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The Combinatorics of the Positive Grassmannian

Grassmannian
Grip :={V:V CR",dim(V) = k}
Represent V' by a full-rank & x n matrix C. Can think of Gry ,, as Maty,,/ ~

Pliicker coordinates: p;(C) = k x k minor of C with I € ([Z]) as column set
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The Combinatorics of the Positive Grassmannian

Grassmannian
Grip :={V:V CR",dim(V) = k}

Represent V' by a full-rank & x n matrix C. Can think of Gry ,, as Maty,,/ ~
Pliicker coordinates: p;(C) = k x k minor of C with I € ([2]) as column set
Positive Grassmannian [Postnikov, Lusztig, Rietsch]

Grtn C Gryg,,, where p; >0, VI € ([z])

partition G, into pieces: Spq:={C € Gr}, :p;(C)>0iff I € M}, M C <[Z]>
Theorem [Postnikov - "06]

If Spq is non-empty, it is a cell, i.e. homeomorphic to an open ball. So we have:

Gr:’n = LI Sp positroid cell decomposition
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The Combinatorics of the Positive Grassmannian

Grassmannian

Grip :={V:V CR",dim(V) = k}
Represent V' by a full-rank & x n matrix C. Can think of Gry ,, as Maty,,/ ~
Pliicker coordinates: p;(C) = k x k minor of C with I € ([2]) as column set

Positive Grassmannian [Postnikov, Lusztig, Rietsch]
Grtn C Gry,p, where p; >0, VI € ([z])
partition Grzn into pieces: Sy :={C € G}, :p;/(C)>0iff I € M}, M C <[k]>

Theorem |[Postnikov - 06]
If Spq is non-empty, it is a cell, i.e. homeomorphic to an open ball. So we have:

Gry, = LI Sy positroid cell decomposition
positroid cells of Gr;n < decorated permutations m on [n] with k anti-excedances

permutation in which each fixed point is designated either loop or coloop

i is anti-excedence iff (i) < ¢ or m(i) =i is a coloop

m=1{2,4,1,3} = 2413 planar bicolored (plabic) graphs | ~

S C Gy, Le-diagrams
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The Hypersimplex and the Amplituhedron

Matteo Parisi (University of Oxford)

Moment Map [Gelfand. Goresky. MacPherson.

Serganova - '87]
e Gr}cﬂrl,n —R"
Zre( ) PrA)ler
T ey AP

{€1,...,en} std basis of R", e; := ), €

A p(A):

[n]
k1

the Hypersimplex
Apg1p = p(Gryy,) = Conv{e;}le(k[z]l)

polytope of dim(Agy1,,) =n—1in R”

A2,4 =

Positroid Polytopes
Tr=p(Sx) € Aggin
Sr C Gral,n pos. cell
T1,...,T, coordinates in R™

Tlig) =T +Tip1 + ...+ 25
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The Hypersimplex and the Amplituhedron

€ Amplituhedron Map [A.Hamed, Troka "13]

¢ Moment Map [Gelfand. Goresky. MacPherson.
Serganova - '87] 5
Gy, = R 7 : Grf, = Grg o
Lie(jgy lpr(A)Per .
A p(A) = =5 C—Z(C):=C-Z
2re(m) lpr(4)l

Z € Mat? (max minors > 0)

. H n R .
{€1,...,en} std basis of R", e; := ), € 2

¢ the Hypersimplex ¢ the Amplituhedron

Apt1n = /J,(Gl‘z;l‘n) = Conv{e;}le(k[z]l) A po(Z2) = Z(Gr;")

polytope of dim(Agy1,,) =n—1in R” not a polytope, dim(A, 2) = 2k in Gry j42
\ — (k=1):n—gon
—(k=n—-2): G},

Aagg = A2 =

€ Grasstopes
Z,:=2(S,) C Apio
Sy, C Gryr,, pos. cell

Y € Gry p42, Twistor coordinates:

¢ Positroid Polytopes
Tr=p(Sx) € Aggin
Sr C Gral,n pos. cell
T1,...,T, coordinates in R™

Tij] =& + Tip1 + ...+ X5 (Yij) := detpro(Yexkr2)|ZilZ;)
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ralized Triangles and

