

Neutrino Astrophysics Markus Ahlers, D. Jason Koskinen & Irene Tamborra *MSc Day, October 24, 2019*

Who are we?

Irene Tamborra tamborra@nbi.ku.dk

D. Jason Koskinen koskinen@nbi.ku.dk

Markus Ahlers markus.ahlers@nbi.ku.dk

Neutrino Astrophysics

The Elusive Neutrino

three neutrino flavours

- very small masses (unknown origin)
- large mixing between flavour and mass states (unknown mechanism)
- 2nd most abundant particle in the Universe (impact on cosmology)
- unique probe of high-energy astrophysics

Standard Model of Particle Physics

(+ Higgs boson)

Neutrinos in Astrophysics

Unique abilities of **cosmic neutrinos**:

no deflection in magnetic fields (unlike cosmic rays)

no absorption in cosmic backgrounds (unlike gamma-rays)

smoking-gun of unknown sources of cosmic rays

coincident with photons and gravitational waves

BUT, very difficult to detect!

Markus Ahlers

Neutrinos as Messengers

Crab Nebula seen with Hubble in Photons

Markus Ahlers

Neutrinos as Messengers

RADIO	MICROWAVE	INFRARED	OPTICAL
ULTRAVIOLET	X-RAYS	GAMMA-RAYS	NEUTRINOS

Powerful Probes in Astrophysics

Neutrinos provide us with:

Neutrinos are copiously produced in astrophysical sources, e.g.

Markus Ahlers

Neutrino Fluxes

Neutrino Fluxes

Markus Ahlers

Neutrino Flavor Oscillations

Neutrinos in Supernovae and Mergers

Neutrino Interactions

Understood phenomenon.

Neutrinos interact with neutrons, protons and electrons.

We still need to learn a lot about this process!

Stellar Nucleosynthesis

Elements heavier than iron are born in supernovae and neutron-star mergers.

Synthesis of new elements could not happen without neutrinos.

$$n + \nu_e \rightarrow e^+ p$$

$$p + \overline{\nu_e} \rightarrow e^+ + n$$

Neutrino Imprints on SN Dynamics

Tamborra, Walk et al., Phys.Rev. D98 (2018) no.12, 123001

Neutrinos **probe explosion mechanism of a supernova and its rotation.** Complementary information from detection of gravitational waves.

Neutrinos In & From Cosmic Accelerators

Multi-Messenger Astronomy

Acceleration of charged nuclei (**cosmic rays**) - especially in the aftermath of cataclysmic events, sometimes visible in **gravitational waves**.

Secondary **neutrinos** and **gamma-rays** from pion decays:

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad \pi^{0} \rightarrow \gamma + \gamma$$
$$\downarrow e^{+} + \nu_{e} + \nu_{\mu}$$

Markus Ahlers

The IceCube Observatory

Neutrino Astrophysics

Breakthrough in 2013

First observation of high-energy astrophysical neutrinos by IceCube!

"track event" (from ν_{μ} scattering)

"cascade event" (from all flavours)

["Breakthrough of the Year" (Physics World), Science 2013] (neutrino event signature: early to late light detection)

Markus Ahlers

Neutrino Astrophysics

Status of Neutrino Astronomy

-900

Status of Neutrino Astronomy

Markus Ahlers

Neutrino Astrophysics

Astrophysical Neutrinos & Particle Physics

Ahlers, Bustamante et al., Bull.Am.Astron.Soc. 51 (2019) 215

Markus Ahlers, NBI Copenhagen

Astrophysical Neutrinos & Particle Physics

Ahlers, Bustamante et al., Bull.Am.Astron.Soc. 51 (2019) 215

Summary

Neutrinos:

- Fundamental in most energetic phenomena in our Universe.
- Ideal messengers.
- Carry imprints of engine and population of extreme transients.
- Affect element formation in astrophysical sources.
- Their flavor conversions are crucial but yet to be fully grasped.

M.Sc. projects in Neutrino Astrophysics can cover various aspects:

- impact on stellar evolution
- potential to probe astrophysical environments
- fundamental neutrino properties
- direct probe of the origin of cosmic rays
- observation in neutrino telescopes or experiments

Thank you

for your attention!