely
washed out by z = 2. Note that the ‘bump’ at k ⇠ 0.4 s/km is numerical,
and is set by the finite resolution of our simulation setup. This secondary
feature is not sourced by DAOs.

Figure 9. Comparison of the cumulative halo mass functions at z = 5.4
for the CDM, �DAO and 1.6 keV thermal relic models. While both the
�DAO and WDM models begin to deviate from CDM at a similar mass
scale, there is more small-scale power in �DAO. The noticeable upturn at
M200 ⇠ 3 ⇥ 108 M� in the WDM mass function is the tell-tale signature of
artificial fragmentation (Wang & White 2007); this is largely absent in the
�DAO model.

density field (e.g. Jennings et al. 2012; Bose et al. 2015). We leave
a full understanding of the comparison between 1D and 3D power
spectra for future work.

It is illuminating to consider the di�erence in structure in the
�DAO and WDM models at these early times in greater detail. Fig. 9
compares the (cumulative) halo mass function in CDM, �DAO and
1.6 keV cosmologies at z = 5.4. In this calculation, halo mass is
defined by M200, which is the mass contained within r200, the radius
interior to which the mean density is equal to 200 times the critical
density of the universe at that redshift. As expected, all three models

agree on the abundance of the most massive haloes in the volume at
these times (M200 > 1010 M�). Both the �DAO and WDM models
then peel-away from the CDM curve at an identical mass scale; this
is a direct consequence of the fact that the linear power spectra of
these two models also deviate from CDM at identical scales. There
is, however, a clear excess (of around a factor of 3) of haloes with
M200 < 3 ⇥ 109 M� in �DAO compared to the 1.6 keV simulation.
This excess of power is sourced by the DAO, whereas the initial
density fluctuations are suppressed indefinitely in the case of WDM.
It is also interesting to note that while the e�ects of artificial halo
formation is clear in the WDM case (as evidenced by the unnatural
‘upturn’ in the mass function at M200 ⇠ 3⇥108 M�; Wang & White
2007), the manifestation of these spurious haloes seems largely
reduced in the �DAO model, in which any spurious halo formation is
outnumbered by haloes that have collapsed out of true gravitational
instability.

The left panel of Fig. 10 compares the relative di�erence of
the flux spectra to CDM in the two models at z = 5.4. Power on
scales larger than k ⇠ 0.05 s/km is suppressed by an almost identical
amount, but the behaviour of the two models is di�erent on smaller
scales. In particular, while power continues to be suppressed in the
case of the 1.6 keV thermal relic, the cuto� in the power is halted
by the development of the DAO bump around k ⇠ 0.13 s km�1,
which is only present in the sDAO model and not in the WDM
model. In practice, this may prove to be di�cult to observe since the
largest signal is expected to be present at the highest redshift, where
the UV background starts to be inhomogeneous due to incomplete
reionisation.

We also show predictions for the E����-4 model in which the
cuto� is on a smaller scale than in the �DAO case, and where the
first DAO peak is of lower amplitude than in �DAO and is pushed
to smaller scales (see Fig. 1). The DAO feature in E����-4 is thus
unresolved by our simulation (the numerical setup was selected to
just resolve the first �DAO peak). Regardless, this comparison high-
lights the potential of 1D flux spectrum measurements to distinguish
not only non-CDM models from CDM, but also di�erent non-CDM
models from each other. The major constraining power comes from
scales smaller than k ⇠ 0.08 s/km, where there is only limited data
available at the moment (but see Boera et al. 2018, for newer data
reaching to somewhat smaller scales).