A generalized triangle (GT) is a positroid polytope I'; / Grasstope Z,:
i) it is full-dimensional, i.e. n —1 / 2k
ii) the moment / amplituhedron map is injective on Sr / S,
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Generalized Triangles and T-Duality

A generalized triangle (GT) is a positroid polytope I'; / Grasstope Z,:
i) it is full-dimensional, i.e. n —1 / 2k
ii) the moment / amplituhedron map is injective on Sr / S,

Theorem (GTs of Api1,n and A, 2 are T-dual) {Conj. — Lukowski, MP, Williams 20}

I'z is a generalized triangle of Ap11, <  Zi is a generalized triangle of A,, 1 >

T=TmT...Tp — T =TT

T-duality

T = Ti—1
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Generalized Triangles and T-Duality

A generalized triangle (GT) is a positroid polytope I'; / Grasstope Z,:
i) it is full-dimensional, i.e. n —1 / 2k

ii) the moment / amplituhedron map is injective on Sy / S,

Theorem (GTs of Api1, and A, 1o are T-dual) {Conj
I'z is a generalized triangle of Ay, <

Lukowski, MP, Williams 20}

Z is a generalized triangle of A, j o

. Z;r Zy
T=TmT...Tp — T =TT Tt

T-duality
i = Ti-1 Ag2

| . Oh, Postnikov, Speyer - '15
(k,n)—unpunctured Plabic Tilings

[Lukowski, MP, Spradlin, Volovich '19

collection of noncrossing shaded polygons in n-gon triangulated by & triangles

arc i — j compatible if does not cross arcs of shaded polygons 7%’;“" o

arca(i — j) = # shaded triangles at the left of i — j %
1—6
13 0
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Generalized Triangles and T-Duality

A generalized triangle (GT) is a positroid polytope I'; / Grasstope Z,:
i) it is full-dimensional, i.e. n —1 / 2k

ii) the moment / amplituhedron map is injective on Sy / S,

Theorem (GTs of Api1, and A, 1o are T-dual) {Conj
I'z is a generalized triangle of Ay, <

Lukowski, MP, Williams 20}

Z is a generalized triangle of A, j o

. Z;r Zy
T=TmT...Tp — T =TT Tt
7 =3241
T-duality
T = Ti—1 Ag2
. . Oh, Postnikov, Speyer - '15
(k,n)—unpunctured Plabic Tilings “‘,H\(M\Ml_ MP, U‘V,‘mm. it 10

collection of noncrossing shaded polygons in n-gon triangulated by & triangles

arc i — j compatible if does not cross arcs of shaded polygons =~ _SomP- aXes |
arca(i — j) = # shaded triangles at the left of i — j %
_1-6 |1
o . . - 123 0
Theorem (Characterization of GTs via Plabic Tilings)
GTs of Agt1,, and A, 1 2 are in bijection with (k, n)-unpunctured plabic tilings 7

' CcR" Zr C Grk,k+2

sign(Yij) = (—1)2rear =
i — j compatlible arcs of T

@[ j-1) > arear (i — j)
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Signs and Eulerian Numbers

¢ Sign Stratification
Ano = JA 1o o€ {+,-30)
Al ko= {Y € Gry o : sign(Yij) = o4}

amplituhedron chambers Q: which is realizable?
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Signs and Eulerian Numbers

Eulerian Numbers ¢ Sign Stratification

An,kg = Uzz,kg oe{+,— }(;)

wW=wy ... W nE€S,

with k + 1 cyclic descents -
nok2 =Y € Grepyo : sign(Vij) = 045}
I, := {cyclic descents of
the rotation of w ending at a — 1} amplituhedron chambers Q: which is realizable?

¢ w-Simplices
A, := Conv{er,,...,er,}

Theorem

Ak+1,n = U Ay

w

[Stanley - '77] [Sturmfels - *96]
7

[Lam, Postnikov - "07]

Matteo Parisi (University of Oxford) The Hypersimplex VS the Amplituhedron



Signs and Eulerian Numbers

Eulerian Numbers ¢ Sign Stratification

An,kg = Uzz,kg oe{+,— }(;)

wW=wy ... W nE€S,

with k + 1 cyclic descents -

‘ nok2 =Y € Grepyo : sign(Vij) = 045}
I, := {cyclic descents of

the rotation of w ending at a — 1} amplituhedron chambers Q: which is realizable?

