
A Prescriptive Basis at 2-loops and 6-points

Cameron Langer 
In collaboration with: J. Bourjaily, Y. Zhang     (to appear)

Based on earlier work with: E. Herrmann, A. McLeod, J. Trnka 
[1909.09131] [1911.09106] [2007.13905]

@ Amplitudes 2021



Motivation                                 
Choosing bases… wisely

• Generalized and prescriptive unitarity 

• Graph-theoretic power-counting at two loops 
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Motivation                                  Result: 3-gon basis
Choosing bases… wisely

• Generalized and prescriptive unitarity 

• Graph-theoretic power-counting at two loops 

• Counting the size of the basis 

• Constructing a good basis 

• Fully diagonalized 388-dim. space 

•  and pure (when applicable) 

• Stratified according to IR divergences 

d log

+… (94 total integrand topologies)



Generalized Unitarity

• Amplitude integrands are rational functions—so, they may be expanded in a basis   

• The coefficients are fixed by matching a spanning set of field theory cuts e.g.,  

• Reduces the computation to linear algebra

𝔅

[Bern, Dixon, Dunbar, Kosower: 9403226, 9409265] 
[Britto, Cachazo, Feng: 0412103]

(in any sufficiently well-behaved QFT…)

[Long history of refining this approach from many perspectives:  

Passarino, Veltman ’79; Ossola, Papadopoulos, Pittau: 0609007; Mastrolia,Ossola,Reiter,Tramontano: 1006.0710; Ellis, Giele, Kunszt: 0708.2398; Badger, 
Frellesvig, Zhang 1202.2019; Mastrolia, Peraro, Primo: 1605.03157; Ita: 1510.05626, Feng, Huang: 1209.3747…] 

Computable from first principles in any QFT as on-shell functions



Generalized Unitarity

• Amplitude integrands are rational functions—so, they may be expanded in a basis   

• For an arbitrary choice of basis, the coefficients are arbitrary linear combinations of 
field theory residues 

• E.g., in terms of scalar integrands, amplitudes with bubble power-counting are

𝔅

Bourjaily, Herrmann, Trnka: 1704.05460; 
Bourjaily, Herrmann, CL, McLeod, Trnka: 

1909.09131, 1911.09106

(in any sufficiently well-behaved QFT…)

• Boxes: fixed by quadruple cuts 
• Triangles: triangle cut (evaluated at a point), 

minus the pollution of the scalar box 
…



Prescriptive Unitarity

• Amplitude integrands are rational functions—so, they may be expanded in a basis   

• Exploit the fact that residues of field theory are easy to compute: diagonalize the basis 
with respect to a spanning set of cuts

𝔅

Bourjaily, Herrmann, Trnka: 1704.05460; 
Bourjaily, Herrmann, CL, McLeod, Trnka: 

1909.09131, 1911.09106

(in any sufficiently well-behaved QFT…)

• Every integrand is tailored to match a single 
field theory cut manifestly, and vanish on all 
other defining cuts 

• All other cuts matched by completeness of the 
basis (via residue theorems)



Prescriptive Unitarity at Two Loops
Workflow for finding ‘good’ bases

1. Write down an (arbitrary) basis of integrands (the size of which is dictated by power-
counting) 

2. Enumerate a spanning set of cuts/contours in field theory  

3. Diagonalize the basis with respect to your choice in 2. 

Bourjaily, Trnka: 1505.05886 
Bourjaily, Herrmann, Trnka: 1704.05460; 
Bourjaily, Herrmann, CL, McLeod, Trnka: 

1909.09131, 1911.09106

For six particles and triangle power-counting, the basis can be stratified according to: 
• Polylogarithmicity  
• Purity 
• Infrared Divergence/Finiteness



Building Bases of Loop Integrands 

• Size of the basis depends on space-time dimension and choice of power-counting 

• At one loop, power-counting is ‘obvious': e.g., the space of integrands with triangle PC 
scale as:  

• Using a graphical notation for loop-dependent numerator insertions  

where the vector space of numerators is the span of generalized inverse propagators

Before we discuss ‘nice’ integrands, we need to know how many there are in the first place!

[Bourjaily, Herrmann, CL, Trnka 2007.13905]

“scales like a scalar triangle at infinity”
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Building Bases of Loop Integrands 

• Size of the basis depends on space-time dimension and choice of power-counting 

• At one loop, power-counting is ‘obvious': e.g., the space of integrands with triangle PC 
scale as:  

• Using a graphical notation for loop-dependent numerator insertions  

Since pentagons and higher are reducible (in four dimensions)

Before we discuss ‘nice’ integrands, we need to know how many there are in the first place!

