

The Niels Bohr Institute

Energy reconstruction of electrons and photons using convolutional neural networks

Frederik G. Faye SUPERVISION: Troels C. Petersen

Basic idea

ECAL cells are like pixels in a multi-channel image, so why not use CNNs?

Convolutional neural networks

Pipeline

Pipeline

Electron samples

Photon samples

Electron samples

Photon samples

- Split into barrel, crack, endcap datasets
- \sim 1 5 M points in each dataset
- All truth-matched
- From 2016d with $\langle \mu
 angle \sim$ 37

Frederik G. Faye — Energy reconstruction of electrons and photons using convolutional neural networks. Slide 5/18

Images (code for producing here)

Images (code for producing here)

 $\Delta \eta$

Frederik G. Faye — Energy reconstruction of electrons and photons using convolutional neural networks Slide 6/18

Scalars

ECAL	E _{acc} fo R ₁₂ E _{TG3}	Fraction of energy in different ECAL layers
Context	η $η_{index}$ $\langle μ \rangle$ $n_{vertexReco}$ ηmodECAL $poscs_2$ $ΔΦ_{TH3}$	Relative position within cell
Tracking	$\Delta \phi_2^{\text{rescaled}}$ $\Delta \eta_2$ p_7^{track} n_{tracks}	Difference in tracking- ECAL position estimate

Frederik G. Faye — Energy reconstruction of electrons and photons using convolutional neural networks Slide 10/18

Frederik G. Faye — Energy reconstruction of electrons and photons using convolutional neural networks Slide 10/18

$$FiLM(x_i) = \gamma_i(\boldsymbol{z})x_i + \beta_i(\boldsymbol{z})$$

Results

Metrics

Relative error:

$$RE = \frac{E_{pred} - E_{true}}{E_{true}}$$

Interquartile range (over distribution of RE):

$$IQR(RE) = Q_3(RE) - Q_1(RE)$$

Relative improvement:

$$rIQR = 1 - IQR^{model} / IQR^{\mathcal{E}calib^{(BDT)}}$$

Results Two experiments

	No E_T bins, barrel e	No η bins, low energy e/γ
Eτ	5 – 1000 GeV	5 – 100 GeV
$ \eta $	0 - 1.3	0 $-$ 2.5 (2.4 for γ)
Trick	Predict $E_{\rm true}/E_{\rm acc}$	Add barrel and endcap images

Results Two experiments

	No E_T bins, barrel e	No η bins, low energy e/γ
ET	5 – 1000 GeV	5 – 100 GeV
$ \eta $	0 - 1.3	0 $-$ 2.5 (2.4 for γ)
Trick	Predict $E_{\rm true}/E_{\rm acc}$	Add barrel and endcap images

Both work, so plan is to merge them

Results

No E_T bins, barrel e

*r*IQR = 24.0%

- This model predicts E_{true} / E_{acc} (predicting E_{true} did not work here)
- $Ecalib_{smeared}^{(BDT)}$ is smeared \rightarrow true *r*IQR is 1 2% lower

UNIVERSITY OF COPENHAGEN

Results

No η bins, low energy e/γ

Frederik G. Faye — Energy reconstruction of electrons and photons using convolutional neural networks Slide 16/18

UNIVERSITY OF COPENHAGEN

Results

No η bins, low energy e/γ

Frederik G. Faye — Energy reconstruction of electrons and photons using convolutional neural networks Slide 17/18

What's next?

- Produce data covering central region and whole E_T range
- Train three models (e, conv. and unconv. γ) each without E_T , η bins
- Implement in ATHENA (worked on by people in ML Forum)
- Apply currently used **MC** \rightarrow **Data corrections** and test on Data
- Test if MC → Data cell reweighting improves performance in Data
- Find minimum set of scalars (guided by permutation imp. or SHAP)

What's next?

- Produce data covering central region and whole E_T range
- Train three models (e, conv. and unconv. γ) each without E_T , η bins
- Implement in ATHENA (worked on by people in ML Forum)
- Apply currently used **MC** \rightarrow **Data corrections** and test on Data
- Test if **MC** \rightarrow **Data cell reweighting** improves performance in Data
- Find minimum set of scalars (guided by permutation imp. or SHAP)
- Well-documented code is available at gitlab.com/ffaye/deepcalo (pip install deepcalo)
- Short summary of recommendations based on my thesis available here
- Internal note is on its way

UNIVERSITY OF COPENHAGEN

Backup No η bins, $Z \rightarrow ee$ electrons

Frederik G. Faye — Energy reconstruction of electrons and photons using convolutional neural networks Slide 20/18

Backup

No η bins, unconverted electrons < 100 GeV

UNIVERSITY OF COPENHAGEN

Backup

No η bins, converted electrons < 100 GeV