One may be concerned that the DAO features we have identified
in the z = 5.4 flux power spectrum may be a�ected by the small-
scale noise manifest as the artificial peak at k ⇠ 0.4 s/km. To
diagnose this, in the right panel of Fig. 10 we show the evolution of
the flux power spectrum ratio from z = 5.4 to z = 4.2 for the �DAO
and 1.6 keV WDM models. At z = 5.4, the DAO is very prominently
present in the �DAO case while it is of course absent for the 1.6 keV
model; on the other hand, the behaviour of the two models is almost
identical by z = 4.2. This is consistent with the picture in Fig. 8:
the second DAO, which was visible at z = 6, is smoothed away by
z = 5.4 due to non-linear mode coupling; similarly, the first DAO
bump, which is visible at z = 5.4, is smeared away by z = 4.2.
This is because the overall power across all scales increases towards
lower redshift, giving the illusion of the DAO peaks being smeared
with the numerical “noise peak” as time progresses. The e�ects of
noise in the flux power spectrum are manifest more strongly in the
1.6 keV WDM case as there is a lack of “real” power on small-scales,
in contrast to the �DAO model where the acoustic oscillation adds
physical power on a level larger than the noise at k > 0.1 s/km.

How the noise level shifts as a function of resolution (see also
Viel et al. 2013) may be evaluated by comparing the z = 5.4 flux
spectra for the sDAO model at low and high resolution (grey and red
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Microwave Background (CMB) observations, ruling out DM masses m� . 10 GeV [55]. In

fact these bounds extend to significantly higher DM masses for mediators parametrically

lighter than DM due to the Sommerfeld enhancement of the annihilation cross section [56].

There are a number of ways to evade this CMB limit, but they do involve some non-

minimal component in the DM model. For instance DM may be asymmetric with only a

sub-leading symmetric component such that residual annihilations during CMB are suf-

ficiently suppressed [57]. For consistency such a setup will however require the existence

of an additional dark sector state to compensate the charge of the DM (reminiscent of

electrons and protons). Another possibility would be to introduce a scalar whose vacuum

expectation value (vev) generates small Majorana mass terms for the DM fermion, result-

ing in two dark matter states with slightly di↵erent mass, coupled o↵-diagonally to the

vector boson (this is often referred to as inelastic DM) [58]. If the heavier state decays

before the time of the CMB, s-wave annihilations �1�2 ! X ! f̄f are no longer possible

and constraints are evaded. A third possibility would be to couple the vector mediator to

a light hidden sector state such that the decays of X are invisible [59], in which case the

CMB bounds can also be evaded. Finally, if the abundance is set via freeze-in [60] rather

than freeze-out, the annihilation cross section may be su�ciently small to be in accord

with observations.

While all these options are viable and possess an interesting phenomenology, we wish

to concentrate on a minimal setup in the current study. As discussed below, a model for

light DM which still survives in its simplest form is that of a scalar mediator with Higgs

mixing.

2.2 Scalar mediators with Higgs mixing

In contrast to the case of a vector mediator, DM annihilations proceed via p-wave for a

scalar mediator and the setup is correspondingly much less constrained by residual annihi-

lations during CMB times. If the dark sector was in thermal contact with the SM heat bath

at even earlier times, however, dark sector masses are typically still required to be larger

than m� & 10 MeV in order not to spoil the agreement between predicted and observed

primordial abundances of light nuclei (we will study the relevant limits in detail below).

Let us consider a new real scalar S that mixes with the SM Higgs and further couples

to a new Dirac fermion � that can play the role of the DM particle (see e.g. ref. [61] and

references therein),

LS/� =
1

2
@µS@

µ
S + �̄(i/@ � m�)� � g�S�̄� � V (S,H). (2.1)

Here m� is the mass of the DM fermion, H is the Higgs doublet of the SM and V (S,H) is

the scalar potential. The terms involving the singlet scalar can be written as

V (S,H) =
�
AhsS + �hsS

2
�
H

†
H + µ

2

hH
†
H + �h(H

†
H)2 + V (S) . (2.2)

with V (S) = ⇠sS + 1/2µ2
sS

2 + 1/3AsS
3 + 1/4�sS

4. Without loss of generality the field S

can be shifted such that it does not obtain a vev, implying ⇠s = Ahsv
2
/2 (where the Higgs

vev is given by v =
�p

2GF
��1/2 ' 246.2 GeV). After electroweak symmetry breaking the
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singlet S mixes with the physical component of H such that the singlet S naturally acquires

a coupling to all SM fermions while the Higgs h acquires a coupling to �,

L � � sin ✓
mf

v
Sf̄f � sin ✓g�h�̄� (2.3)

with mixing angle

tan 2✓ =
2Ahsv

µ2
s � 2�hv

2
. (2.4)