¢ w-Simplices € w-Chambers
Ay, = Conv{ey,,...,er,} Ay = {Y € Gry i : sign(Yaj) = (—1)/ Nt Lill=1}
Theorem Theorem
Ak+1,7z = U Aw An,k,? = UAu
w w

[Stanley - 77] [Sturmfels - *96] o The amplituhedron is the union of w-chambers
[Lam, Postnikov - "07] - counted by Eulerian numbers
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Signs and Eulerian Numbers

Eulerian Numbers ¢ Sign Stratification

An,kg = Uzz,kg oe{+,— }(;)

wW=wy ... W nE€S,

with k + 1 cyclic descents -

‘ nok2 =Y € Grepyo : sign(Vij) = 045}
I, := {cyclic descents of

the rotation of w ending at a — 1} amplituhedron chambers Q: which is realizable?

¢ w-Simplices € w-Chambers
Ay, = Conv{ey,,...,er,} Ay = {Y € Gry i : sign(Yaj) = (—1)/ Nt Lill=1}
Theorem Theorem
Ak+1,7z = U Aw An,k,? = UAu
w w

[Stanley - 77] [Sturmfels - *96] o The amplituhedron is the union of w-chambers
[Lam, Postnikov - "07] - counted by Eulerian numbers

Theorem (w-simplices, w-chambers, and T-duality)

Let I'; and Z; be T-dual GTs of Apy1,, and A, 2 resp.:

Ay, C T, & A, C Zx
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Triangulations and T-Duality

A positroid triangulation is a collection of GTs {I'z} / {Z,}:
i) have disjoint interiors

ii) cover Ayt 5/ An k2
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Triangulations and T-Duality

A positroid triangulation is a collection of GTs {I'z} / {Z,}:
i) have disjoint interiors

ii) cover Ayt 5/ An k2

Theorem (Triangulations of Ay, and A, ;2 are T-dual) {Conj.  Lukowski, MP, Williams "20)

{T'x} is a pos. triangulation of Ayy1, <= {Zz} is a pos. triangulation of A, ;. »(Z), for all Z

Agy Asio
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Triangulations and T-Duality

A positroid triangulation is a collection of GTs {I'z} / {Z,}:
i) have disjoint interiors

ii) cover Ayt 5/ An k2

Theorem (Triangulations of Ay, and A, ;2 are T-dual) {Conj.  Lukowski, MP, Williams 20

{T'x} is a pos. triangulation of Ayy1, <= {Zz} is a pos. triangulation of A, ;. »(Z), for all Z

Asi2
(k,n) | § Triangulations
(l,n) ‘ Cn_z
.5) 5
(2.6) 120
2.7 3073
(2.8) 6443460
3.0) v
3.7 3073
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Triangulations from BCFW and Pos Trop Grassmannian

BCFW Recursions

“
[Bao, He 19

rski, MP, Williams 20!

Matteo Parisi (University of Oxford) The Hypersimplex VS the Amplituhedron



Triangulations from BCFW and Pos Trop Grassmannian

BCFW Recursions

) e - () (6

Lukowski, MP, Williams ’20 [Bao, He "19)

Positive Tropical Grassmannian [Speyer, Williams 05
m oy . .. . "
Trop Gry.q.,, = set of positive tropical Plicker vectors in R(kH)

P ={P;} € R6E) : Py + Pras = min{Pays + Peas, Paas + Poes’}

P € max cone of

Lukowski, MP, Williams 20| e
[A.Hamed, Lam, Spradlin *20] )?( Trop™ Gri41,n
Theorem

Dp ={T'x} is a pos. triangulation of Apiq,,

Dp: regular triangulation induced by height vector PP
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Triangulations from BCFW and Pos Trop Grassmannian

BCFW Recursions

) e - () (6

Lukowski, MP, Williams 20 Bao, He 19

Positive Tropical Grassmannian [Speyer, Williams 05
m oy . .. . "
Trop Gry.q.,, = set of positive tropical Plicker vectors in R(kH)