[Bourjaily, Herrmann, CL, Trnka 2007.13905]

“scales like a scalar triangle at infinity”

Convenient choice of basis: chiral boxes and scalar triangles 
[Bourjaily, Caron-Huot, Trnka: 1303.4734]



Triangle Power-Counting at Two Loops
Problem: naive scaling according to some loop-momentum routing is not canonical 

• How many                propagators per loop?

Resolution:  
Define power-counting for a graph  

relative to its contact terms



Triangle Power-Counting at Two Loops

• Definition: a scalar p-gon is an integrand whose graph has girth p, such that all daughters 
have girth strictly less than p 

• The set of scalar p-gons is easy to enumerate, e.g.,

Define power-counting for a graph relative to its contact terms

An integrand with p-gon PC  
‘scales like a scalar p-gon'

Girth: length of the shortest cycle of a graph 
Daughters: graphs obtained by single-edge contractions



Triangle Power-Counting at Two Loops
Assigning vector spaces of numerators

• The numerator space is defined as the (sum of the) products of translated inverse 
propagators for all sets of edges that—upon collapsing—lead to a scalar 3-gon 

• Three sets of edge collapses: 

• Convenient separation of this 55-dimensional space into top level and contact term d.o.f.



Two-loop triangle power-counting basis
• Complete list of 

irreducible integrand 
topologies, together with 
the dimension of the 
numerator spaces 

• Red: rank of the 
numerator space modulo 
contact-term degrees of 
freedom



A Good Start: Block Diagonality
The top level d.o.f. for each topology are normalized on codimension-8 contours

• For each topology, choose a spanning set of cuts 
with which to match field theory manifestly 

• Guiding principle: choose as many d.o.f. to match 
leading singularities—including those responsible 
for infrared divergences—as possible 

• The contours on which we normalize/diagonalize 
can be represented by on-shell functions:

For 8-propagator integrands,  
top-level d.o.f.  solutions to cut equations↔



A Good Start: Block Diagonality
The top level d.o.f. for each topology are normalized on codimension-8 contours

• Constructing block-diagonal numerators: 

Natural objects: chiral traces

=



A Good Start: Block Diagonality
The top level d.o.f. of each numerator are normalized on codimension-8 contours

• For each topology, choose a spanning set of cuts 
with which to match field theory manifestly 

• Choose as many d.o.f. to match physical 
singularities—e.g., those responsible for infrared 
divergences—as possible 

• Fill out the rest of the basis with contours “at 
infinity” 

• For graphs with <8 propagators, need composite 
leading singularities where momenta are collinear 
and/or soft



A Good Start: Block Diagonality
The top level d.o.f. of each numerator are normalized on codimension-8 contours

• For each topology, choose a spanning set of cuts 
with which to match field theory manifestly

• Dashed edge: momentum flow is zero (soft) 
• Encircled vertex: momenta are collinear 
• Red loop: infinite loop momentum,

Nota bene: maximally SYM amplitudes vanish at infinity 
  basis elements normalized here have coefficient zero!⟹
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Dealing with Double Poles

• Part of the basis is inescapably not logarithmic, e.g., 

• Setting  

The scalar integral has a double pole on any further residue: 

Every other basis element vanishes on all such defining points (as do amplitudes)



Global Diagonalization
How do we fix the ‘contact term’ degrees of freedom?

• Any initially block-diagonal basis of integrands normalized on a spanning set of cuts is  
automatically triangular in cuts  

• To diagonalize the entire basis amounts to iterative subtractions e.g., 

• Parent numerators must vanish on all defining contours of every daughter  

           (  -dimensional linear system)∼ 3200



Final Result and Discussion
A fully diagonalized basis of integrands with 3-gon power-counting

• Partitioned according to transcendental weight i.e., 

• Cleanly separated into IR finite and divergent integrands 

• By construction, only those integrands normalized on collinear and soft-collinear 
contours (are expected to) generate IR divergences upon integration 

• To represent amplitudes in this basis requires only the list of non-vanishing leading 
singularities in the spanning set:
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Outlook

• Our basis ideally suited to direct integration  

• All-multiplicity generalization (requires elliptic LS and beyond) 

• Upgrade basis with -terms for dimensional regularization 

• Manifest IR divergence—term-wise finite representation of the ratio function?

μ

Thanks for your time! 