The usual Higgs quartic coupling �h is fixed in the SM via the observed Higgs mass and

we are interested in the parameter region mh � mS . In our convention where S does not

acquire a vev the mixing angle is therefore approximately fixed by Ahs. While the mixing

angle clearly has a very large impact on most of the experimental observables, it does not

fully specify the phenomenology of the scalar sector. For example, the decay width of the

SM-like Higgs boson into two light singlets is determined by the S
2
H

†
H coupling,

�SS =
�

2

hsv
2

8⇡mh

s

1 �
4m2

S

m
2

h

. (2.5)

When we evaluate constraints e.g. from the Higgs signal strength we will assume that

�hs ' 0 to be conservative. Similarly we do not rely on �hs for the thermalisation of

the SM with the dark sector, yielding conservative limits from BBN. We also assume the

trilinear coupling As to be small, so that the 3 ! 2 annihilation rate of singlet scalars

is negligible and no phase of ‘cannibalism’ [62] occurs after freeze-out, again leading to

conservative bounds.

For the calculation of DM-nucleus scattering rates we will also need the e↵ective

Yukawa coupling between a nucleon and the scalar mediator,

gn,p =
mn,p

v
sin ✓

0

@
X

q=u,d,s

fq +
2

9
fG

1

A . (2.6)

Here the constants fq,G correspond to the quark and gluon content of the nucleon. It is

well known that the couplings to protons and neutrons are very similar for Higgs exchange

with gn ⇡ gp ⇡ 1.16 · 10�3 sin ✓, using state-of-the-art values for the fq [63].

3 Constraints from direct dark matter searches

3.1 Conventional light dark matter detection

Direct detection experiments probe the elastic scattering cross section �
SI

�N between DM

particles � and nuclei N (since we only consider scalar mediators, we restrict our discussion

to spin-independent scattering) at finite (spatial) momentum transfer

Q
2 = 2mNTN > 0 , (3.1)

where TN is the nuclear recoil energy. For better comparison, however, these results are

typically reported in terms of the inferred cross section per nucleon, �SI, at zero momentum
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Constraints
Bondarenko, Boyarsky, TB, Hufnagel, Schmidt-Hoberg & Sokolenko, 1909.08632
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CRESST-III [65] 3.2

DarkSide-50 [66] 6.7

PandaX-II [27] 26

Xenon 1T [26] 35

DARWIN [67] 40

NEWS-G [68, 69] 1.5

SuperCDMS [70] 2.3

LUX-ZEPLIN [71] 16
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Figure 1. Left panel. Current (upper part) and future (lower part) direct detection experiments,
along with a reference scale for the momentum transfer. Right panel. Current limits (solid lines) and
projected sensitivities (dashed lines) to the nucleon cross section assuming momentum-independent
scattering. Limits for the zero momentum limit are thus obtained by re-scaling these reported
results as in eq. (3.6).

PandaX-II [27]). We note that carefully modelling inelastic scattering processes, resulting

in the emission of a photon or an atomic electron, in principle allows to improve sensitivities

in the few 100MeV range [72–74]. There is also a number of proposed direct detection

experiments, and ideas, that would probe even smaller cross sections in the mass range

shown in figure 1, but the status of those is presently less certain (for a recent compilation,

see ref. [36, 68]).