P ={P;} € R6E) : Py + Pras = min{Pays + Peas, Paas + Poes’}

P € max cone of

Lukowski, MP, Williams *20] oot
[A.Hamed, Lam, Spradlin "20] g rop Greyin
Theorem %i Corollary
Dp ={T'x} is a pos. triangulation of Apiq,, {Zx} is a pos. triangulation of A,, j >

Dp: regular triangulation induced by height vector PP

EGn) A [EH[COTRI[RE ] 29 [BO[EN]GS [ (9
# maxconcs | Cz | 5 | 120 | 693 | 13612 | 346710 | 14 | 693 | 90609 | 30659424

Matteo Parisi (University of Oxford) The Hypersimplex VS the Amplituhedron



Summary and Outlook

the Hypersimplex A | € the Amplituhedron

Szl

~

~duality
Apyin = ;L(Gr,tﬂ_n) (moment map) (amplituhedron map) A, 12 = Z(Gry,,)
dim(Ag41,,) =n—11in R™ dim( Ay, k2) = 2k in Gry pyo
GENERALISED TRIANGLES
I'7 (Positroid Polytope) unpunctured plabic tiling 7 (Grasstope) Z
xp j-1) > arear (i — j) compatible i — j sign(Yij) = (—1)arear(i=i)
w-SIMPLICES and w-CHAMBERS N
Ak-{-l:n = Uu; Aw perms w with k + 1 descents AT'-‘*A2<Z) = U Ay
A, CT, < A, < Zs
TRIANGULATIONS
T triangulates Agyq == {Zz} triangulates A,, . 2(Z), for all Z
BCFW triangulation {T'x} BCFW recursions BCFW triangulation {Z}
Regular triangulation {T';} max cones of Trop G Regular triangulation {Z;}
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Summary and Outlook

the Hypersimplex the Amplituhedron

Aptin = ,u(Gr,f,H_’") (moment map) (amplituhedron map) A, k2 = Z(Grf_,,)
dim(Apy1,) =n—1in R" dim(Ap k,2) = 2k in Gry k2
GENERALISED TRIANGLES
I'7 (Positroid Polytope) unpunctured plabic tiling 7 (Grasstope) Z1
(i 1) = arear (i — j) compatible i — j sign(Yij) = (—1)arear =y
w-SIMPLICES and w-CHAMBERS R
Ak+1.1w, = Uw Au, perms w with k + 1 descents Anp2(Z) = U Au
w
AwClr & Ay c Z;
TRIANGULATIONS
T triangulates Agyq., == {Zz} triangulates A,, . 2(Z), for all Z
BCFW triangulation {I';} BCFW recursions BCFW triangulation {Z;}
Regular triangulation {T'x} max cones of Trop™ Gy Regular triangulation {Z;}

| |
;€ More about T-duality (plabic graphs, new cluster structures, ...) in [PSBW] |

I + proofs of conjectures: m =2 cluster adjacency [Lukowski. MP. Spradlin, Volovich *19]

Sign-flip charcaterization of Ay g2 [A.Hamed, Thomas, Troka '18
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Summary and Outlook

the Hypersimplex

the Amplituhedron

Matteo Parisi

Apyin = ,u(Gr,f,H_’") (moment map)
dim(Agt1,) =n—1in R”
GENERALISED TRIANGLES

I'7 (Positroid Polytope) unpunctured plabic tiling 7

@i j-1) > arear (i — j) compatible i — j
w-SIMPLICES and w-CHAMBERS

perms w with k + 1 descents

Api1n = Uy Aw

Ay CTx =
TRIANGULATIONS
T triangulates Agyq., =4

BCFW triangulation {I'z}
Regular triangulation {T'x}

BCFW recursions

max cones of Trop™ G,

(amplituhedron map) A, k2 = Z (Gr:r_,,)

dim(Ap ,2) = 2k in Gry gtz

(Grasstope) Zr

sign(Yij) = (—1)2ear (=1

Ani2(Z) = JAw

Ay C Z:

{Zz} triangulates A,, . 2(Z), for all Z
BCFW triangulation {Zz}

Regular triangulation {Z;}

¢ More about T-duality (plabic graphs, new cluster structures, ...) in [PSBW|

+ proofs of conjectures:

Sign-flip charcaterization of A, 2

m = 2 cluster adjacency [Lukowski, MP, Spradlin, Volovich

19

Hamed, Thomas, Trnka '18

€ Apply ideas to higher m, the momentum amplituhedron, ...[Lukowski, MP. Williams - 20
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Summary and Outlook

the Hypersimplex

the Amplituhedron

Apyin = ,u(Gr,f,H_’") (moment map)

dim(Agt1,) =n—1in R”
GENERALISED TRIANGLES
I'7 (Positroid Polytope) unpunctured plabic tiling 7
@i j-1) > arear (i — j) compatible i — j
Ak+1.1w, = Uw Au, perms w with k + 1 descents
Ay CTy <
TRIANGULATIONS

T triangulates Agyq., PEN
BCFW triangulation {I'z}
Regular triangulation {T'x}

BCFW recursions

max cones of Trop™ G,

|
|
I + proofs of conjectures:

Sign-flip charcaterization of A, 2

(amplituhedron map) A, k2 = Z (Gr:r_,,)

w-SIMPLICES and w-CHAMBERS

m = 2 cluster adjacency [Lukowski, MP, Spradlin, Volovich 19

dim(Ap ,2) = 2k in Gry gtz

(Grasstope) Zr

sign(Yij) = (—1)2ear (=1

Ani2(Z) = JAw

Ay C Z:

{Zz} triangulates A,, . 2(Z), for all Z
BCFW triangulation {Zz}

Regular triangulation {Z;}

I
¢ More about T-duality (plabic graphs, new cluster structures, ...) in [PSBW| |

Hamed, Thomas, Trnka '18

€ Apply ideas to higher m, the momentum amplituhedron, ...[Lukowski, MP. Williams - 20

€ Results for secondary geometry (poset of subdivisions)?

iversity of Oxford)

Mohammadi, Monin, MP ’20
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Summary and Outlook

the Hypersimplex

the Amplituhedron

Aptin = ,u(Gr,f,H_’") (moment map)
dim(Agt1,) =n—1in R”

(amplituhedron map) A, 2 = Z (Gryf,)
dim(Ap ,2) = 2k in Gry gtz

GENERALISED TRIANGLES
(Grasstope) Zr

sign(Yij) = (—1)2ear (=1

I'7 (Positroid Polytope) unpunctured plabic tiling 7

@i j-1) > arear (i — j) compatible i — j
w-SIMPLICES and w-CHAMBERS

perms w with k + 1 descents

Ani2(Z) = JAw

Ay =U, Aw
Ay CTx = Ay C Zx
TRIANGULATIONS

Iz triangulates Ajy1 ., = {Z:} triangulates A, 1 2(%), for all Z
BCFW triangulation {Z;}

Regular triangulation {Z;}

BCFW triangulation {I'z} BCFW recursions

max cones of Trop™ G,

Regular triangulation {T'x}

I
¢ More about T-duality (plabic graphs, new cluster structures, ...) in [PSBW| |
I + proofs of conjectures: m = 2 cluster adjacency [Lukowski, MP, Spradlin, Volovich 19

Sign-flip charcaterization of A, 2 Hamed, Thomas, Trnka '18

€ Apply ideas to higher m, the momentum amplituhedron, ...[Lukowski, MP. Williams - 20

€ Results for secondary geometry (poset of subdivisions)? Mohammadi, Monin, MP 20

¢ Eulerian numbers - connection with Scattering Equations? Spradlin, Volovich 05

The Hypersimplex VS the Amplituhedron
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Pure mathematics and physics are becoming ever more closely connected, though
their methods remain different. One may describe the situation by saying that
mathematicians play a game in which they themselves invent the rules, while
the physicists play a game in which the rules are provided by Nature. However,
as time goes on, it becomes increasingly evident that the rules which mathemati-
cians find interesting are the same as those which Nature has chosen.

['The Relation between Mathematics and Physics” Paul A.M. Dirac, 1939]



Questions?

Artistic depiction of the Amplituhedron — Gilmore Schiegel diagram of the Hypersimplex — Ziegler 05
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