3.2 Cosmic ray-accelerated dark matter

The right panel of figure 1 clearly illustrates the exponential loss of sensitivity of conven-

tional direct detection experiments to sub-GeV DM, reflecting the fact that non-relativistic

DM particles with such small masses do not carry enough momentum to allow for nuclear

recoils above the experimental threshold. As recently pointed out, however, there is a small

yet inevitable component of relativistic DM that alleviates this limitation [28]:3 if DM can

elastically scatter with nuclei, then also the well-established population of high-energy cos-

mic rays will scatter on DM, thus accelerating them from essentially at rest (in the galactic

frame) to GeV energies and beyond – in principle for arbitrarily small DM masses.

In order to handle scattering via light mediators we extend the formalism developed

in ref. [28] to allow for arbitrary relativistic scattering amplitudes (rather than only a

constant ��N as assumed there). As the derivation follows the same steps as in ref. [28],

we only briefly state our results here and refer to that reference for further details (see also

ref. [83]). The flux of cosmic-ray accelerated DM (CRDM) before a potential attenuation

3A subdominant population of DM particles with velocities exceeding the galactic escape velocity has

also been considered in Refs. [75–83].
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Figure 2. Left panel. Direct detection constraints on dark matter accelerated by cosmic rays for
fixed mediator masses. Cross sections below the lower boundaries lead to recoil rates too small to
be detectable, while cross sections above the upper confining boundaries prevent the dark matter
particles to reach the detector, due to e�cient scattering in the overburden. As a rough indication
of how large cross sections are in principle possible, we also show in each case the parameter range
where the couplings are well inside the perturbative regime (for a more detailed treatment, see
ref. [89]). Right panel. Same, for fixed mediator to DM mass ratios.

In order to do so, we still need the full relativistic scattering cross section of DM with

nuclei, mediated by a scalar particle. For fermionic nuclei we find

d��N

dTN
=

�
SI,NR

�N

16µ2

�NsT
max

N

m
4

S

(Q2 + m
2

S)2
(Q2 + 4m2

N )(Q2 + 4m2

�) ⇥ G
2

N (Q2) , (3.10)

where �
SI,NR

�N is the scattering cross section in the highly non-relativistic limit, as stated

in eq. (3.4), s = E
2

CM
and GN (Q2) is the conventional nuclear form factor. While the

non-relativistic result is of course recovered for Q
2 ! 0 and s ! (m� + mN )2, this cross

section is actually enhanced for Q
2 & m

2
� when compared to the standard estimate given

in eq. (3.6). This is particularly relevant both for very light DM (m2
� . Q

2

ref
) and the

production of the CRDM component stated in eq. (3.7), for which the momentum transfer

is typically much larger than expected in underground experiments.

In figure 2 we show the resulting limits from Xenon-1T on light DM. An important

feature of a constant scattering cross section is that these constraints (almost) flatten for

very small DM masses [28]. Compared to that, as expected from the above discussion (see

also ref. [83]), we observe a significant strengthening of our constraints at fixed mediator

masses. However the figure also clearly demonstrates that for light mediator masses the

production of the CRDM component becomes suppressed by the mediator momentum;

when considering only mediators that are lighter than the DM particle, in particular, the

resulting constraints become less and less stringent. Also the behaviour of the maximal

cross section (due to soil absorption) is rather instructive, as it falls into two clearly dis-

tinguishable regimes: i) for heavy (GeV-scale and above) mediators the upper boundary

essentially follows that of the constant cross section case [28], roughly rescaled by an addi-

tional m2
� dependence (for small m�) with the same origin as discussed above for the lower
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Figure 4. Limits from BBN as a function of mS and sin ✓ for fixed ratios mS/m� (left panels)
and as a function of m� for fixed masses mS (right panels). Below the dashed black line, the Higgs
portal by itself is insu�cient to ever thermalise the dark sector with the SM. In addition to the
overall limit (solid black line), we also separately show the regions of parameter space which are
excluded due to D underproduction (grey), D overproduction (purple) and/or 4He underproduction
(blue), 4He overproduction (pink). For mS & 0.1m� the thermal evolution is not fully captured by
our calculation and thus the limits are only approximate, as indicated by the hatch pattern.
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Cosmology 
follow            after decoupling of sectors

run dedicated BBN code

SIDM beyond s-wave (anti-resonances!)

T�(T�)
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Figure 3. Current limits (solid lines) and projected sensitivities (dashed lines) from accelerator
and beam dump searches for new light scalars S decaying visibly into standard model particles
according to eq. (2.3). See text for more details and references. For comparison, we also indicate
the astrophysical constraints discussed in section 5.4 (grey area).

While we mainly concentrate on the case mS < m� as discussed above, we will also

consider parameter regions in which mS > 2m� and therefore invisible decays of the scalar

naturally occur. In this case not all collider limits shown in figure 3 directly apply. To be

specific, for mS = 0.1 GeV we will use the limits from E949 and NA62 as shown in figure 3

while for mS = 1 GeV the most stringent bound comes from the BaBar measurement of

BR(B+ ! K
+
⌫̄⌫) < 1.6 · 10�5 [103]. Making use of the partial decay width B ! KS (see

e.g. [49]), this translates into sin ✓ . 6 · 10�3 for mS . 4 GeV.

5 Constraints from cosmological and astrophysical probes

5.1 Cosmological evolution of the dark sector

In this section, we describe the full thermal evolution of the dark sector particles, � and

S, which can be qualitatively divided into five, partially overlapping stages.

T > Tdec At high temperatures, the dark and the visible sector can be in chemical

equilibrium due to the processes ��̄ $ ff̄ , S $ ff̄ and SS $ ff̄ . In that case both sectors

also share the same temperature, through e�cient scattering of the involved particles, so

the temperature ratio

⇠ ⌘ TS/T (5.1)

is simply unity. For very small values of the mixing angle ✓, however, the total interaction

rate �DS$SM between the two sectors is never large enough to bring them into thermal

contact. Adding additional high-scale interactions to our model Lagrangian (2.1), on the

analysed by LHCb. The corresponding limit is expected to be more stringent than our estimate around
mS ⇠ 1 GeV owing to the fact that the branching ratio of S into pions is strongly enhanced compared

to the branching into muons in this mass range, see e.g. [91]. When presenting our final results for the

projected sensitivity of future experiments in this mass range, we will thus just use the lower sensitivity

bound of SHiP, sin ✓ ⇠ 10�6.
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Need to go beyond ‘vanilla constraints’:
Model-specific details, fully consistent cosmology!



 (Torsten Bringmann) Searching for dark matter ‒ 68

Results

Figure 5. Current (left) and projected (right) limits on the elastic scattering cross section with
nucleons in the zero-momentum transfer limit, for fixed scalar to DM mass ratios mS/m� that
do not allow invisible decays of S. For astrophysical and particle physics limits combined with
cosmological limits, dotted lines assume thermal DM production via freeze-out (‘Cosmo 1’), dashed
lines instead implement generic DM self-interaction constraints (‘Cosmo 2’) while solid lines result
from tuning g� such as to resonantly suppress the DM self-scattering rate (‘Cosmo 3’). See text for
further details.
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cosmological limits, dotted lines assume thermal DM production via freeze-out (‘Cosmo 1’), dashed
lines instead implement generic DM self-interaction constraints (‘Cosmo 2’) while solid lines result
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Bondarenko, Boyarsky, TB, Hufnagel, Schmidt-Hoberg & Sokolenko, 1909.08632

Need cosmology to translate particle limits to DD plane! 
relic density optionally included
SIDM alone typically gives comparable constraints

Complementarity clearly visible this way.

Helps to prioritise design of novel DD experiments…?
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Conclusions

The cosmos might be the only laboratory 
to test the particle DM hypothesis      
(though of course it would be nicer to detect DM in multiple experiments)

We have not yet detected DM, 
other than gravitationally

The field is at the crossroad                
— which implies interesting times ahead!

Thanks for your attention!

Decreasing 
level of 
personal bias

Impossible to find DM without first installing DarkSUSY ;)


